• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 448
  • 235
  • 130
  • 99
  • 46
  • 24
  • 13
  • 11
  • 11
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • Tagged with
  • 1217
  • 177
  • 177
  • 172
  • 146
  • 141
  • 131
  • 121
  • 96
  • 96
  • 95
  • 94
  • 86
  • 81
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Studies on Effects of Solid Electrolyte Interface on Negative Electrode Properties for Lithium-ion Batteries / リチウムイオン電池用負極の特性に固体電解質界面が及ぼす影響に関する研究

Yamate, Shigeki 23 May 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20581号 / 工博第4361号 / 新制||工||1678(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 安部 武志, 教授 作花 哲夫, 教授 阿部 竜 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
522

Electrochemical Characterization of Surface-State of Positive Thin-Film Electrodes in Lithium-Ion Batteries / リチウムイオン電池用正極薄膜電極の電気化学的表面状態解析

Inamoto, Jun-ichi, Inamoto, Junichi 24 July 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20630号 / 工博第4368号 / 新制||工||1679(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 安部 武志, 教授 阿部 竜, 教授 作花 哲夫 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
523

Experimental study on fracture characteristics of graphene for development of transparent electrode / 透明電極開発を目的としたグラフェンの破壊特性に関する実験的研究

Jang, Bongkyun 25 September 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20700号 / 工博第4397号 / 新制||工||1683(附属図書館) / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 北村 隆行, 教授 西脇 眞二, 教授 平方 寛之 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
524

Effect Of Interfacial Top Electrode Layer On The Performance Of Niobium Oxide Based Resistive Random Access Memory

Manjunath, Vishal Jain 11 July 2019 (has links)
No description available.
525

Electrostatic curved electrode actuator for particle sorting at a microfluidic bifurcation

Lake, Melinda Ann 06 November 2019 (has links)
No description available.
526

CYCLIC VOLTAMMETRIC DETERMINATION OF 17-α-ETHINYL ESTRADIOL ON DISPOSABLE SCREEN-PRINTED CARBON ELECTRODES

Qian, Zepeng 12 August 2019 (has links)
No description available.
527

Mullite Membrane Reference Electrode Evaluation and Application for Ni-Cr Corrosion Behavior in High Temperature Chloride Salts

Meilus, Emily Vanda 28 June 2023 (has links)
Molten salt reactors (MSRs) using chloride-based salt-matrixes as coolants or fuels are a promising option for advanced nuclear reactors, but the extreme temperatures and corrosivity of molten salts pose a challenge for implementation. Molten MgCl2-NaCl-KCl is a viable candidate for MSRs that is considered in this work. Thermochemical properties are derived from electrochemical tests that aid in characterizing the properties of salts. To study these properties, some work has proposed using a three-electrode system with a reference electrode housed in a ceramic membrane. This research aims to develop a stable high-temperature reference electrode using a ceramic membrane that is then applied to develop an on-line monitoring system of Ni-Cr alloy corrosion in chloride salt. A mullite tube used as the membrane of a Ni(II)/Ni reference electrode in molten MgCl2-NaCl-KCl is studied. The performance of two different membrane thicknesses (1.325mm and 0.255mm) was studied in temperature ranges from 635oC to 835oC and data collected on the calculated formal potential of the Ni(II)/Ni system. Tests indicated that the results were stable and repeatable, and the formal potential for both systems differed from the previous experimental data by 0.12V at most, indicating that the system can be applied as an effective reference electrode. Using the reference electrode, on-line monitoring the corrosion of Ni-15wt.%Cr, Ni-20wt.%Cr, and Ni-30wt.%Cr was studied for 120 hours in MgCl2-NaCl-KCl. The on-line measurements showed the concentration changes of dissolved Cr and Ni by corrosion in the bulk molten salt. This work confirms that Ni(II)/Ni reference electrodes with a mullite tube membrane are stable and effective in molten chloride salt systems, particularly MgCl2-NaCl-KCl. The mullite membrane prepared by the manufacturer may be used directly for electrochemical applications without polishing, simplifying the reference electrode manufacturing process, and making it easier to replicate. The use of a Ni(II)/Ni reference electrode provides an avenue to study a different range of salt systems than previous reference electrodes allowed, particularly alloys in chloride salts at high temperatures. This work also confirms that the mullite tube may be used to perform on-line analysis of alloy corrosion in high temperature molten chloride salts. The study of Ni-Cr alloys in chloride salts better prepares the nuclear industry to select coolant salts and alloy containers with the best set of thermochemical and corrosion resistant characteristics for MSRs. / Master of Science / The United States receives approximately 18% of its energy from nuclear technology. Many of the reactors supplying this energy are at the end of their lifecycle and the decommissioning of some of these plants has already begun. In order to replace this older generation of nuclear reactors, a safer and cheaper option has been suggested: Molten Salt Reactors. Molten salt reactors (MSRs) using high temperature salts as a fuel or coolant are a promising option, but the extreme conditions of molten salts pose a challenge for construction and use of MSRs. Molten MgCl2-NaCl-KCl is a salt being considered for MSR application, and is considered in this work. Properties of the salts considered for MSRs are being studied diligently before implementation of these reactors. Electrochemical tests are used to study and monitor these properties. These electrochemical tests use a three-electrode system with a reference electrode housed in a membrane. In this work, a mullite tube is used as a ceramic membrane for a reference electrode in molten MgCl2-NaCl-KCl. The performance of two different membrane thicknesses (1.325mm and 0.255mm) was studied in temperature ranges from 635oC to 835oC. Results indicate that the system is an effective reference electrode. Using this innovative reference electrode, a method of monitoring on-line corrosion of Ni-15wt.%Cr, Ni-20wt.%Cr, and Ni-30wt.%Cr alloys was studied for 120-hour time periods during exposure to MgCl2-NaCl-KCl. This work confirms that reference electrodes with a mullite membrane may be used for electrochemical applications when studying molten chloride salts. The use of a Ni(II)/Ni reference electrode with a mullite membrane provides an avenue to study a different range of salt systems than previous reference electrodes and ceramics allowed, particularly chloride salts. Additionally, this mullite membrane Ni(II)/Ni reference electrode system may be used for monitoring on-line corrosion of Ni-Cr alloys in chloride salt systems.
528

In Situ Induction Heating of Electrodes and Applications

Rahman, Mohammad Azizur 10 August 2018 (has links)
This thesis describes the fabrication of an induction heating apparatus and its use to directly heat small platinum and gold electrodes in electrolyte solution. The heating characteristics of the electrodes were studied via the entropic shift of redox potential with temperature and change in Faradaic current. Temperature pulse voltammetry (TPV) and cyclic voltammetry were used for temperature calibration under various heating conditions. The maximum temperature reached at a 0.25 mm diam platinum electrode surface in solution was 84 degrees C. At heated electrodes an increase in current was found to be due to convection and diffusion. TPV was performed with inductively heated gold (0.5 mm diam) and platinum electrodes, which gave complete current-potential-temperature information. Induction heated Pt electrodes were employed to investigate the kinetics and mass transfer process of oxygen reduction reaction (ORR) in acidic and alkaline media.
529

Design Guidelines for Organic Electrode Materials in Advanced Energy Storage Systems

Tuttle, Madison R. 12 September 2022 (has links)
No description available.
530

A Low Cost, Compact Electrochemical Analyzer based on an Open-Source Microcontroller

Addo, Michael Kofi Darko 01 August 2023 (has links) (PDF)
Compared to other instruments for chemical analyses, electrochemical analyzers are relatively simple, inexpensive, easy to miniaturize and require little-to-no maintenance. However, like all commercially available instruments, commercial electrochemical analyzers like potentiostats primarily operate as black boxes with manufacturers providing little or no information about internal circuitry and programming. This practice can limit a researcher’s ability to develop new techniques or adapt an instrument for applications outside its typical use. In contrast, creators of open-source instruments release all the necessary information for reproduction of the hardware and software – minimizing such barriers to innovation in chemical analyses. Here, we report a low-cost, compact potentiostat based on an open-source Arduino microcontroller capable of performing electrochemical analyses such as cyclic and linear sweep voltammetry with an operating range of ± 208 𝜇A and ± 2.5 V. Performance of the potentiostat is investigated with low-cost pencil graphite electrodes and compared to a commercial potentiostat.

Page generated in 0.0371 seconds