Spelling suggestions: "subject:"6electronic devices"" "subject:"6electronic evices""
361 |
Charge Transport in Single-crystalline CVD DiamondGabrysch, Markus January 2010 (has links)
Diamond is a semiconductor with many superior material properties such as high breakdown field, high saturation velocity, high carrier mobilities and the highest thermal conductivity of all materials. These extreme properties, as compared to other (wide bandgap) semiconductors, make it desirable to develop single-crystalline epitaxial diamond films for electronic device and detector applications. Future diamond devices, such as power diodes, photoconductive switches and high-frequency field effect transistors, could in principle deliver outstanding performance due to diamond's excellent intrinsic properties. However, such electronic applications put severe demands on the crystalline quality of the material. Many fundamental electronic properties of diamond are still poorly understood, which severely holds back diamond-based electronic device and detector development. This problem is largely due to incomplete knowledge of the defects in the material and due to a lack of understanding of how these defects influence transport properties. Since diamond lacks a shallow dopant that is fully thermally activated at room temperature, the conventional silicon semiconductor technology cannot be transferred to diamond devices; instead, new concepts have to be developed. Some of the more promising device concepts contain thin delta-doped layers with a very high dopant concentration, which are fully activated in conjunction with undoped (intrinsic) layers where charges are transported. Thus, it is crucial to better understand transport in high-quality undoped layers with high carrier mobilities. The focus of this doctoral thesis is therefore the study of charge transport and related electronic properties of single-crystalline plasma-deposited (SC-CVD) diamond samples, in order to improve knowledge on charge creation and transport mechanisms. Fundamental characteristics such as drift mobilities, compensation ratios and average pair-creation energy were measured. Comparing them with theoretical predictions from simulations allows for verification of these models and improvement of the diamond deposition process.
|
362 |
Molecular Design for Nonlinear Optical Materials and Molecular Interferometers Using Quantum Chemical ComputationsXiao, Dequan January 2009 (has links)
<p>Quantum chemical computations provide convenient and effective ways for molecular design using computers. In this dissertation, the molecular designs of optimal nonlinear optical (NLO) materials were investigated through three aspects. First, an inverse molecular design method was developed using a linear combination of atomic potential approach based on a Hückel-like tight-binding framework, and the optimizations of NLO properties were shown to be both efficient and effective. Second, for molecules with large first-hyperpolarizabilities, a new donor-carbon-nanotube paradigm was proposed and analyzed. Third, frequency-dependent first-hyperpolarizabilities were predicted and interpreted based on experimental linear absorption spectra and Thomas-Kuhn sum rules. Finally, molecular interferometers were designed to control charge-transfer using vibrational excitation. In particular, an ab initio vibronic pathway analysis was developed to describe inelastic electron tunneling, and the mechanism of vibronic pathway interferences was explored.</p> / Dissertation
|
363 |
Gas Sensor-Studies On Sensor Film Deposition, ASIC Design And TestingBagga, Shobi 07 1900 (has links)
The widespread use of Liquid Petroleum Gas (LPG) for cooking and as fuel for automobile vehicles requires fast and selective detection of LPG to precisely measure the leakage of gas for preventing the occurrence of accidental explosions. The adoption of Micro-Electro-Mechanical-System (MEMS) technology for fabricating the gas sensor provides other potential advantages for sensing applications, which includes low power consumption, low fabrication cost, high quality, small size and reliability. MEMS based gas sensor requires a sensitive layer of oxide material like ZnO, SnO2, TiO2, Fe2O3, etc. The tin oxide material used in the present work changes its electrical properties, as it interacts with the reducing gas like LPG. The sensor material becomes active only at high temperature such as 400ºC, thereby realizing the need of a micro heater to reach the desired temperature. To control the temperature of micro heater and to determine the change in electrical properties of the sensor due to its interaction with LPG an Application Specific Integrated Circuit (ASIC) forms an essential constituent of the MEMS based gas sensor. In the present work, an attempt has been made to improve the sensitivity of LPG gas sensor and it is correlated with other properties by different characterization techniques. The work also includes the design as well as testing of ASIC for gas sensor system. Process parameters particularly deposition time and substrate temperature have a profound influence on the microstructure of the tin oxide film, which in turn affects the gas sensing properties. To study the effects of these parameters, RF magnetron sputtering system is used for depositing tin oxide films onto the silicon substrate, which is compatible with CMOS technology. The effects of structural properties, optical properties and the porosity of the films are also studied and correlated with the gas sensing properties. In this direction the deposited films are characterized using X-Ray Diffraction (XRD) to determine the structure orientation. The morphology of the sensor films are analyzed by Scanning Electron Microscope (SEM) while the refractive index, thickness and porosity of the films are determined using ellipsometry studies. The thickness of the deposited films is also confirmed by the surface profilometer. The change in composition of the deposited film along its depth is determined using Secondary Ion Mass Spectrometer (SIMS). Maximum sensitivity 5.5 is obtained for 470 nm thick films, which corresponds to a grain size of 38nm at the operating temperature of 4000C.
Following these studies, an ASIC has been designed using Tanner EDA Tools on AMIS 0.7 µm CMOS process, fabricated through Euro practice’s ASIC prototyping service, Belgium and tested successfully after fabrication. The temperature control module of ASIC has been designed using relaxation oscillator technique to control the temperature of the in house developed heater. The resistance to period conversion technique is explored for the design of the sensor read out module of ASIC. The heater is integrated successfully with the sensor film, ASIC and microcontroller based LCD module. The test results show good agreement with the simulation results.
|
364 |
Investigation of CdS Nanowires and Planar Films for Enhanced Performance as Window Layers in CdS-CdTe Solar Cell DevicesChen, Jianhao 01 January 2013 (has links)
Cadmium sulfide (CdS) and cadmium telluride (CdTe) are two leading semiconductor materials used in the fabrication of thin film solar cells of relatively high power conversion efficiency and low manufacturing cost. In this work, CdS/CdTe solar cells with a varying set of processing parameters and device designs were fabricated and characterized for comparative evaluation. Studies were undertaken to elucidate the effects of (i) each step in fabrication and (ii) parameters like thickness, sheet resistance, light absorptivity solution concentration, inert gas pressure etc. Best results were obtained when the thickness of CdS planar film for the window layer was in the range of 150 nm to 200 nm. Also, CdS nanowires were fabricated for use as the window layer in CdS-CdTe solar cells. Their materials characteristics were studied with scanning electron microscopy (SEM) and X-ray Diffraction (XRD). Spectral absorption measurements on the planar CdS films and nanowire CdS layers were performed and results compared. It was established that the nanowire CdS design was superior because its absorption of sunlight was far less than that of planar CdS film, which would lead to enhanced performance in the CdS-CdTe solar cell through higher short circuit current density and higher open circuit voltage. Diode behavior of CdS-CdTe devices on planar CdS and nanowire CdS was analyzed and compared.
KEYWORDS: Thin Film Solar Cell, Nanowire, UV Absorption, Open-circuit Voltage, Close Space Sublimation
|
365 |
Design of Wireless Power Transfer and Data Telemetry System for Biomedical ApplicationsIslam, Ashraf Bin 01 December 2011 (has links)
With the advancement of biomedical instrumentation technologies sensor based remote healthcare monitoring system is gaining more attention day by day. In this system wearable and implantable sensors are placed outside or inside of the human body. Certain sensors are needed to be placed inside the human body to acquire the information on the vital physiological phenomena such as glucose, lactate, pH, oxygen, etc. These implantable sensors have associated circuits for sensor signal processing and data transmission. Powering the circuit is always a crucial design issue. Batteries cannot be used in implantable sensors which can come in contact with the blood resulting in serious health risks. An alternate approach is to supply power wirelessly for tether-less and battery- less operation of the circuits.Inductive power transfer is the most common method of wireless power transfer to the implantable sensors. For good inductive coupling, the inductors should have high inductance and high quality factor. But the physical dimensions of the implanted inductors cannot be large due to a number of biomedical constraints. Therefore, there is a need for small sized and high inductance, high quality factor inductors for implantable sensor applications. In this work, design of a multi-spiral solenoidal printed circuit board (PCB) inductor for biomedical application is presented. The targeted frequency for power transfer is 13.56 MHz which is within the license-free industrial, scientific and medical (ISM) band. A figure of merit based optimization technique has been utilized to optimize the PCB inductors. Similar principal is applied to design on-chip inductor which could be a potential solution for further miniaturization of the implantable system. For layered human tissue the optimum frequency of power transfer is 1 GHz for smaller coil size. For this reason, design and optimization of multi-spiral solenoidal integrated inductors for 1 GHz frequency is proposed. Finally, it is demonstrated that the proposed inductors exhibit a better overall performance in comparison with the conventional inductors for biomedical applications.
|
366 |
Development of a laboratory facility and experiments to support learning IEC 61850 based substation automationWickremasuriya, Boosabaduge Achintha Hiruwan 08 January 2016 (has links)
IEC 61850 is rapidly becoming the internationally recognized standard for substation automation systems making it an indispensable element in power system protection and automation education. In order to facilitate teaching this very practical subject, a laboratory setup was developed to demonstrate IEC 61850 station bus inter Intelligent Electronic Device (IED) communication. In this setup, an electrical substation was implemented in a real time digital simulator (RTDS) and protection schemes were implemented in IEC 61850 station bus compliant IEDs from different vendors. Trip signals and breaker statuses were exchanged between RTDS and IEDs using GOOSE (Generic Object Oriented Substation Event) messages. Several protection applications including a novel backup bus protection scheme were developed based on the setup to demonstrate the use of GOOSE messages in time critical applications. The developed test setup along with the designed laboratory exercises will undoubtedly enhance teaching, training and research in this important field. / February 2016
|
367 |
Virtualization of a sensor node to enable the simulation of IEC 61850-based sampled value messagesLuwaca, Emmanuel January 2014 (has links)
Thesis submitted in fulfilment of the requirements for the degree
Master of Technology: Electrical Engineering
in the Faculty of Engineering
at the Cape Peninsula University of Technology
2014 / The IEC 61850 standard, “Communication networks and systems in substations” was
promulgated to accommodate the need for a common communication platform within
substations for devices from different vendors. The IEC 61850 standard proposes a
substation automation architecture that is Ethernet-based, with a “station-bus” for
protection devices within the substation and a “process bus” where raw data from the
voltage and current transformers are published onto the data network using a device
known as a Merging Unit.
To date, most of the standardization efforts were focused at the station bus level
where event-triggered messages are exchanged between the substation automation
devices, commonly referred to as Intelligent Electronic Devices (IEDs). These
messages are known as Generic Object Oriented Substation Event messages.
Equipment from vendors to accommodate the “process bus” paradigm, however is
still limited at present.
The Centre for Substation Automation and Energy Management Systems was
established within the Electrical Engineering Department at the Cape Peninsula
University of Technology with one of its objectives being the development of
equipment either for simulation or real-time purposes in compliance with the IEC
61850 standard. In order to fulfil this long-term objective of the Centre, an in-depth
understanding of the IEC 61850 standard is required.
This document details the efforts at acquiring the requisite knowledge base in support
of the educational objectives of the Centre and the research project implements a
simulation of a merging unit which is compliant with the functional behavior as
stipulated by the standard. This limited functional implementation (i.e. non-real-time)
of the merging unit, is achieved through the development of a virtualized data
acquisition node capable of synthetic generation of waveforms, encoding of the data
and publishing the data in a format compliant with the IEC 61850-9-2 sampled value
message structure.
This functional behavior of the virtual sensor node which was implemented has been
validated against the behavior of a commercial device and the sampled value
message structure is validated against the standard. The temporal behavior of the
proposed device is commented upon. This research project forms the basis for future
real-time implementation of a merging unit.
|
368 |
Dispositivo eletrônico semicondutor LED : uma abordagem baseada em Unidade de Ensino Potencialmente SignificativaEspírito Santo, Sebastião Carlos do January 2017 (has links)
Orientador: Prof. Dr. Marcelo Oliveira da Costa Pires / Dissertação (mestrado) - Universidade Federal do ABC, Mestrado Nacional Profissional em Ensino de Física - MNPEF, 2017. / Estudantes tem em seu cotidiano o convívio com dispositivos eletrônicos que em seus interiores possuem semicondutores. A compreensão de seu funcionamento depende de um conhecimento, mesmo que superficial em Física Moderna. Porém o conhecimento desses estudantes sobre o assunto, não é pleno, tornando o saber acrítico sobre o tema, devido à falta de informação sobre o assunto abordado seja no Ensino Básico. Propomos uma sequência didática para levar o conhecimento de Física Moderna necessária para explicar o comportamento de materiais semicondutores e, consequentemente, o funcionamento do LED. Dentre as várias metodologias, escolhemos a Unidade de Ensino Potencialmente Significativa (UEPS). Baseada na teoria da aprendizagem de Ausubel que leva em consideração os conhecimentos prévios que o aluno possui, além de procurar fornecer um significado relevante sobre a importância do assunto abordado. Na proposta da UEPS privilegiamos o uso da metodologia de Sala de Aula Invertida onde o docente oferece ao aluno condições para um estudo fora da sala de aula. Dessa forma a proposta estabelece que o aluno tenha o seu próprio ritmo de aprendizado, e que o tempo em sala de aula possa ser utilizado para o aprofundamento dos assuntos abordados. Esperamos com isso, ascender o espirito investigativo no aluno. Esse produto educacional pode ser aplicado com alunos do 2° ou 3° EM (segundo ou terceiro ano do ensino médio), desde que já tenham conhecimentos básicos em eletricidade como corrente e resistência elétrica, tensão e circuitos. Aplicamos esse produto em uma turma do 3° ano do E.M. e a avaliação mostrou-se a eficácia da UEPS. Espera-se que esta proposta possa preencher a falta de material instrucional para o professor que deseja trabalhar de forma inovadora sobre o tema. / Students have in their daily life the conviviality with electronic devices in which interiors have semiconductors. The understanding of its functioning depends on an even superficial knowledge in Modern Physics. However, the students knowledge about this subject is not enough, making it an uncritical knowledge. We propose a didactic sequence to bring the knowledge of Modern Physics necessary to explain the behavior of semiconductor materials and, consequently, the functioning of the LED. Among several methodologies, we chose the Potentially Significant Teaching Unit (PSTU). Based on Ausubel's theory of learning that takes into account the previous knowledge the student bring to them , as well as seeking to provide a relevant meaning about the importance of the addressed issue. In the PSTU proposal, we favor the use of inverted classroom methodology where the teacher offers the student conditions for studying outside the classroom. In this way, we promote the students establish their own paces and the classroom space can be used to deepen the subjects addressed. We hope to increase the student's investigative spirit. This educational product can be applied to the 2nd or 3rd year students (second or third year of high school), as long as they already have basic knowledge of electricity such as current and electrical resistance, voltage and circuits. We applied this product to a third-year class from high school and the evaluation showed the effectiveness of the PSTU. It is hoped that this proposal will fill the lack of instructional material for the teacher who wishes to work innovatively on the subject.
|
369 |
Sonochemical Synthesis of Zinc Oxide Nanostructures for Sensing and Energy HarvestingVabbina, Phani Kiran 06 July 2016 (has links)
Semiconductor nanostructures have attracted considerable research interest due to their unique physical and chemical properties at nanoscale which open new frontiers for applications in electronics and sensing. Zinc oxide nanostructures with a wide range of applications, especially in optoelectronic devices and bio sensing, have been the focus of research over the past few decades. However ZnO nanostructures have failed to penetrate the market as they were expected to, a few years ago. The two main reasons widely recognized as bottleneck for ZnO nanostructures are (1) Synthesis technique which is fast, economical, and environmentally benign which would allow the growth on arbitrary substrates and (2) Difficulty in producing stable p-type doping. The main objective of this research work is to address these two bottlenecks and find a solution that is inexpensive, environmentally benign and CMOS compatible. To achieve this, we developed a Sonochemical method to synthesize 1D ZnO Nanorods, core-shell nanorods, 2D nanowalls and nanoflakes on arbitrary substrates which is a rapid, inexpensive, CMOS compatible and environmentally benign method and allows us to grow ZnO nanostructures on any arbitrary substrate at ambient conditions while most other popular methods used are either very slow or involve extreme conditions such as high temperatures and low pressure.
A stable, reproducible p-type doping in ZnO is one of the most sought out application in the field of optoelectronics. Here in this project, we doped ZnO nanostructures using sonochemical method to achieve a stable and reproducible doping in ZnO. We have fabricated a homogeneous ZnO radial p-n junction by growing a p-type shell around an n-type core in a controlled way using the sonochemical synthesis method to realize ZnO homogeneous core-shell radial p-n junction for UV detection.
ZnO has a wide range of applications from sensing to energy harvesting. In this work, we demonstrate the successful fabrication of an electrochemical immunosensor using ZnO nanoflakes to detect Cortisol and compare their performance with that of ZnO nanorods. We have explored the use of ZnO nanorods in energy harvesting in the form of Dye Sensitized Solar Cells (DSSC) and Perovskite Solar Cells.
|
370 |
Shaped Superconducting Films For Electronic FunctionsNarayana, T Badiri 07 1900 (has links) (PDF)
No description available.
|
Page generated in 0.0529 seconds