• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Mechanické vlastnosti svaru titanové slitiny TiAl6V4 připraveného pomocí technologie elektronového paprsku / Mechanical properties of the weld of titanium alloy TiAl6V4 prepared by using an electron beam technology

Byrtus, Robin January 2018 (has links)
The aim of the diploma thesis is to evaluate the mechanical properties and fracture behavior of the weld join Ti6Al4V titanium alloy prepared by using an electron beam technology. The theoretical part deals with the welding of titanium alloys with the help of electron beam, the weldability evaluation of titanium alloys, the influence of electron beam welding on the microstructure and the methods of testing of weld joints. Using the experiments, the mechanical properties of the base material and the weld were evaluated and a structural analysis of the weld was performed.
22

Aplikace svařování elektronovým svazkem pro rekonstrukci vzorků pro mechanické zkoušky z malých objemů materiálu / Reconstruction of mechanical testing samples from small volumes of materials using electron beam welding

Roubalová, Jana January 2015 (has links)
This thesis is focused on application samples with the inner insert used for Charpy impact test. This insert is welded to additional material by electron beam with pre-selected welded parameters. These parameters were chosen from data of performed experiments on homogenous welds. Resulting heterogenous weld was performed of evaluation of the microstructure, chemical composition and microhardness. Experimental materials were used austenitic steel 17 240 and ferritic steel 17 153 used on high-temperature applications.
23

Heat Affected Zone Cracking of Allvac 718Plus Superalloy during High Power Beam Welding and Post-weld Heat Treatment

Idowu, Oluwaseun Ayodeji 08 April 2010 (has links)
The present dissertation reports the findings of a study of cracking behavior of a newly developed superalloy, Allvac 718Plus during high power beam welding and post-weld heat treatment. Microstructures of the base alloy, heat affected zone (HAZ) and fusion zone (FZ) of welded and post-weld heat treated (PWHT) coupons were examined by the use of standard metallographic techniques involving optical microscopy, analytical scanning electron microscopy (SEM) and analytical transmission electron microscopy. Moreover, grain boundary segregation behavior of boron atoms during pre-weld heat treatments was evaluated using secondary ion mass spectroscopic system. In the first phase of the research, 718Plus was welded using a low and high heat input CO2 laser to assess its weld cracking response. Detailed examination of the welds by analytical electron microscopic technique revealed the occurrence of cracking in the HAZ of low heat input welds, while their FZ was crack free. However, both the FZ and HAZ of high heat input welds were crack-free. Resolidified constituents were observed along the cracked grain boundaries of the lower heat input welds, which indicated that HAZ cracking in this newly developed superalloy was associated with grain boundary liquation. However, despite a more extensive liquation of grain boundaries and grain interior in the HAZ of high heat input welds, no cracking occurred. This was attributed to the combination of lower welding stresses generated during cooling, and relaxation of these stresses by thick intergranular liquid. Although HAZ cracking was prevented by welding with a high heat input laser, it resulted in a significant damage to the parent microstructure through its extensive liquation. Thus, the use of low heat input welding is desirable. However, this resulted in HAZ cracking which needs to be minimized or eliminated. Therefore, during the second phase of this research, the effects of pre-weld thermal processing on the cracking response of 718Plus were investigated. Results from the quantification of the cracking of the alloy showed that HAZ cracking may be significantly reduced or eliminated through an adequate selection of pre-weld thermal cycle. In the third stage of this research, crack-free welds of 718Plus were post-weld heat treated using standard thermal schedules. A significant solid state cracking of the alloy occurred during the PWHT. The cracking was attributed to the presence of embrittling phases on HAZ grain boundaries, coupled with aging contraction stresses that are generated by a considerable precipitation of gamma prime phase during aging.
24

Heat Affected Zone Cracking of Allvac 718Plus Superalloy during High Power Beam Welding and Post-weld Heat Treatment

Idowu, Oluwaseun Ayodeji 08 April 2010 (has links)
The present dissertation reports the findings of a study of cracking behavior of a newly developed superalloy, Allvac 718Plus during high power beam welding and post-weld heat treatment. Microstructures of the base alloy, heat affected zone (HAZ) and fusion zone (FZ) of welded and post-weld heat treated (PWHT) coupons were examined by the use of standard metallographic techniques involving optical microscopy, analytical scanning electron microscopy (SEM) and analytical transmission electron microscopy. Moreover, grain boundary segregation behavior of boron atoms during pre-weld heat treatments was evaluated using secondary ion mass spectroscopic system. In the first phase of the research, 718Plus was welded using a low and high heat input CO2 laser to assess its weld cracking response. Detailed examination of the welds by analytical electron microscopic technique revealed the occurrence of cracking in the HAZ of low heat input welds, while their FZ was crack free. However, both the FZ and HAZ of high heat input welds were crack-free. Resolidified constituents were observed along the cracked grain boundaries of the lower heat input welds, which indicated that HAZ cracking in this newly developed superalloy was associated with grain boundary liquation. However, despite a more extensive liquation of grain boundaries and grain interior in the HAZ of high heat input welds, no cracking occurred. This was attributed to the combination of lower welding stresses generated during cooling, and relaxation of these stresses by thick intergranular liquid. Although HAZ cracking was prevented by welding with a high heat input laser, it resulted in a significant damage to the parent microstructure through its extensive liquation. Thus, the use of low heat input welding is desirable. However, this resulted in HAZ cracking which needs to be minimized or eliminated. Therefore, during the second phase of this research, the effects of pre-weld thermal processing on the cracking response of 718Plus were investigated. Results from the quantification of the cracking of the alloy showed that HAZ cracking may be significantly reduced or eliminated through an adequate selection of pre-weld thermal cycle. In the third stage of this research, crack-free welds of 718Plus were post-weld heat treated using standard thermal schedules. A significant solid state cracking of the alloy occurred during the PWHT. The cracking was attributed to the presence of embrittling phases on HAZ grain boundaries, coupled with aging contraction stresses that are generated by a considerable precipitation of gamma prime phase during aging.
25

Rôle de la microstructure d'un alliage à durcissement structural sur son comportement et sa tenue mécanique sous sollicitations cycliques après un transitoire thermique / Influence of the microstructure of an age hardening alloy on its cyclic mechanical behaviour after transient heat treatments

Bardel, Didier 28 May 2014 (has links)
Pour fabriquer le caisson-coeur du futur réacteur expérimental Jules Horowitz (RJH), un assemblage de viroles est effectué à l'aide d'un procédé haute énergie : le soudage par faisceau d'électrons (FE). L'aluminium 6061-T6 qui a été choisi pour la fabrication de ces viroles est un alliage à durcissement structural, ce qui signifie que ses propriétés mécaniques sont très fortement dépendantes de son état de précipitation. Lors du soudage des viroles, l'état microstructural du matériau est affecté : on assiste notamment à une dégradation de l'état fin de précipitation (T6). Les conséquences de cette dégradation microstructurale sont diverses. Notamment, l'évolution de l'état de précipitation au cours du soudage engendre une variation du comportement mécanique et impactera donc la distribution des contraintes résiduelles. De plus, les propriétés mécaniques en service à proximité du joint soudé seront grandement modifiées, on assiste par exemple à une chute de la limite d'élasticité. Dans ce travail, des essais cycliques ont été effectués après des chargements thermiques représentatifs d'une opération de soudage mais aussi pendant des essais isothermes. L'analyse de ces résultats et la confrontation à des mesures de Diffusion de Neutrons aux Petits Angles (DNPA) et de Microscopie Electronique en Transmission (MET) permettent de comprendre les effets de la précipitation sur la loi de comportement de l'alliage. Afin de prédire les évolutions microstructurales et mécaniques dans l'alliage 6061, un logiciel de précipitation a été implémenté et couplé à un modèle élastoplastique à base physique. Les résultats obtenus permettent de représenter la grande variété de comportement observé lors de la campagne expérimentale. Un couplage entre simulation éléments finis thermique et précipitation a été effectué et permet d'ouvrir des perspectives de simulations plus physiques pour ce type d'alliage. / In order to assemble the pressure vessel of experimental Reactor Jules Horowitz (RJH) of France in the future, the electron beam welding process will be used. Several ferrules in a 6061-T6 age hardening aluminum alloy are used for manufacturing this vessel. The fine precipitation state (T6) is affected significantly by the electron beam welding process. Consequently, this microstructural degradation leads to an evolution of the mechanical behaviour and thus will affect the distribution of residual stresses. Moreover, the mechanical properties of the weld joint at ambiant temperature can be modified, such as the yield stress that may drop from 280 MPa to 55 MPa. In this work, cyclic tensile tests have been performed after anisothermal histories representative of welding and during isothermal treatments. The analysis of these results is compared with Small Angles Neutrons Scattering (SANS) and Transmission Electron Microscopy (TEM) characterizations that allow to understand the effect of the precipitation on the material behaviour. To predict the microstructural evolutions in the 6061 structure, a precipitation model has been developped. The precipitation software "PreciSo" coupled with a Finite Element thermal simulations and elastoplastic models allows to open new prospectives in the physical-based simulations domain.
26

Analyse des Einflusses verschiedener Kräfte und thermophysikalischer Eigenschaften auf das Elektronenstrahlschweißen von TRIP-Stahl und TRIP-Matrix-Compositen mittels numerischer Thermofluiddynamik

Borrmann, Sebastian 20 April 2022 (has links)
Das Elektronenstrahlschweißen im Vakuum hat sich als zuverlässiges Verfahren für die Herstellung schmaler und hochpräziser Schweißnähte beim Schweißen von TRIP-Stählen bewährt. Das Verständnis für die dabei auftretenden Mechanismen und wirkenden Kräfte stellt einen wichtigen Baustein für die Weiterentwicklung des Verfahrens dar. Um zur Erweiterung dieses Verständnisses beizutragen, wird auf Basis vorhandener Berechnungsmethoden in OpenFOAM ein numerisches Modell für das Elektronenstrahlschweißen entwickelt. Es ist in der Lage, die dafür relevanten Einflussfaktoren zu berücksichtigen. So werden die Wärmeübertragung im Feststoff und der Schmelze, alle Aggregatzustandsänderungen und die auf die Dynamik der Schmelze wirkenden Kräfte einbezogen. Das entwickelte Simulationsmodell ist in der Lage zu zeigen, dass außer der natürlichen Konvektion vor allem der beim Verdampfen der Schmelze entstehende Überdruck und die thermokapillare Konvektion an der Schmelzeoberfläche für hohe Strömungsgeschwindigkeiten verantwortlich sind. Darüber hinaus haben neben der Schmelzbaddynamik die thermophysikalischen Eigenschaften des Stahls einen starken Einfluss auf die Ausprägung der Schweißnaht. Vor allem die Wärmeleitfähigkeit verändert diese erheblich, was die Simulationen unter Berücksichtigung der Temperaturabhängigkeit verdeutlichen. Die in dieser Arbeit erreichten Erkenntnisse helfen, die beim Elektronenstrahlschweißen entstehenden Nahtgeometrien und die Gründe für hohe Strömungsgeschwindigkeiten im Schmelzbad besser einordnen und verstehen zu können. Darüber hinaus dient das entwickelte numerische Modell mit der Berücksichtigung aller relevanten Mechanismen als Grundlage für Weiterentwicklungen hinsichtlich vielerlei Anwendungen, beispielsweise für das Schweißen anderer Werkstoffe, zusätzliche Effekte wie dem Spiking oder anderen Elektronenstrahltechnologien wie dem Elektronenstrahlschmelzen im Bereich der additiven Fertigung.

Page generated in 0.1029 seconds