• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 88
  • 33
  • 12
  • Tagged with
  • 258
  • 120
  • 86
  • 61
  • 61
  • 61
  • 34
  • 32
  • 31
  • 25
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Nickel-Iron Oxide-based Nanomembranes as Anodes for Micro-Lithium-Ion Batteries

Liu, Lixiang 29 September 2020 (has links)
Development of microsized batteries plays an important role in the design of in-situ electrochemical investigation systems and portable/wearable electronics. This emerging field intimately correlates with the topics of rechargeable batteries, nanomaterials, on-chip microfabrication, flexibility with reliable mechanical properties etc. Among the various energy materials, conversion-type materials have been proposed as high-energy-density alternatives to traditional intercalation-based materials. However, these materials usually show complex reaction processes accompanied by multi-reaction intermediates, which poses a great challenge to understand the chemical mechanisms. Benefiting from the merits of microsized battery devices, we develop a novel strategy to investigate and then optimize the electrochemical performance of a specific conversion-type material: nickel-iron oxide (NFO). Subsequently, this kind of materials are employed for flexible minimized energy storage systems. Unlike traditional characterization methods based on slurry-coated electrodes, micro-platforms directly probe the intrinsic electrochemical properties of a single active material in real-time due to the elimination of other additives. In this thesis, we firstly design a micro-lithium batteries (MLBs), based on a single “Swiss-roll” microtubular nanomembrane electrode. This platform enables us to investigate the electrochemical mechanisms of electrode materials in lithium batteries by in-situ Raman spectroscopy, electrical conductivity measurements, and electrochemistry characterization. With this designed MLBs, we systematically studied NFO nanomembranes. Using in-situ Raman spectroscopy during the delithiation/lithiation process, we monitored the transition of the chemical component directly. Guided by our investigations of micro-batteries, composite NFO nanomembrane electrodes were fabricated and tested in coin cells, which showed an excellent rate performance: 440 mAh g-1 at a high rate of 20 A g-1 and a long-term stable cycling performance over 1600 cycles. One step further, a flexible energy storage micro-device is achieved using such optimized materials. We demonstrate a thin, lightweight, and flexible micro-full lithium-ion battery based on nickel-iron oxide with a high-rate performance and energy density that can be repeatedly bent to 180° without structural failure and performance loss. It delivers a stable output capacity of 140 mAh g-1 over 1000 charge/discharge cycles. Meanwhile, the excellent rate performance guarantees high energy output up to 255 W h kg-1 at a high power density of 12000 W kg-1 at the microscale.
192

Local probe investigations of the electronic phase diagrams of iron pnictides and chalcogenides

Materne, Philipp 24 September 2015 (has links)
In this work, the electronic phase diagrams of Ca1−xNaxFe2As2 and Fe1+yTe were investigated using muon spin relaxation and Mössbauer spectroscopy. Single crystals of Ca1−xNaxFe2As2 with x = 0.00, 0.35, 0.50, and 0.67 were examined. The undoped 122 parent compound CaFe2As2 is a semi metal and shows antiferromagnetic commensurate spin density wave order below 167 K. By hole doping via Na substitution, the magnetic order is suppressed and superconductivity emerges including a Na-substitution level region, where both phases coexist. Upon Na substitution, a tilting of the magnetic moments out of the ab-plane is found. The interaction of the magnetic and superconducting order parameter in this coexistence region was studied and a nanoscopic coexistence of both order parameters is found. This is proven by a reduction of the magnetic order parameter of 7 % in x = 0.50 below the superconducting transition temperature. This reduction was analysed using Landau theory and a systematic correlation between the reduction of the magnetic order parameter and the ratio of the transition temperatures, Tc/TN, for the 122 family of the iron pnictides is presented. The magnetic phase transition is accompanied by a tetragonal-to-orthorhombic phase transition. The lattice dynamics at temperatures above and below this magneto-structural phase transition were studied and no change in the lattice dynamics were found. However, the lattice for finite x is softer than for the undoped compound. For x = 0.67, diluted magnetic order is found. Therefore, the magnetism in Ca1−xNaxFe2As2 is persistent even at optimal doping. The superconducting state is investigated by measuring the temperature dependence of the magnetic penetration depth, where two superconducting gaps with a weighting of nearly 50:50 are obtained. A temperature independent anisotropy of the magnetic penetration depth γ_λ = 1.5(4) is obtained, which is much smaller compared to other 122 compounds indicating a more three-dimensional behaviour of Ca1−xNaxFe2As2. Powder samples of Fe1+yTe with y = 0.06, 0.12, 0.13, and 0.15 were examined. Fluctuating paramagnetic moments at room temperature were found, which are independent of the excess iron level y. Below 100 K, a magnetic precursor phase is observed, which is independent of y. Fe1.06Te shows a commensurate spin density wave phase below TN, while for y ≥ 0.13 an incommensurate spin density wave phase below TN is found. However, a slowing down of the magnetic fluctuations with decreasing temperature and static magnetic order at lowest temperature are observed. / In dieser Arbeit wurden die elektronischen Phasendiagramme von Ca1−xNaxFe2As2 and Fe1+yTe mit Hilfe der Myonspinrelaxations- und Mössbauerspektroskopie untersucht. Einkristalle von Ca1−xNaxFe2As2 mit x = 0.00, 0.35, 0.50 und 0.67 wurden untersucht. Das undorierte 122-System CaFe2As2 ist ein Halbmetal und zeigt eine antiferromagnetische Spindichtewelle unterhalb von 167 K. Substituiert man Ca durch Na, werden Löcher in das System eingebracht. Die magnetische Ordnung wird mit steigendem Na-Anteil unterdrückt und Supraleitung tritt auf. Dabei existiert ein Na-Substitutionslevelbereich, in welchem Magnetismus und Supraleitung koexistieren. Desweiteren wurde ein herausdrehen der magnetischen Momente aus der ab-Ebene als Funktion von x beobachtet. Die Wechselwirkung des magnetischen mit dem supraleitenden Ordnungsparameter in der Koexistenzregion wurde untersucht und nanoskopische Koexistenz der beiden Ordnungsparameter wurde gefunden. Dies konnte durch eine Reduktion des magnetischen Ordnungsparameteres um 7 % in x = 0.50 unterhalb der supraleitenden Ordnungstemperatur gezeigt werden. Diese Reduktion wurde mit Hilfe der Landautheorie untersucht und es wurden systematische Korrelationen zwischen der Reduktion des magnetischen Ordnungsparamteres und dem Verhältnis der Übergangstemperaturen, Tc/TN, in der 122-Familie der Eisenpniktide gefunden. Der magnetische Phasenübergang wird von einem strukturellen Phasenübergang begleitet. Die Gitterdynamik wurde bei Temperaturen oberhalb und unterhalb dieses magneto-elastischen Phasenübergangs untersucht. Es wurden keine Änderungen in der Gitterdynamik festgestellt. Jedoch konnte festgestellt werden, dass das Gitter für endliche x weicher ist als für das undotierte System. Für x = 0.67 wurde festgestellt, dass der Magnetismus im Ca1−xNaxFe2As2-System auch noch bei optimaler Dotierung zu finden ist. In der supraleitenden Phase wurde die Temperaturabghängigkeit der magnetischen Eindringtiefe untersucht und es wurden zwei supraleitende Bandlücken gefunden. Die Anisotropie der magnetischen Eindringtiefe ist temperaturunabhängig und mit γ_λ = 1.5(4) wesentlich kleiner als in anderen 122- Verbindungen, was für eine erhöhte Dreidimensionalität in Ca1−xNaxFe2As2 spricht. Pulverproben von Fe1+yTe mit y = 0.06, 0.12, 0.13 und 0.15 wurden untersucht. Es wurden fluktuierende paramagnetische Momente bei Raumtemperatur gefunden, welche unabhängig vom Überschusseisenlevel y sind. Unterhalb von 100 K wurde eine magnetische Vorgängerphase gefunden, welche unabhängig von y ist. Mit fallender Temperatur wurde eine Verlangsamung der magnetischen Fluktuationen festgestellt, welche in einer statischen magnetischen Ordnung bei tiefen Temperaturen münden.
193

Scanning tunneling microscopy on low dimensional systems: dinickel molecular complexes and iron nanostructures

Salazar Enríquez, Christian David 28 September 2016 (has links)
This thesis contains experimental studies on low dimensional systems by means of scanning tunneling microscopy (STM). These studies include investigations on dinickel molecular complexes and experiments on iron nanostructures used for the implementation of the spin-polarized scanning tunneling microscopy technique at the IFW-Dresden. Additionally, this work provides detailed information of the experimental technique (STM), from the theoretical background to the STM-construction, which was part of this doctoral work. Molecular anchoring and electronic properties of macrocyclic magnetic complexes on gold surfaces have been investigated by mainly scanning tunneling microscopy and complemented by X-rays photoelectron spectroscopy. Exchange–coupled macrocyclic complexes [Ni2L(Hmba)]+ were deposited via 4-mercaptobenzoate ligands on the surface of Au(111) single crystals. The results showed the success of gold surface-grafted magnetic macrocyclic complexes forming large monolayers. Based on the experimental data, a growth model containing two ionic granular structures was proposed. Spectroscopy measurements suggest a higher gap on the cationic structures than on the anionic ones. Furthermore, the film stability was probed by the STM tip with long-term measurements. This investigation contributes to a new promising direction in the anchoring of molecular magnets to metallic surfaces. Iron nanostructures of two atomic layers and iron-coated tungsten tips were used in order to implement the spin-polarized scanning tunneling microscopy technique at the IFW-Dresden. First of all, a systematic study of the iron growth, from sub-monolayers to multilayers on a W(110) crystal is presented. Subsequent to the well-understanding of the iron growth, the experiments were focused on revealing, for the first time at the IFW-Dresden, the magnetic inner structure of iron nanostructures. The results evidently showed the presence of magnetic domains of irregular shapes. Furthermore, SP-STM probed the bias voltage dependence of the magnetic contrast on the iron nanostructures. This technique opens up a new powerful research line at the IFW-Dresden which is promising for the study of quantum materials as molecular magnets and strongly correlated systems.
194

Wachstum, Mikrostruktur und hartmagnetische Eigenschaften von Nd-Fe-B-Schichten

Hannemann, Ullrich 21 July 2004 (has links)
In dieser Arbeit wurden mit der gepulsten Laserdeposition Nd-Fe-B-Schichten abgeschieden. Diese Schichten wurden auf einem geheizten Substrat deponiert und reagierten zu der hart-magnetischen Nd2Fe14B-Phase. Eine weitere Phase in den Schichten ist Neodym aufgrund der überstöchiometrischen Abscheidung von Neodym zur Unterstützung der Phasenbildung von Nd2Fe14B und zur Entkoppelung der Nd2Fe14B-Körner. Für die Mikrostruktur und die magnetischen Eigenschaften der Schichten sind die Grenzflächen zum Substrat und zur Umgebung von entscheidender Bedeutung, da sich die überwiegende Anzahl der Körner im Kontakt mit zumindest einer der beiden Grenzflächen befindet. Aus diesem Grund stand die Untersuchung des Einflusses der Grenzflächen auf das Wachstum, die Mikrostruktur und die magnetischen Eigenschaften der Nd-Fe-B-Schichten im Mittelpunkt der Arbeit. Die Nd-Fe-B-Schichten wurden sowohl auf Chrom- als auch auf Tantalbuffern deponiert. Ein Buffer wurde zur Einstellung der Mikrostruktur und zum Schutz der Nd-Fe-B-Schicht vor Diffusion und Reaktionen mit den Elementen des Substrates benutzt. Die Untersuchungen zeigten, dass der Chrombuffer diese Bedingungen nur unzureichend erfüllt. Die Schichten, die auf dem Tantalbuffer deponiert wurden wachsen bei tiefen Depositionstemperaturen als zusammenhängende Schicht auf und zeigen eine magnetische Vorzugsorientierung mit der magnetisch leichten Richtung parallel zur Substratnormalen. Mit steigender Depositionstemperatur verbessert sich die Ausprägung der magnetischen Vorzugsorientierung bis die vollständige Ausrichtung aller magnetischen Momente parallel zur Substratnormale erreicht ist. Die Topologie dieser Schichten weist einzeln stehende Nd2Fe14B-Körner auf, was durch ein nicht benetzendes Verhalten von Nd2Fe14B auf Tantal erklärt wird. An Schichten, die bei Depositionstemperaturen um 630 °C auf dem Tantalbuffer abgeschieden wurden, konnte das epitaktische Wachstum von Nd2Fe14B nachgewiesen werden. Auch diese Schichten zeigen die Mikrostruktur der isoliert voneinander stehenden Körner. Obwohl die Korngröße dieser Körner etwa 2 µm beträgt, zeigen diese Schichten ein Koerzitivfeld von bis zu 2 T. Diese hohen Werte des Koerzitivfeldes werden durch die Vermeidung des Einbaus von Defekten in den Körnern erreicht. Zusammenfassend können diese Schichten als mikrometergroße und parallel zueinander angeordnete Einkristalle beschrieben werden. Aus diesem Grund konnten mit diesen Schichten Einkristallmessungen wie die Temperaturabhängigkeit der Sättigungspolarisation und des Spinreorientierungswinkels reproduziert werden. Aufgrund des epitaktischen Wachstums von Nd2Fe14B auf Tantal(110) konnte auch auf amorphen Substraten hochremanente und hochkoerzitive Schichten abgeschieden werden. Dafür wird ausgenutzt, dass der Tantalbuffer auch auf einem amorphen Substrat aufgrund der Wachstumauslese texturiert aufwächst und auf den einzelnen Körnern des texturierten Tantalbuffers die Nd2Fe14B-Körner lokal epitaktisch nukleieren können. Die Nd2Fe14B-Körner dieser Schichten sind nicht isoliert voneinander, sondern zeigen eine zusammenhängende Topologie. Diese Schichten besitzen ein Koerzitivfeld von etwa 1,3 T. Da Nd2Fe14B eine leicht oxidierende Phase ist, müssen die Nd-Fe-B-Schichten vor Korrosion geschützt werden. So wurde gezeigt, dass das Koerzitivfeld bei an Luft gelagerten Schichten innerhalb von einer Woche auf die Hälfte des ursprünglichen Wertes abfällt. Dieser Abfall konnte durch Defekte bzw. weichmagnetische Phasen als Ergebnis der Oxidation an den Oberflächen der Nd2Fe14B-Körnern erklärt werden. Die Verhinderung der Oxidation und damit der Verschlechterung der magnetischen Eigenschaften konnte sehr effektiv, d.h. ohne eine messbare Veränderung der magnetischen Eigenschaften über einen Zeitraum von 6 Monaten; durch die Abscheidung einer Chromdeckschicht erreicht werden.
195

Structural and magnetic characterization of Nd-based Nd-Fe and Nd-Fe-Co-Al metastable alloys

Kumar, Golden 27 May 2005 (has links)
The aim of the present work is to characterize a metastable hard magnetic phase referred to as "A1" in Nd-Fe alloys, which forms as a part of the fine eutectic depending on the composition and cooling rate. In order to define the range of composition for the formation of A1, Nd100-xFex (x = 20, 25, 40) alloys are cooled at about 150 K/s. The results indicate that for a cooling rate of 150 K/s, the hypereutectic Nd100-xFex (x = 20) alloys solidify into hard magnetic A1 whilst the hypoeutectic alloys (x = 40) show the formation of Nd2Fe17 crystallites. However, no sample cooled at 150 K/s shows the peaks of Nd5Fe17 as expected from the equilibrium Nd-Fe phase diagram. The effect of cooling rate on the formation of hard magnetic A1 is studied by investigating the Nd80Fe20 alloys cooled at different rates. The microstructure of hard magnetic Nd80Fe20 alloys displays a fine eutectic-like matrix consisting of Nd-richer and Fe-richer regions. The Nd-richer regions are identified as dhcp Nd and fcc Nd-Fe solid solution. However, the Fe-richer regions also referred to as A1, are diffuse and give an average composition of Nd56Fe44. These regions yield complex electron diffraction patterns, which do not match with any known Nd-Fe phase. HRTEM images of the Fe-richer regions reveal the presence of 5-10 nm crystallites embedded in an amorphous phase. Thus the Fe-richer regions of the hard magnetic Nd80Fe20 specimens are not a single homogeneous phase rather they are mixture of finely dispersed nanocrystallites in an amorphous phase. The demagnetization curves the hard magnetic Nd80Fe20 measured at temperatures above 30 K are typical of a hard magnetic material. The coercivity increases from 0.48 to 4.4 T with the temperature decreasing from 300 to 55 K. The demagnetization curves change from single to two-phase type when the temperature approaches 29 K, ordering temperature of fcc Nd-Fe solid solution. The measurements of initial magnetization, field dependence of coercivity, and temperature dependence of coercivity suggest the Stoner-Wohlfarth type magnetization reversal process for the hard magnetic A1. The values of anisotropy constant are estimated by fitting the magnetization data to the law-of-approach to saturation. The temperature dependence of anisotropy constant and the coercivity indicate that the origin of coercivity is magnetic anisotropy. A cluster model with sperimagnetic arrangement of Nd and Fe spins is used to explain the hard magnetic behavior of the mold-cast Nd80Fe20. Structural and magnetic properties of multicomponent Nd60Co30-xFexAl10 (0 < x < 30) alloys are compared with the binary Nd-Fe alloys. Magnetic measurements of the multicomponent alloys show that the magnetic properties are controlled by the fraction of the Fe content. The coercivity of the Nd60Co30-xFexAl10 mold-cast rods does not vary much with the Fe-content for more than 10 at.% Fe but the remanence and the maximum magnetization increase linearly with the Fe content. The temperature dependence of coercivity, effective anisotropy constant, and anisotropy field are identical to those for the binary Nd80Fe20 mold-cast rod. These results clearly suggest that the binary Nd80Fe20 and the multicomponent Nd60Co30-xFexAl10 (x > 5) mold-cast rods are magnetically identical.
196

Nanostruktur ionenbestrahlter Fe/Al- und Co/Cu-Grenzschichten

Noetzel, Joachim 17 July 2000 (has links)
In dieser Arbeit wird die nanoskalige Struktur von Grenzschichten in binären metallischen Multischichten untersucht. Ausgangspunkt sind laserdeponierte Multischichten des mischbaren Systems Fe/Al und des nichtmischbaren Systems Co/Cu. Die Struktur der durch die hochenergetischen Teilchen bei der Deposition entstandenen Grenzschichten wird mit Hilfe von zahlreichen Analyseverfahren (RBS, CEMS, EXAFS, Röntgenverfahren, TEM, AES und magnetische Messungen), sowie Simulationsrechnungen auf Basis des ballistischen Mischens (TRIDYN) untersucht. Anschließend wird mit Hilfe von Ionenstrahlmischen und thermischem Anlassen die Grenzschichtstruktur weiter modifiziert.
197

Bildung und Stabilität von anodischen Deckschichten auf Eisen-Silizium-Legierungen

Wolff, Ulrike 12 July 1999 (has links)
In den letzten Jahren wurde umfangreich über Wirkprinzipien berichtet, die zur Verbesserung der Passivschichtstabilität von Fe-Basislegierungen durch Legierungsbestandteile, wie Cr [1-3] und Al [4-6] beitragen. Die Zahl der Arbeiten zu Untersuchungen mit dem Legierungsbestandteil Si sind dagegen gering und lassen noch keine endgültige Schlußfolgerung zu. Insbesondere sind verschiedene Wirkmechanismen bei unterschiedlichen ph-Werten zu erwarten.
198

Electrocrystallisation of CoFe Alloys Under the Influence of External Homogeneous Magnetic fields

Koza, Jakub 24 June 2010 (has links)
The iron-group metals and alloys are of interest because of their excellent soft magnetic properties. They have found a wide application field in the storage technology, especially for reading/writing elements in the hard drive head, and in microelectromechanical systems (MEMS). Especially the CoFe system, which possesses the highest, among others, saturation magnetisation of 2.45 T and a relatively low coercivity of about 2×10^-5 T, is of interest. These properties are crucial for the further development in the storage technology. Electrodeposition is a very promising alternative to the physical vapour deposition techniques (PVD) to produce soft magnetic layers and microstructures. The advantage of electrodeposition in comparison to PVD processes is the fact that it is an inexpensive method. Moreover, electrodeposition is the most appropriate process for the writing head fabrication since it allows to deposit high aspect ratio layers with a thickness ranging from a few monolayers up to more than 1 um onto a complex geometry substrate. A superposition of an external magnetic field during the electrodeposition can affect the deposit properties. Mainly the morphology of the deposited layers is influenced. This is mostly caused by the Lorentz force driven convection, i.e. the magnetohydrodynamic (MHD) effect. Whilst the knowledge of uniform external magnetic field effects on the electrodeposition of single metals has been greatly improved during the past decade, an alloy deposition is still a challenging task. Due to a lack of understanding of mechanisms of a magnetic field impact on the deposition of CoFe alloys and their technological importance a detailed investigation is of demand. The aim of this work is to analyse in detail the effects induced by a homogeneous magnetic field with different strength and relative to the electrode surface orientation on the electrodeposition of thin CoFe alloy films of different composition. This study is divided into three major parts: an analysis of the electrochemical behaviour (1), nucleation and growth processes (2) and the determination of the morphology and the physical properties of the deposited layers (3). 1. A detailed analysis of the electrochemical processes is performed. The influence of the magnetic field with respect to its flux density and relative to the electrode surface orientation on the reactions rates has been investigated. A special attention has been given to the side reactions accompanying the metal reduction, i.e. the hydrogen evolution reaction (HER). Which has a significant impact on the layer’s properties. It has been shown that the electrochemical reaction rates are improved in the parallel to the electrode magnetic field due to the classical MHD effect. On the contrary, in the perpendicular to the electrode magnetic field nearly no effect on the metal reduction is observed, whilst the HER rate is significantly increased. The reason of that is seen in the improved desorption of hydrogen bubbles from the electrode surface due to a localized convection in a bubble vicinity, the so called micro- MHD effect. Moreover, the additional convection introduced by a magnetic field, regardless of its relative to the electrode surface orientations, leads to a reduced interface pH value. This, in turn, results in an improved layer quality, i.e. the hydroxides precipitation is inhibited. 2. The nucleation and the very beginning of the layer growth are of particular importance for thin film deposition. Since the deposit properties are determined by these processes an extensive study of the very initial stages of electrocrystallisation is presented. This was performed by an analysis of the current density vs. time transients. It was found that the nucleation behaviour can be altered by a magnetic field. The changes in the nucleation behaviour have been studied on the basis of theoretical models by an current density-time transients analysis. Regardless of the electrolyte chemistry, the magnetic field strength, and its relative to the electrode orientation, similar features in the current density-time transients have been observed. The nucleation and growth are characterised by a layer-by-layer mode. The first nucleation and growth step at the very beginning of the potential step has been attributed to the 2D (most probably epitaxial) layer formation (up to a few monolayers), which was found unaffected by a magnetic field superposition. The 2D step is then followed by the next nucleation and growth step indicated by the occurrence of a maximum in the current density-time transients. This is attributed to the nucleation and 3D diffusion controlled growth and is altered by a magnetic field applied in the parallel-to-electrode configuration. The experimental dependencies have been examined by known theoretical models. This analysis revealed that the superposition of the parallel magnetic field leads to a retardation of the steady state nucleation rate (AN0) due to the MHD effect acting in the electrolyte. A qualitative model was proposed in order to explain this phenomenon. In contrast, the perpendicular to the electrode magnetic field does not change the nucleation behaviour. However, the growth mode of the layer is remarkably changed, i.e. a columnar growth is observed. 3. The magnetic field impact on the electrochemical reaction rates, on the desorption of hydrogen from the electrode surface, and on the nucleation behaviour has strong consequences for the resulting layer characteristics. This can be summarized as follows: • The most pronounced effect is noticed for the morphology of the layers. The quality of the layers deposited in a magnetic field, irrespective of its relative to the electrode orientation, is strongly improved. The reason of this is an enhanced desorption of hydrogen from the electrode surface. As a result large holes left by hydrogen bubbles observed for the layers deposited without a field disappear for the layers deposited under the influence of a magnetic field. The layers deposited under an influence of the parallel to the electrode magnetic field appear denser and more homogeneous than the ones obtained without a magnetic field. On the contrary, the layers deposited in the perpendicular to the electrode magnetic field appeared more diverse. The most remarkable effect has been observed for the layers deposited from the Fe and the CoFe(A) electrolyte in a perpendicular magnetic field where the grains tend to grow as separated columns in the direction of the magnetic field. A scaling analysis has revealed a smoothing effect of a parallel magnetic field manifested in a reduced value of the roughness exponent in comparison to the layers deposited without a magnetic field. On the contrary, the roughness exponent has increased for the layers obtained in the perpendicular to the electrode magnetic field, i.e. a roughening effect of the perpendicular magnetic field is observed. • No magnetic field effects neither on the crystal structure nor on the texture of the deposits have been observed. All layers irrespective of the deposition parameters develop a fibre texture. Nevertheless, the internal stress state of the deposited layers is affected by a magnetic field. A magnetic field applied during the deposition of alloy layers from buffered electrolytes, irrespective of its relative to the electrode orientation, reduces the internal stress of the layer. This effect is attributed to an improved desorption of hydrogen from the electrode surface, which is observed under the influence of a magnetic field. • The chemical composition of the deposited alloy layers, irrespective of the deposition parameters, is unchanged by magnetic fields. • The magnetic properties of the deposits are found to be affected by a magnetic field applied during the deposition. These effects are caused by microstructural changes induced by the magnetic field, i.e. the roughness of the layer, the internal stress state, and the chemical composition of the deposit. A good correlation between the coercivity and the roughness is found. Moreover, an in-plane magnetic anisotropy is observed in the alloy layers deposited under the influence of the parallel to the electrode magnetic field, where, according to the XRD investigations, isotropic properties were expected. The origin of this phenomenon is seen in a preferential same atom couples formation in the magnetic field direction. / Metalle und Legierungen der Eisengruppe sind von großem Interesse insbesondere wegen ihrer exzellenten weichmagnetischen Eigenschaften. Ein breites Anwendungsgebiet liegt in der Speichertechnologie, sie finden vorrangig Einsatz in Lese- und Schreibköpfen und in mikroelektromechanischen Systemen (MEMS). Besonders das CoFe-System, das u.a. die höchste Sättigungsmagnetisierung von 2,45 T bei einer relativ niedrigen Koerzitivfeldstärke von ca. 2×10^-5 T aufweist, ist interessant für zukünftige Entwicklungen in der Speichertechnologie. Im Vergleich zu physikalischen Abscheideverfahren, wie PVD (physical vapor deposition) ist die Elektrokristallisation eine einfache und preiswerte Alternative zur Herstellung von weichmagnetischen Schichten und Strukturen, die sich im Herstellungsprozess von Schreib-und Leseköpfen durchgesetzt hat. Es ist möglich Schichten und komplexe geometrische Strukturen mit einer Stärke von einigen Monolagen bis zu mehr als 1µm und in hohen Aspektverhältnissen abzuscheiden. Durch Überlagerung von externen Magnetfeldern während der Elektrodeposition können die Eigenschaften und insbesondere die Morphologie der Schichten signifikant beeinflusst werden. Die Ursache dafür besteht im Wesentlichen in der durch Lorentzkräfte angetriebenen Konvektion, die als magnetohydrodynamische Konvektion (MHD) bezeichnet wird. Während im letzten Jahrzehnt durch grundlegende Untersuchungen der Kenntnisstand bezüglich der elektrochemischen Abscheidung einzelner Metalle in überlagerten Magnetfeldern vertieft wurde, ist das Verständnis zum Mechanismus der Legierungsabscheidung wenig erforscht und eine Herausforderung. Es besteht kaum Kenntnis zum Mechanismus der CoFe Abscheidung unter dem Einfluss externer Magnetfelder und deren Bedeutung für technologische Prozesse. Das Ziel dieser Arbeit ist es, den Einfluss homogener Magnetfelder unterschiedlicher Stärke und Orientierung bezüglich der Elektrodenoberfläche während der Elektrokristallisation von CoFe Legierungen unterschiedlicher Zusammensetzung zu untersuchen und die magnetfeldinduzierten Effekte detailliert und grundlegend zu analysieren. Die Arbeit ist in drei wesentliche Abschnitte gegliedert, (1) die Analyse des elektrochemischen Verhaltens, (2) die Untersuchung von Keimbildungs- und Wachstumsprozessen, (3) die Charakterisierung der Morphologie und der physikalischen Eigenschaften der Schichten. 1. Die elektrochemischen Prozesse und Abscheideraten wurden in Abhängigkeit von der magnetischen Flussdichte und Orientierung bezüglich der Elektrodenanordnung detailliert analysiert. Besondere Berücksichtigung fand die die Metallabscheidung begleitende Nebenreaktion, die Wasserstoffreduktion (HER), die signifikant die Eigenschaften der Schichten beeinflusst. Es konnte gezeigt werden, dass die Rate der Metallabscheidung in einem Magnetfeld, welches parallel zur Elektrode ausgerichtet ist, erhöht wird, was auf den klassischen MHD-Effekt zurückzuführen ist, der im Elektrolyten eine Strömung generiert. Im Gegensatz dazu wurde in einem homogenen Magnetfeld das senkrecht auf die Probe gerichtet ist, nahezu kein Einfluss auf die Reduktion der Metallionen gefunden, während die HER-Reaktion signifikant erhöht wird. Die Ursache ist in einer beschleunigten Desorption der Wasserstoffblasen von der Elektrodenoberfläche zu sehen, die durch lokale Konvektion in Blasennähe hervorgerufen und als mikro-MHD Effekt bezeichnet wird. Darüber hinaus bewirkt die magnetfeldinduzierte Konvektion unabhängig von der Magnetfeldorientierung einen geringeren Anstieg des oberflächennahen pH-Wertes. Das wiederum führt zu einer verbesserten Schichtqualität, da die spontane Bildung von Hydroxiden inhibiert wird. 2. Die Keimbildung und der Beginn des Schichtwachstums sind von besonderer Bedeutung für die Elektrokristallisation dünner Schichten, da die Schichteigenschaften wesentlich durch diese Prozesse bestimmt werden. Die Initialschritte der Elektrokristallisation wurden im Detail untersucht und dargestellt. Die Analyse erfolgt auf der Grundlage von Stromdichte-Zeit-Transienten. Es konnte gezeigt werden, dass das Keimbildungsverhalten durch ein überlagertes Magnetfeld beeinflusst wird. Unabhängig von der Zusammensetzung des Elektrolyten, der magnetischen Flussdichte und der Orientierung zur Elektrodenoberfläche wurden vergleichbare Stromdichte-Zeit-Verläufe beobachtet. Keimbildung und Wachstum können durch einen Layer-by-Layer Modus charakterisiert werden. Der erste Keimbildungs- und Wachstumsschritt, der unmittelbar nach dem Anlegen des Abscheidepotentials stattfindet, ist durch eine 2D Schichtbildung (wahrscheinlich epitaktisch) gekennzeichnet, die zur Ausbildung von einigen Monolagen führt. Dieser Schritt wird durch ein äußeres Magnetfeld nicht beeinflusst. Dem 2D-Schritt folgen weitere Keimbildungs- und Wachstumsschritte, die durch ein Maximum im Stromdichte-Zeit-Transienten gekennzeichnet sind. Das Verhalten ist auf Keimbildung und 3D diffusionskontrollierte Wachstumsprozesse zurückzuführen und wird durch ein Magnetfeld parallel zur Elektrodenoberfläche beeinflusst. Die experimentellen Ergebnisse wurden mit Hilfe bekannter theoretischer Modelle analysiert. Es wurde gezeigt, dass die Überlagerung eines parallel zur Oberfläche angeordneten Magnetdfeldes zu einer Verringerung der stationären Keimbildungsrate (AN0) führt, was ebenfalls auf die Wirkung des MHD-Effektes zurückzuführen ist. In der Arbeit wird ein qualitatives Modell für die Legierungsabscheidung in einem überlagerten homogenen Magnetfeld vorgeschlagen, das die beobachteten Phänomene erklärt. Im Gegensatz dazu wurde in einem senkrecht zur Elektrodenoberfläche ausgerichteten Magnetfeld kein Einfluss auf den Keimbildungs- und Wachstumsmechanismus anhand der Stromdichte-Zeit-Transienten festgestellt. Trotzdem wird eine stark veränderte Schichtmorphologie, die ein kolumnares Kornwachstum zeigt, beobachtet. 3. Der Einfluss eines äußeren Magnetfeldes auf die elektrochemischen Abscheideraten, auf die Desorption von Wasserstoff von der Elektrodenoberfläche und auf das Keimbildungsverhalten hat Konsequenzen auf die Schichteigenschaften. Diese können wie folgt zusammengefasst werden: • Der Einfluss eines äußeren Magnetfeldes auf die Schichtmorphologie ist auffallend. Die Qualität der Schichten, die in einem Magnetfeld abgeschieden wurden, wird unabhängig von der Orientierung des Magnetfeldes zur Elektrodenoberfläche deutlich verbessert. Als Ursache ist die beschleunigte Desorption der Wassersoffblasen von der Elektrodenoberfläche anzusehen. Ohne äußeres Magnetfeld verbleiben große Defekte in Form von Löchern auf der Oberfläche, die durch anhaftende Wasserstoffblasen verursacht werden, die in einem überlagerten Magnetfeld nicht beobachtet werden. Schichten, die in einem Magnetfeld parallel zur Elektrodenoberfläche erhalten werden, sind dichter und homogener. Im Gegensatz dazu haben Schichten in einem senkrecht zur Oberfläche abgeschiedenen Magnetfeld eine mannigfaltige Morphologie. Schichten aus Fe und CoFe Legierungen mit einem hohen Eisenanteil wachsen in Form von separaten Körnern und Säulen in Richtung des senkrecht ausgerichteten Magnetfeldes. Mittels Scaling-Analyse wurden Rauhigkeitsexponeten ermittelt, die den glättenden Effekt eines parallel zur Elektrode ausgerichteten Magnetfeldes auf die Schichtmorphologie bestätigen im Vergleich zu Schichten, die ohne Magnetfeld abgeschieden wurden. Die Rauhigkeitsexponenten für Schichten, die in einem senkrecht ausgerichteten Magnetfeld abgeschieden wurden, sind hingegen deutlich erhöht. • Weder auf die kristallographische Struktur noch auf die Textur der Schichten konnte ein Einfluss des überlagerten Magnetfeldes nachgewiesen werden. Alle Schichten unabhängig von den Abscheidebedingungen weisen eine Fasertextur auf. Trotzdem konnte ein signifikanter Einfluss des Magnetfeldes auf die innere Spannung der Schichten bestätigt werden. Insbesondere vermindert sich die innere Spannung von Schichten unabhängig von der Orientierung des angelegten Magnetfeldes, die aus einem gepufferten Elektrolyten abgeschieden wurden. Die Ursache ist auch hier auf die verbesserte Desorption von Wasserstoff zurückzuführen. • Die chemische Zusammensetzung der Schicht wird für die untersuchten Systeme durch ein Magnetfeld nicht verändert. • Die magnetischen Eigenschaften der Schichten werden beeinflußt, wenn während der Elektrokristallisation ein Magnetfeld überlagert wird. Diese Effekte werden durch die mikrostrukturellen Veränderungen, die durch ein überlagertes Magnetfeld induziert werden verursacht, d.h. durch die Rauhigkeit der Schicht, die innere Schichtspannung und die chemische Zusammensetzung. Es wird eine gute Korrelation zwischen der Koerzitivfeldstärke und Rauhigkeit der Schichten gefunden. Darüber hinaus wurde eine in-plane Anisotropie beobachtet, wenn während der Elektrokristallisation ein Magnetfeld parallel zur Elektrodenoberfläche angelegt wurde, obwohl aus röntgenographischen Untersuchungen isotrope Eigenschaften erwartet wurden. Als Ursache für dieses Phänomen wird eine bevorzugten Ausbildung und Ausrichtung von gleichatomigen Paaren im Magnetfeld angenommen.
199

X-ray studies of magnetism and electronic order in Fe-based materials

Hamann Borrero, Jorge Enrique 17 December 2010 (has links)
The structure and magnetism of selected compounds of the pnictides iron based superconductors with chemical formula LnO{1-x}FeAsFx (Ln = La,Sm and Ce), commonly known as 1111, and of rare earth iron borates RFe3(BO3)4 (R = Tb, Gd, Nd and Y), were studied by means of hard x-ray diffraction. For the 1111 pnictides compounds, Rietveld refinement of powder x-ray diffraction measurements at room temperature reveals, that the ionic substitution of O by F has no effect on the structure of the FeAs layers of tetrahedra, whereas the major changes takes place in the LnO layer. These changes are reflected as a shrinkage of the crystal lattice, specially in the c direction. Additionally, a study of the temperature dependent structure of the Sm and Ce-1111 compounds was performed and an estimation of the the structural transition temperature was obtained. The results of the structural measurements, combined with electrical resistivity and µSR, were used to construct the Sm and Ce-1111 phase diagrams. These phase diagrams are characterized by two regions, consisting of a spin density wave (SDW) state and a superconducting state, which are sharply separated upon doping. Considering the different Ln ion, upon F doping the transition temperatures are more efficiently suppressed in Ce-1111 as compared to Sm-1111. More intriguingly, for the Ce case, a coexistence region between static magnetism and superconductivity without an orthorhombic distortion has been observed. Further analysis of the width of the Bragg peaks reveals strong lattice fluctuations towards phase transitions, which are reflected in magnetic and transport properties. Moreover, a strong damping of the lattice fluctuations is observed at Tc for superconducting Sm-1111 samples, giving experimental evidence of competing orders towards phase transitions in the iron pnictides. Regarding the iron borates, non-resonant x-ray scattering studies have shown several new diffraction features, from the appearance of additional reflections that violate the reflection conditions for the low temperature crystal structure, to the emerging of commensurate superlattice peaks that appear below TN. A detailed analysis of the structure factors and q dependencies of the earlier reflections, demonstrate their magnetic nature. Additional resonant x-ray magnetic scattering experiments on NdFe3(BO3)4 were performed at the Nd L2,3 and Fe K edges. The results show that the magnetization behavior is different for the Nd and for the Fe sublattices. Moreover, we find that the magnetization of the Nd sublattice is induced by the Fe magnetization. The temperature dependent measurements also show a commensurate to incommensurate transition where the magnetic structure changes from a commensurate collinear structure, where both Nd and Fe moments align in the hexagonal basal plane, to an incommensurate spin helix structure that propagates along c. When a magnetic field is applied, the spin helix is destroyed and a collinear structure is formed where the moments align in a direction perpendicular to the applied magnetic field. Moreover, the critical field at which the spin helix is destroyed is the same field at which the magnetic induced electric polarization is maximum, thus, showing that the spin helix is not at the origin of the electric polarization.
200

Einfluss homogener und inhomogener Magnetfelder auf die Korrosion ferromagnetischer Elektroden

Süptitz, Ralph 18 October 2011 (has links)
Im Rahmen der vorliegenden Arbeit konnten Einflüsse magnetischer Felder, insbesondere mit hohen Gradienten der magnetischen Flussdichte, auf Korrosionsprozesse am Beispiel Eisen quantifiziert und deren Wirkungsmechanismus erklärt werden. Als ein besonders in technisch relevanten gering konzentrierten sauren wässrigen Lösungen bedeutsamer Effekt wurde eine sekundäre Wirkung der Feldgradientenkraft über den Mechanismus der Wahrung der Ladungsneutralität auf den pH-Wert an der Elektrodenoberfläche identifiziert. Somit konnte ein signifikanter Magnetfeldeinfluss auf die formal ladungstransferkontrollierte Korrosionsreaktion nachgewiesen werden. Um die komplexen Korrosionsvorgänge an mehrphasigen NdFeB-Magneten mit paramagnetischer intergranularer Nd-reicher Phase aufklären zu können, war zunächst eine vertiefte Analyse der freien und anodischen Korrosionsreaktionen des Neodyms notwendig. Die dabei gewonnenen Erkenntnisse erlauben den Magnetfeldeinfluss bei der Korrosion aufmagnetisierter NdFeB-Magnete zu verstehen.

Page generated in 0.0748 seconds