• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 163
  • 57
  • 50
  • 31
  • 26
  • 23
  • 16
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 436
  • 436
  • 105
  • 57
  • 49
  • 46
  • 44
  • 43
  • 42
  • 42
  • 41
  • 39
  • 38
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Electron Beam Irradiation for Improving Safety of Fruits and Vegetables

Adavi, Megha Sarthak 2011 May 1900 (has links)
Increase in consumption of fresh cut produce over the past decade has resulted in a rise in incidents of food borne outbreaks due to pathogens. Conventional techniques of sanitizing washes may not be effective since the organic matter released from the fresh produce use up the free chlorine thus reducing the sanitizing potential of wash water just when it is needed most and a heat treatment step to kill pathogens cannot be applied if the purpose is to consume fresh produce. Electron beam (e-beam) irradiation was used to treat cut cantaloupe, cut roma tomatoes, baby spinach, romaine lettuce which were surface inoculated with a cocktail of Salmonella and E. coli O157:H7. Results showed that irradiation reduced Salmonella and E. coli O157:H7 significantly with increasing doses at 0.2, 0.4, 0.6, 0.8, and 1.0 kGy. The D10-value for Salmonella on irradiated cut cantaloupe, cut roma tomatoes, baby spinach, and romaine lettuce was found to be 0.71 kGy, 0.64 kGy, 0.19 kGy, and 0.23 kGy respectively. The D10-value for E. coli O157:H7 on the produce listed above was found to be 0.73 kGy, 0.54 kGy, 0.18 kGy, and 0.20 kGy respectively. Low dose e-beam irradiation was found to be an excellent tool for ensuring the reduction of spoilage organisms and extending shelf life in cut cantaloupe, cut roma tomatoes, baby spinach, romaine lettuce, strawberries, and green onion. The produce were tested for 12 days of storage for aerobic plate count, yeast and mold, lactic bacteria, color, texture, and respiration rate as a function of irradiation doses 0, 1, 3, and 5 kGy. Aerobic plate counts, yeast counts, and lactic acid bacteria were reduced appreciably at all doses tested on all commodities. Molds did not grow on any samples including control for cut cantaloupe, cut tomatoes, and green onion but for the other commodities, mold was reduced at the same rate as yeasts and vegetative bacteria. Lactic acid bacteria were reduced at all doses while the reduction was highest with 5 kGy in all commodities. When irradiated with 5 kGy, during storage, strawberries, spinach, and green onion displayed wet, soggy and mushy appearance, romaine lettuce leaves were wilted, had a translucent midrib and brown pigmentation. E-beam irradiation increased respiration rate for all samples on day 0 compared to non-irradiated control irrespective of the commodity type and the effect was dose dependent. Firmness reduced appreciably for cut roma tomatoes, baby spinach, strawberries, romaine lettuce, and green onion with increasing doses. Cut cantaloupe was low in firmness but the effect was not dose dependent. Irradiation at low doses is a promising tool to reduce pathogens and enhance keeping quality of cut cantaloupe, cut tomatoes, baby spinach, romaine lettuce, strawberries, and green onion. Irradiation is to be implemented as part of an overall HACCP plan and is not meant to replace existing control measures.
122

Localized Surface Plasmons In Metal Nanoparticles Engineered By Electron Beam Lithography

Guler, Urcan 01 September 2009 (has links) (PDF)
In this study, optical behavior of metal nanoparticles having dimensions smaller than the wavelength of visible light is studied experimentally and numerically. Gold (Au) and silver (Ag) nanoparticles are studied due to their superior optical properties when compared to other metals. A compact code based on Discrete Dipole Approximation (DDA) is developed to compute extinction efficiencies of nanoparticles with various different properties such as material, dimension and geometry. To obtain self consistent nanoparticle arrays with well defined geometries and dimensions, Electron Beam Lithography (EBL) technique is mainly used as the manufacturing method. Dose parameters required to produce nanoparticles with dimensions down to 50 nm over substrates with different electrical conductivities are determined. Beam current is found to affect the doseV size relation. The use of thin Au films as antistatic layer for e-beam patterning over insulating substrates is considered and production steps, involving instabilities due to contaminants introduced to the system during additional removal steps, are clarified. 4 nm thick Au layer is found to provide sufficient conductivity for e-beam patterning over insulating substrates. An optical setup capable of performing transmittance and reflectance measurements of samples having small areas patterned with EBL is designed. Sizes of the metal nanoparticles are determined by scanning electron microscope (SEM) and spectral data obtained using the optical setup is analyzed to find out the parameters affecting the localized surface plasmon resonances (LSPR). Arrays of particles with diameters between 50 &ndash / 200 nm are produced and optically analyzed. Size and shape of the nanoparticles are found to affect the resonance behavior. Furthermore, lattice constants of the particle arrays and surrounding medium are also shown to influence the reflectance spectra. Axes with different lengths in ellipsoidal nanoparticles are observed to cause distinguishable resonance peaks when illuminated with polarized light. Peak intensities obtained from both polarizations are observed to decrease under unpolarized illumination. Binary systems consisting of nanosized particles and holes provided better contrast for transmitted light.
123

Immobilization Of Zeolite Crystals On Solid Substrates For Biosensor Aplications

Ozturk, Seckin 01 May 2010 (has links) (PDF)
Electrochemical biosensors are cost effective, fast and portable devices, which can determine the existence and amounts of chemicals in a specific medium. These devices have many potential applications in many fields such as determination of diseases, process and product control, environmental monitoring, and drug research. To realize these potentials of the devices, many studies are being carried out to increase their sensitivity, selectivity and long term stabilities. Surface modification studies with various types of particles (metal nano particles, carbon nano tubes etc.) can be count among these studies. Although zeolites and zeo-type materials are investigated for many years, they still hold interest on them due to their capabilities. By means of their chemical resistances, large surface areas, tailorable surface properties, and porous structures they can be applied in many applicational fields. In some recent studies, these properties are intended to be used in the field of biosensors. The purpose of the current study was to investigate the effect of zeolite nanoparticles on electrochemical biosensor performances. Firstly, several different procedures were investigated in order to find the best and optimum methodology to attach previously synthesized zeolites on Si wafer substrates for the first time. For this purpose, the ultrasonication, spin coating and direct attachment methods were used and their efficiencies were compared. Perfectly oriented, fully covering, zeolite monolayers are produced by direct attachment method. Successively produced zeolite thin films were then patterned with the help of Electron Beam Lithography technique to show the compatibility of coating methods to the CMOS technology. Combination of Direct Attachment and EBL techniques resulted well controlled zeolite monolayer patterns. Then zeolite modified electrochemical biosensors were tested for their performances. With these experiments it was intended to improve the selectivity, sensitivity and storage stabilities of standard electrochemical biosensors. Experiments, conducted with different types of zeolites, showed that zeolites have various effects on the performances of electrochemical biosensors. Amperometric biosensor response magnitudes have been doubled with the addition of Silicalites. Faster conductometric electrode responses were achieved with enzyme immobilization on zeolite film technique. Also it is seen that Beta type zeolites modified through different ion exchange procedures, resulted different responses in IS-FET measurements.
124

Preparation Of Functional Surfaces Using Zeolite Nanocrystals For Biosensor And Biomedical Applications

Kirdeciler, Salih Kaan 01 July 2012 (has links) (PDF)
Zeolites are crystalline aluminosilicates which have highly ordered pore structures and high surface area. Also the tailorable surface properties, high ion-exchange capability, high chemical, thermal, and mechanical strength make these particles an important candidate for various application such as sensors, catalysis, dielectric materials, separation, and membrane technologies. Although zeolites have these unique properties, applications where zeolites are integrated into devices according to their application areas, are limited due to the powder form of the material. The purpose of the current study was to investigate the effect of zeolite nanoparticles on conductometric biosensor performance and cell viability measurements. Firstly, zeolite attachment on silicon surfaces was investigated by attaching silicalite and zeolite A nanoparticles onto the silicon substrates by direct attachment methodology in a closely packed monolayer form with perfect orientation and full coverage without using any chemical linker. Furthermore, the ability to pattern these zeolite crystals on silicon substrates with electron beam lithography and photolithography techniques was investigated. With the combination of electron beam lithography and direct attachment methodology, zeolite patterns were produced with feature sizes as small as a single silicalite nanoparticle thick line, that is approximately 500 nm. This approach has the ability of patterning very small features on silicon substrate, but the drawback is the long patterning time and lack of electron beam stability during long pattern formation process. Accordingly, it is almost impossible to form large patterns with electron beam lithography systems. Afterwards, to have full control on surfaces with differentiated areas on solid substrates, patterns of one type of zeolite crystals was formed on the monolayer of another type of zeolite layer with electron beam lithography for the first time. The same closed packed and highly oriented silicalite patterns were successfully formed on zeolite A monolayers and vice versa. Then photolithography technique was combined with direct attachment methodology to overcome the problem of the lack of total patterned area. With this technique, it was possible to pattern the whole silicon wafer in a couple of seconds, however the feature size of the zeolite patterns was limited with the infrastructures of the mask fabricated for photolithography studies. In this particular study, zeolite lines patterns with a minimum of 5 &micro / m thickness were prepared and the total patterned area was kept constant at 1 cm2. Similar to what was obtained by electron beam lithography study, zeolite A patterns were formed on silicalite monolayers with the minimum feature size of 5 &micro / m and vice versa. In the second part of the study, zeolite films were prepared on the transducers of conductometric biosensors using dip coating technique and named as Zeolite Coated Transducers (ZCT). Electrodes prepared using a mixture of zeolite and enzyme solution and then subjected to casting using glutaraldehyde were called Zeolite Membrane Transducers (ZMT). The operational and storage stabilities were determined to be in an acceptable range using ZCTs for conductometric urea biosensors. It was observed that using electrodes fabricated by the ZCT technique enhanced the biosensor signals up to two times and showed a rapid response after the addition of urea to the medium when it was compared with Standard Membrane Transducers (SMT). This enhancement can be explained by the lack of GA layer on top of the film, which acts as a diffusion barrier and inhibits the activity of the enzyme. On the second part of this conductometric biosensor study, effect of zeolite modification with methyl viologen (MV) and silver nanoparticles (Ag+ and Ag0), as well as the effect of changing Si/Al ratio was investigated with three different zeolite Beta particles which have Si/Al ratios of 40, 50, and 60. There were no significant effect of MV modification on ZMTs and there was no response observed with Ag+ and Ag0 modified zeolites. However, it was observed that conductometric responses increased with increasing Si/Al ratio for ZMTs. This behavior can be due to an increased hydrophobicity and/or the increasing acidic strength with the increasing Si/Al ratio within the zeolite crystals. Also ZCTs showed higher responses with respect to both SMTs and ZMTs. When compared with SMTs and ZMTs, ZCTs had higher reproducibility due to the controlled thickness of zeolite thin film by dip coating, and the controlled amount of enzyme adsorbed on this film. In the third part of the study, effect of zeolites on cell proliferation with MG63 osteoblast cells and NIH3T3 fibroblast cells were investigated. For that purpose, zeolite A, silicalite, and calcined forms of these zeolites were patterned with photolithography technique onto silicon wafers. Three different patterns prepared for this particular study, which has 0.125cm2, 0.08825cm2, and 0.04167cm2 zeolite patterned areas on 1 cm2 samples. In that way, not only the zeolite type and effect of calcination of zeolites, but also the effect of zeolite amount on MG63 osteoblast cells and NIH3T3 fibroblast cells were investigated. Silicalite coated samples were observed to have higher amount of cells than zeolite A coated samples after 24, 48, and 72 hours of incubation. This may be referred to the hydrophilic/hydrophobic properties, surface charge, and/or particle size of zeolites. Also it is observed that higher zeolite amount on samples resulted in an increase in the number of cells attached to the samples. There was also a significant increase in the number of cells upon using calcined silicalite samples. Accordingly, it can be hypothesized that zeolite pores result in an enhancement of protein adsorption and proliferation, even if this only occurs at the pore openings. On the other hand, there was no positive effect of calcining zeolite A. This result was expected since there is no structure directing agent used in synthesis procedure of zeolite A, which again supports the fact that pores might have some role in cell attachment.
125

Characterization of high energy beam welding of 6061/SiC aluminum matrix composites

Huang, Ru-Ying 14 July 2000 (has links)
The current thesis was designed to examine the welding characteristics of laser and electron beam welding of the superplastic metal matrix composites (MMCs) reinforced with 1~20% SiC and to differentiate the difference between the 6061 aluminum alloy and 6061/SiC composites. The 6061/20%SiCw MMC was found to exhibit poor welding characteristics under electron beam welding. This was because that the SiC whiskers would induce poor fluidity of molten Al matrix and the electron beam continuously bombared the MMC resulting in material loss through sputtering, and this effect induced an "V" groove formed at the center of the fusion zone. The laser beam welding of the 20% SiCw MMCs caused the decomposition of the SiCw into Al4C3 platelets at the center region of the fusion zone, as well as cavities along the outer region due to thermal expansion differences. The post-weld tensile test results showed that the brittle weld zone lead to the degradation of strength, and the 6061/20%SiCw MMC after welding would lose superplastic properties. There were some differences between the 6061 alloy and MMC upon subjected to laser beam welding. The absorption of laser energy by the MMC was better than that by the alloy; the absorption of laser energy increased with increasing SiC content. The shape of the reinforced material could also influence the quantity of Al4C3 formed. The total surface area of SiC particles was smaller than that of the SiC whiskers under equal volume fraction, therefore more SiC whiskers were decomposed. In the wetting experiment, the wettability and fluidity of molten material was observed to decrease with increasing SiC volume fraction at the same temperature. The wettability could be improved at higher temperatures. For the 20%SiCw MMC, the wettability and fluidity could not be sufficiently improved even at a high temperature of 1300¢J, which appeared to be the cause for the lack of feeding in the central fusion zone.
126

Antimicrobial packaging system for optimization of electron beam irradiation of fresh produce

Han, Jaejoon 30 October 2006 (has links)
This study evaluated the potential use of an antimicrobial packaging system in combination with electron beam irradiation to enhance quality of fresh produce. Irradiated romaine lettuce up to 3.2 kGy showed negligible (p > 0.05) changes in color, but texture and sensory attributes were less acceptable with increased dose. We established the antimicrobial effectiveness of various active compounds incorporated into the low-density polyethylene (LDPE)/polyamide films to increase radiation sensitivity of surrogate bacteria (Listeria innocua and Escherichia coli). All films showed inhibition zones in an agar diffusion test. In the liquid culture test, the active compounds reduced the specific growth rate and decreased final cell concentration of strains. Films incorporated with active compounds increased the radiation sensitivity of the tested strains, demonstrating their potential to reduce the dose required to control microbial contamination using electron beam technology. The active compounds maintained their antimicrobial activity by exposure to ionizing radiation up to 3 kGy. Antimicrobial activity of LDPE/polyamide films incorporated with transcinnamaldehyde was tested with fresh-cut romaine lettuce. Total aerobic plate counts (APC) and yeast and mold counts (YMC) were determined as a function of dose (0, 0.5, and 1.0 kGy) for 14 days of storage at 4°C. Irradiation exposure significantly lowered APCs of lettuce samples by 1-log CFU/g compared to the non-irradiated controls; however, it only slightly reduced YMCs. The effectiveness of using irradiation with antimicrobial films was enhanced with increased radiation dose and transcinnamaldehyde concentration. Electron beam irradiation up to 20 kGy did not affect the tensile strength and toughness of the polymeric films. The film’s flexibility and barrier properties were significantly improved by exposure to 20 kGy. The addition of an active compound did not affect the tensile strength and barrier properties of the films, but decreased the percent elongation-at-break and toughness, making them slightly more brittle. Ionizing radiation affected the release kinetics of the antimicrobial agent from the packaging material into a model food system. Irradiated films exhibited slower release rates than non-irradiated film by 69%. In addition, release rate was lower at 4ºC by 62.6% than at 21-35ºC. The pH of the simulant solution affected release rate with pH 4 yielding higher rates than pH 7 and 10.
127

Novel optical devices for information processing

Deng, Zhijie 17 September 2007 (has links)
Optics has the inherent advantages of parallelism and wide bandwidths in processing information. However, the need to interface with electronics creates a bottleneck that eliminates many of these advantages. The proposed research explores novel optical devices and techniques to overcome some of these bottlenecks. To address parallelism issues we take a specific example of a content-addressable memory that can recognize images. Image recognition is an important task that in principle can be done rapidly using the natural parallelism of optics. However in practice, when presented with incomplete or erroneous information, image recognition often fails to give the correct answer. To address this problem we examine a scheme based on free-space interconnects implemented with diffractive optics. For bandwidth issues, we study possible ways to eliminate the electronic conversion bottleneck by exploring all-optical buffer memories and all-optical processing elements. For buffer memories we examine the specific example of slow light delay lines. Although this is currently a popular research topic, there are fundamental issues of the delay-time-bandwidth product that must be solved before slow light delay lines can find practical applications. For all-optical processing we examine the feasibility of constructing circuit elements that operate directly at optical frequencies to perform simple processing tasks. Here we concentrate on the simplest element, a sub-wavelength optical wire, along with a grating coupler to interface with conventional optical elements such as lenses and fibers. Even such a simple element as a wire has numerous potential applications. In conclusion, information processing by all-optical devices are demonstrated with an associative memory using diffractive optics, an all-optical delay line using room temperature slow light in photorefractive crystals, and a subwavelength optical circuit by surface plasmon effects.
128

Multi-beam-interference-based methodology for the fabrication of photonic crystal structures

Stay, Justin L. 23 October 2009 (has links)
A variety of techniques are available to enable the fabrication of photonic crystal structures. Multi-beam-interference lithography (MBIL) is a relatively new technique which offers many advantages over more traditional means of fabrication. Unlike the more common fabrication methods such as optical and electron-beam lithography, MBIL is a method that can produce both two- and three-dimensional large-area photonic crystal structures for use in the infrared and visible light regimes. While multi-beam-interference lithography represents a promising methodology for the fabrication of PC structures, there has been an incomplete understanding of MBIL itself. The research in this thesis focuses on providing a more complete, systematic description of MBIL in order to demonstrate its full capabilities. Analysis of both three- and four-beam interference is investigated and described in terms of contrast and crystallography. The concept of a condition for primitive-lattice-vector-direction equal contrasts} is introduced in this thesis. These conditions are developed as nonlinear constraints when optimizing absolute contrast for producing lithographically useful interference patterns (meaning high contrast and localized intensity extrema). By understanding the richness of possibilities within MBIL, a number of useful interference patterns are found that can be created in a straightforward manner. These patterns can be both lithographically useful and structurally useful (providing interference contours that can define wide-bandgap photonic crystals). Included within this investigation are theoretical calculations of band structures for photonic crystals that are fabricatable through MBIL. The resulting calculations show that not only do most MBIL-defined structures exhibit similar performance characteristics compared to conventionally designed photonic crystal structures, but in some cases MBIL-defined structures show a significant increase in bandgap size. Using the results from this analysis, a number of hexagonal photonic crystals are fabricated using a variety of process conditions. It is shown that both rod- and hole-type photonic crystal structures can be fabricated using processes based on both positive and negative photoresist. The "light-field" and "dark-field" interference patterns used to define the hexagonal photonic crystal structures are quickly interchanged by the proper adjustment of each beam's intensity and polarization. The resulting structures, including a large area (~1 cm², 1 x 10⁹ lattice points) photonic crystal are imaged using a scanning electron microscope. Multi-beam-interference lithography provides an enabling initial step for the wafer-scale, cost-effective integration of the impressive PC-based devices into manufacturable DIPCS. While multi-beam-interference lithography represents a promising methodology for the fabrication of PC structures, it lacks in the ability to produce PC-based integrated photonic circuits. Future research will target the lack of a large-scale, cost-effective fabrication methodology for photonic crystal devices. By utilizing diffractive elements, a photo-mask will be able to combine both MBIL and conventional lithography techniques into a single fabrication technology while taking advantage of the inherent positive attributes of both.
129

Some optical and catalytic properties of metal nanoparticles

Tabor, Christopher Eugene 20 August 2009 (has links)
The strong electromagnetic field that is induced at the surface of a plasmonic nanoparticle can be utilized for many important applications, including spectroscopic enhancement and electromagnetic waveguides. The focus of this thesis is to study some of the properties of induced plasmonic fields around metal nanoparticles. Current methodologies for fabricating nanoparticles are discussed, including lithography and colloidal synthesis. This dissertation includes studies on plasmonic driven nanoparticle motion of surface supported gold nanoprisms from a substrate into solution via a femtosecond pulse. The mechanism of particle motion is discussed and the stability of the unprotected nanoprisms in solution is studied. Fundamental plasmonic near-field coupling between two plasmonic nanoparticles is also examined. Experimental results using electron beam lithography fabricated samples are used to explicitly describe the plasmonic coupling between dimers as a function of the nanoparticle size, shape, and orientation. These variables are systematically studied and the dependence is compared to mathematically derived functional dependencies in order to model and predict the effects of plasmonic coupling. As an extension, the coupling between plasmonic nanoparticles is shown in a common application, surface enhanced Raman scattering. The final chapter is devoted to an investigation of the nature of nanocatalysis, homogeneous and heterogeneous, for several reactions using metal nanoparticles.
130

Spin electronics in metallic nanoparticles

Tijiwa Birk, Felipe 23 March 2011 (has links)
The work presented in this thesis shows how tunneling spectroscopy techniques can be applied to metallic nanoparticles to obtain useful information about fundamental physical processes in nanoscopic length scales. At low temperatures, the discrete character of the energy spectrum of these particles, allows the study of spin-polarized current via resolved "electron-in-a-box" energy levels. In samples consisting of two ferromagnetic electrodes tunnel coupled to single aluminum nanoparticles, spin accumulation mechanisms are responsible for the observed spin-polarized current. The observed effect of an applied perpendicular magnetic field, relative to the magnetization orientation of the electrodes, indicates the suppression of spin precession in such small particles. More generally, in the presence of an external non-collinear magnetic field, it is the local field "felt" by the particle that determines the character of the tunnel current. This effect is also observed in the case where only one of the electrodes is ferromagnetic. In contrast to the non-magnetic case, ferromagnetic nanoparticles exhibit a much more complex energy spectrum, which cannot be accounted for, using the simple free-electron picture. It will be shown that interactions between quasi-particle excitations due to sequential electron tunneling and spin excitations in the particle are likely to play an important role in the observed temperature/voltage dependence of magnetic hysteresis loops.

Page generated in 0.0641 seconds