• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 14
  • 13
  • 10
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 99
  • 99
  • 29
  • 26
  • 26
  • 20
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Lithium Niobate MEMS Device by Picosecond Laser Machining

He, Yuan 10 1900 (has links)
<p> Lithium niobate has interesting characteristics such as the electro-optic effect, the acousto-optic effect, piezoelectricity and large nonlinear optical coefficients. Potential applications in MEMS field could be explored if microstructures are fabricated in lithium niobate substrates,. This thesis presents the fabrication and characterization of a lithium niobate MEMS device. As lithium niobate crystal is difficult to process using standard semiconductor techniques including both wet etching and dry etching, new methods are required to process lithium niobate. In our project, picosecond laser pulses were chosen to produce bridges on lithium niobate. Fabrication of grooves with high aspect ratio were attempted and grooves with clean morphology were obtained when laser pulses with low cutting speed, medium pulse energy, and large number of passes were employed. This shows picosecond laser machining is a viable method to process lithium niobate.</p> <p> Waveguides in Z cut lithium niobate crystal were fabricated using Ti-indiffusion techniques. After the fabrication of waveguides in lithium niobate, a SiO2 film with a thickness of 0.3μm was deposited as a buffer layer. Ti-Pt-Au electrodes for actuation function were then deposited through lift-off technique. Finally a bridge structure (80um in width and 600um in length) with a waveguide embedded in it was fabricated with picosecond laser. The insertion loss before and after laser machining was 6.99dB and 5.01dB respectively.</p> <p> Optical and electrical tests were performed in an effort to determine the resonance frequency of bridge. In the optical test, many bulk piezoelectric resonance peaks were presented in the frequency spectrum. After damping the vibration of substrate, these spikes disappeared and only a background noise with small spikes were obtained. As those small spikes are not reproducible, the optical test is not a viable method to determine resonance frequency of the bridge structure in our device. The electrical test was then carried out in a vacuum environment in order to find the resonance frequency. The spectrum presents a spike with large amplitude. However, the phase and amplitude of the spike remained the same when the vacuum condition was removed, which indicates the spike is not related to the resonance of the bridge. In summary, the resonance frequency of bridge structure could not be determined by these two approaches.</p> <p> Future work could involve directly investigating the material properties surrounding the machining region to see whether the piezoelectricity of the material has been damaged from laser ablation process. New laser machining process of lithium niobate may also need to be studied to avoid this damage to the substrate structure. Even though our device could not be driven to vibrate at its resonance frequency, it is worth making microstructures in lithium niobate substrates. The combination of optical, mechanical and electrical elements will make lithium niobate a great potential material for optical MEMS applications.</p> / Thesis / Master of Applied Science (MASc)
42

Radio over fiber for 3G cellular System

Prasad, Saurabh January 2010 (has links)
The demand for bandwidth is increasing vigorously. Thus wired network is using fiber optic telephone line instead of coaxial cable. The concept of Fiber to the Home (FTTH) is really coming into picture. Few countries like Japan, Korea etc are leading in this technology. But now the major challenge is how to provide the high speed internet connection wirelessly. Thus the change is to integrate the wireless and optical fiber communication. / Wireless Optical Communication
43

Organic Self-Assembled Thin Films for Second Order Nonlinear Optics

Gaskins, Kylie 12 August 2004 (has links)
With a growing demand in industry for cost effective, increased data handling capabilities great attention has been paid to the study of various polymer systems for use in optical telecommunications. Inorganic crystals, currently used in such systems, have high performance, but are more expensive and less obtainable than organic materials. Recent advances in techniques for developing highly efficient and inexpensive organic polymeric electro-optic (EO) devices compatible with current state-of-the-art electronics have created an interest in the commercialization of such electro-optic devices. In light of the many advantages of utilizing organic materials for electro-optic applications, numerous methods have been developed to produce nonlinear optically (NLO)-active polymeric films for such purposes. Ionic self-assembled multilayer (ISAM) films are a recently developed class of materials that allows detailed structural and thickness control at the molecular level, combined with ease of manufacturing and low cost. However, the layer-by-layer deposition technique utilized for this method currently requires lengthy processing times that challenge the feasibility of fabricating a thick film suitable for EO modulator device fabrication. This study focuses on addressing the influence of several pertinent processing variables affecting these challenges for application to electro-optic device fabrication. This study investigated (1) the effect of forced convection, varying deposition time and varying dye concentration on the properties of PAH/Procion Brown films fabricated via the hybrid reactive deposition scheme, (2) the automation and optimization of the fabrication of thick NLO active films and (3) the use of the hybrid covalent-electrostatic deposition scheme to fabricate a polymeric waveguide device with an electro-optic coefficient comparable to that of lithium niobate (LiNbO₃). At fixed deposition time and concentration conditions, the presence of convection had little demonstrated effect on films with deposition times shorter than 2 minutes. For the 5 minute case, the presence of convection correlated with a ~45% increase in Ï (2)zzz values values and a 25% increase in absorbance per bilayer. At a constant dye concentration of 5 mg/ml, the deposition time had little effect on SHG for deposition times less than two minutes. In the presence of convection, the increase in deposition time from 2 minutes to 5 minutes showed a 57% increase in Ï (2)zzz values and a 30% increase in absorbance per bilayer. For a deposition time of 2 minutes in the presence of convection, the dye solution concentration was successfully reduced 5-fold (from 5 mg/ml to 1 mg/ml) with less than a 5% difference in Ï (2)zzz values, less than a 15% decrease in absorbance per bilayer and no detriment to film quality. These results strongly indicate that the deposition conditions remain well outside of the transport-limited regime at a dye concentration of 1 mg/ml. Rather, the surface reaction rate apparently is controlling. Depositing slides at an elevated temperature (~35°C), had an undetermined effect on Ï (2)zzz values, but showed a 15% increase in absorbance per bilayer. An automatic dipper was programmed to replicate the current manual deposition method to fabricate a film suitable for EO modulator devices. Utilizing the optimal conditions for the processing variables, an optically-homogeneous, 100 nm-thick film was fabricated utilizing the automated process, yielding a Ï (2)zzz values~ 23 x 10⁻⁹ esu. A three-layer coplanar electro-optic device was fabricated utilizing the hybrid reactive deposition method. For this device, the presence of added salt was found to increase the electro-optic coefficient r33 by a factor of 3 compared to its value when made with no added salt. The electro-optic coefficient of the added salt case was found to be about 1/2 that of lithium niobate (LiNbO3). / Master of Science
44

Growth of Optical Quality Lead Magnesium Niobate-Lead Titanate Thick Films

French, Kyle J. January 2019 (has links)
No description available.
45

Electro-optic Polymer Based Fabry-Perot Interferometer Devices for Optoelectronic Applications

Gan, Haiyong January 2008 (has links)
Fabry-Perot interferometer (FPI) devices are designed based on the electro-optic (EO) activities of nonlinear optical (NLO) polymer materials for tunable optical filters (TOFs) and spatial light modulators (SLMs). The performance of the EO polymer based FPI devices is theoretically modeled with first order approximation on the FPI cavity interface phase dispersion. NLO materials including TCBD coupled hybrid sol-gel, AJL8/amorphous polycarbonate (APC), and AJLS102/APC are incorporated in FPI structures with distributed Bragg reflector mirrors and transparent conducting oxide electrodes for TOFs. High finesse (over 200), low drive voltage (10 dB isolation ratio with 5 V), and fast settling time (about sub-millisecond) are achieved. The physical origin of the large tunabilities is explored and the contributions from EO effect and inverse piezoelectric effect are analyzed. EO polymer SWOHF3ME/APC is employed in FPI devices with simplified structures for SLMs. Modulation beyond megahertz level is achieved with constant modulation ratio from DC frequency to high operation speed. The operation speed can be potentially over gigahertz with improved device and drive circuit design. When the EO polymer based SLM is configured to work at near the resonance band of the NLO material, the spectral tunability is increased due to resonance enhanced EO activity and the SLM performance is significantly improved. The EO polymer based FPI devices can be further optimized and are promising candidates for many optoelectronic applications.
46

Análise teórica de uma nova técnica de processamento de sinais interferométricos baseada na modulação triangular da fase óptica /

Takiy, Aline Emy. January 2010 (has links)
Orientador: Cláudio Kitano / Banca: Ricardo Tokio Higuti / Banca: Luiz Antonio Perezi Marçal / Resumo: Neste trabalho estuda-se a interferometria laser, a qual constitui uma técnica adequada para determinar grandezas físicas com sensibilidade extremamente elevada. Basicamente, no interferômetro óptico, a informação a respeito do dispositivo sob teste é inserida na fase da luz. Utilizando-se o fotodiodo, promove-se a transferência de informação, do domínio óptico para o elétrico, no qual pode ser demodulada usando-se as várias técnicas disponíveis na literatura para detectar sinais modulados em fase. Ênfase é dada a um novo método de demodulação de fase óptica auto-consistente e de grande sensibilidade. Neste método, utiliza- se a modulação dada por uma forma de onda triangular e é baseado na análise do espectro do sinal fotodetectado, sendo capaz de estender a faixa dinâmica de demodulação a valores tão elevados quanto às dos métodos clássicos. Simulações dinâmicas computacionais de interferômetros ópticos são executadas em Simulink juntamente com este método, levando-se em consideração tensões de ruído eletrônico do tipo ruído branco, evidenciando a eficiência do método quando comparados com dados teóricos obtidos em Matlab. A validação experimental do método é realizada com o auxílio de um modulador eletro-óptico de amplitudes, cujas características de fase podem ser previstas analiticamente. Trata-se de um sensor polarimétrico baseado em cristal de Niobato de Lítio, em que a diferença de fase óptica induzida pela tensão elétrica aplicada pode ser determinada através de análise espectral, tal como o novo método descrito neste trabalho. Um interferômetro de Michelson homódino de baixo custo é implementado e a eficiência do novo método de demodulação de fase óptica é avaliada através de testes com atuadores e manipuladores piezoelétricos flextensionais, cujas características de linearidade são conhecidas... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In this work, has been done a study the laser interferometer, which is a technique for determining physical quantities with extremely high sensitivity. Basically, in the optical interferometer, information about the device under test modulates the phase of light. Using a photodiode, promotes the transfer of information from the optical domain for the electric, which can be demodulated using the various techniques available in literature to detect modulated signals in phase. Emphasis is given to a new method of phase demodulation of optical self-consistent and high sensitivity. The method employs a linear modulation given by a triangular waveform, and is based on analysis of the spectrum of the photodetected signal, being able to extend the dynamic range of the demodulation values as high as the classical methods. Dynamic computational simulations of optical interferometers are implemented in Simulink with this method, taking into account strains of electronic noise like white noise, indicating the efficiency of the method compared with theoretical data obtained in Matlab workspace. The experimental validation of the method is performed with the aid of an electro- optic amplitude modulator, whose phase characteristics can be analytically predicted. This is a polarimetric sensor based on lithium niobate crystal, in which the optical phase difference induced by electric voltage can be determined by spectral analysis, using new method described in this work. A low cost homodyne Michelson interferometer is implemented and the efficiency of the new method of optical phase demodulation is evaluated by testing with piezoelectric flextensional actuators whose characteristics of linearity are well known.The experimental results agree with theoretical analysis and reveal this method is more efficient than the classical methods / Mestre
47

Development Of Compact Terahertz Time-domain Terahertz Spectrometer Using Electro-optic Detection Method

Metbulut, Mukaddes Meliz 01 September 2009 (has links) (PDF)
The goal of this thesis is to describe development of compact terahertz time-domain spectrometer driven by a mode-locked Ti:Sapphire laser. The terahertz radiation was generated by photoconductive antenna method and detected by electro-optic detection method. In this thesis, several terahertz generation and detection method, working principle of terahertz time-domain spectroscopy and its applications are discussed. We mainly focused on working principle of terahertz time-domain spectroscopy and characterization of detected terahertz power using electro-optic detection method.
48

Design And Analysis Of An Open Loop Fiber-optic Gyroscope

Ozdemir, Murat 01 February 2012 (has links) (PDF)
Sensing rotation has been an essential topic in navigation and many other applications. Gyroscopes based on propagation of light beams over fixed distances have gained interest with the development of the laser. Since the 1970s, with the development of fiber optics these laser based gyroscopes have developed into compact devices, which can fit in the palm of your hand. In this thesis, we describe and analyze the development of a fiber-optic gyroscope. Fiber optic gyroscopes (also called fiber gyro or FOG) have been under development for different types of applications for more than 30 years all around the world. The physical basis of the fiber gyro is the Sagnac effect that was discovered in the early 1900s and is named after its discoverer. In this work, we first explain the principle of operation of the Sagnac effect and we derive the fundamental formulations in order to have an analytical understanding of the theory. Then, we examine the fiber optic gyro configuration component by component, starting with the laser diode pumped broadband light emitting Erbium-doped superfluorescent source. In addition, the principle of phase modulation, electro-optic phase modulators, fiber optic cables and fiber winding techniques, such as quadrupolar winding is explained within the context of development of the FOG. v The FOG that was assembled was based on circulation and sensing of broadband light centered around 1550nm. The fiber coil was 5km long in order to increase sensitivity in the FOG device. Since single-mode fibers were used steps were taken to ensure successful operation even with polarization dependent errors. The constructed system demonstrated a low sensitivity with a large uncertainty while sensing typical rotation rates. Reasons behind the errors and low sensitivity, as well as improvements that can be made are discussed.
49

Space Charge Behavior in Palm Oil Fatty Acid Ester (PFAE) by Electro-optic Field Measurement

Hikosaka, Tomoyuki, Hatta, Yasunori, Koide, Hidenobu, Yamazaki, Akina, Endo, Fumihiro, Okubo, Hitoshi, Nara, Tsutomu, Kato, Katsumi 28 December 2009 (has links)
No description available.
50

Système de mesure optoélectronique de champs électriques intégrant des capteurs basés sur des microcavités optiques en LiNbO3 / Ultra wide band optoelectronic measurement system of microwave signals using sensors based on optical LiNbO3 microcavities.

Warzecha, Adriana 09 June 2011 (has links)
L’objet de ces travaux de thèse a été de réaliser un système compact et non-invasifde mesure vectorielle de champs électriques. Ce système est dédié aux mesures en espacelibre (diagramme de rayonnement d’antennes) ainsi qu’aux mesures en champ proche(diagnostic de circuits électriques par exemple). Pour ce faire, nous avons proposé unsystème de mesure utilisant d’une part des sondes électro-optique fibrées, dont la partietransductrice est composée d’un guide d’onde en LiNbO3, intégrée dans une cavité Fabry-Pérot. Le cristal non-linéaire induit une modulation de phase d’un faisceau laser de sonde,dépendante du champ électrique à mesurer. La cavité, quant à elle, convertit le signal enmodulation d’amplitude et permet de réduire la taille du capteur grâce à l’augmentationde la longueur effective d’interaction entre l’onde optique et le champ électrique à mesurer.D’autre part l’étude d’un filtrage optique de très grand facteur de qualité associé à unepost-amplification est proposée, dans le but d’accroître d’au moins un ordre de grandeurla sensibilité de mesure. / The aim of this work is to design and realize a compact and non-invasive system dedicatedto vectorial characterization of electric field. The field to be measured can be eitherradiated (for antenna radiation pattern) or guided (for on chip measurement). We herepropose a measurement system including pigtailed electro-optic probe. The transducingdevice is based on a Fabry-Pérot (FP) cavity integrating LiNbO3 waveguide. The nonlinearcrystal induces a phase modulation of a laser probe beam depending on the theelectric field to be characterized. The FP cavity converts the signal into a linear amplitudemodulation and leads to a millimeter sized sensor thanks to the enhancement ofthe effective interactive length between the optical wave and the electric field. The sensorexhibits a sensitivity greater than 0.5 V.m−1.Hz−1/2, a spatial resolution as accurate as100 μm and a frequency bandwidth covering [10 Hz-10 GHz]. Moreover, we here suggesta high quality factor post-filtering of the optical carrier in order to increase the sensitivityof one order of magnitude.

Page generated in 0.1651 seconds