Spelling suggestions: "subject:"electronics materials"" "subject:"delectronics materials""
21 |
New bipolar organic materials for optoelectronic applicationsLinton, Katharine Elizabeth January 2012 (has links)
The literature surrounding organic small-molecule donor-acceptor systems is summarised for a range of optoelectronic applications (OLEDs, OPVs, OFETs etc.). There is a focus on the key building blocks: 1,3,4-oxadiazole (OXD), diphenylamine (DPA), carbazole (Cbz) and fluorene (F). The incorporation of such moieties into various donor-acceptor systems is discussed with further reference to selected alternative organic donor and acceptor systems. The syntheses of novel bipolar molecules based on a donor-spacer-acceptor (DPA/Cbz-F-OXD) structure and the incorporation of these molecules into single-layer OLEDs is presented. It is demonstrated how the emission colour can be tuned from green to deep blue by systematic manipulation of the structure. A significant result is that high efficiency accompanied with pure, deep blue emission in single-layer OLEDs can be achieved with this structural motif. The incorporation of these materials as part of a simple two-component blend to produce white OLEDs is presented and the modification of the materials to improve electron-transport properties is discussed. The synthesis of DPA-bridge-OXD wire systems is presented with the use of oligo-p-phenyleneethynylene units as a bridge of varying length to investigate the effect on charge transfer between the donor and acceptor. Photophysical studies demonstrate the change in absorption, emission and fluorescence lifetimes as the length scale of the molecules is altered. The synthesis of a series of planarised and twisted DPA-bridge-OXD systems based upon phenylene linkers is discussed. Finally, a series of DPA-F-OXD-anchor molecules is presented for incorporation into DSSC devices. The synthesis of these materials is described and the suitability of various anchoring groups for DSSCs is analysed through photophysical and device studies.
|
22 |
Core loss characterization and design optimization of high-frequency power ferrite devices in power electronics applicationsGradzki, Pawel Miroslaw 06 June 2008 (has links)
An impedance-based core loss measurement technique for power ferrites, the modeling and analysis of mechanisms of high-frequency losses, and design methodology for optimization for high-frequency magnetics are presented.
The high-frequency losses of ferrite materials are characterized employing a large-signal impedance measurement technique. The impedance analyzer controlled through an IEEE-488 interface, measures the impedance of the inductor under test under large signal excitation via a power amplifier. The core loss is a form of a parallel resistance is derived from measured impedance characteristics. A wideband impedance probe, enables core loss characterization up to 100 MHz.
A comprehensive analysis of all major loss mechanisms in ferrites is presented. A new form of residual losses due to a magnetoelectric effect is postulated to account for losses at high frequencies. Two models of losses in ferrites are proposed, one with emphasis on analysis of loss mechanisms, and the other with an emphasis on the design of high-frequency magnetic components. Both models include the important effect of static bias field, which is the case in many power electronics applications. Magnetic losses due to magnetostriction are measured. Dependence of magnetoelastic resonances on the magnetic bias. core material, core shape and size is studied. The influence of diffusion after-effect on core loss under time-varying bias field is investigated.
Thermal stability of high-frequency magnetics is studied. A verification of one- and two- dimensional models of winding losses for solid and litz wire is performed. The optimum design method for high-frequency power transformers and inductors is proposed. / PhD
|
23 |
Vacuum deposition of organic molecules for photovoltaic applicationsKovacik, Peter January 2012 (has links)
Organic photovoltaics have attracted considerable research and commercial interest due to their lightness, mechanical flexibility and low production costs. There are two main approaches for the fabrication of organic solar cells – solution and vacuum processing. The former relies on morphology control in polymer-fullerene blends resulting from natural phase separation in these systems. The latter takes advantage of solvent-free processing allowing highly complex multi-junction architectures similar to inorganic solar cells. This work aims to combine the benefits of both by depositing conjugated polymers using vacuum thermal evaporation. By employing this unconventional approach it aims to enhance the efficiency of organic photovoltaics through increased complexity of the thin-film architecture while improving the nanoscale morphology control of the individual active layers. The thesis explores the vacuum thermal deposition of polythiophenes, mainly poly(3-hexylthiophene) (P3HT) and side-group free poly(thiophene) (PTh). A variety of chemical techniques, such as NMR, FT-IR, GPC, DSC and TGA, are used to examine the effect of heating on chemical structure of the polymers. Optimal processing parameters are identified and related to the resulting thin-film morphology and charge transport properties. Efficient photovoltaic devices based on polythiophene donors and fullerene acceptors are fabricated. Materials science techniques AFM, XRD, SEM, TEM and MicroXAM are used to characterize topography and morphology of the thin films, and UV-Vis, EQE, I-V and C-V measurements relate these to the optical and electronic properties. The results of the study show that polymer side groups have a strong influence on molecular packing and charge extraction in vacuum-deposited polymer thin films. Unlike P3HT, evaporated PTh forms highly crystalline films. This leads to enhanced charge transport properties with hole mobility two orders of magnitude higher than that in P3HT. The effect of molecular order is demonstrated on polymer/fullerene planar heterojunction solar cells. PTh-based devices have significantly better current and recombination characteristics, resulting in improved overall power conversion efficiency (PCE) by 70% as compared to P3HT. This confirms that the chemical structure of the molecule is a crucial parameter in deposition of large organic semiconductors. It is also the first-ever example of vacuum-deposited polymer photovoltaic cell. Next, vacuum co-deposited PTh:C60 bulk heterojunctions with different donor-acceptor compositions are fabricated, and the effect of post-production thermal annealing on their photovoltaic performance and morphology is studied. Co-deposition of blended mixtures leads to 60% higher photocurrents than in thickness-optimized PTh/C60 planar heterojunction counterparts. Furthermore, by annealing the devices post-situ the PCE is improved by as much as 80%, achieving performance comparable to previously reported polythiophene and oligothiophene equivalents processed in solution and vacuum, respectively. The enhanced photo-response is a result of favourable morphological development of PTh upon annealing. In contrast to standard vacuum-processed molecular blends, annealing-induced phase separation in PTh:C60 does not lead to the formation of coarse morphology but rather to an incremental improvement of the already established interpenetrated nanoscale network. The morphological response of the evaporated PTh within the blend is further verified to positively differ from that of its small-molecule counterpart sexithiophene. This illustrates the morphological advantage of polymer-fullerene combination over all other vacuum-processable material systems. In conclusion, this processing approach outlines the conceptual path towards the most beneficial combination of solution/polymer- and vacuum-based photovoltaics. It opens up a fabrication method with considerable potential to enhance the efficiency of large-scale organic solar cells production.
|
24 |
Contorted Organic Semiconductors for Molecular ElectronicsZhong, Yu January 2016 (has links)
This thesis focuses on the synthesis, properties and applications of two types of contorted organic molecules: contorted molecular ribbons and conjugated corrals. We utilized the power of reaction chemistry to writing information into conjugated molecules with contorted structures and studied “structure-property” relationships. The unique properties of the molecules were expressed in electronic and optoelectronic devices such as field-effect transistors, solar cells, photodetectors, etc.
In Chapter 2, I describe the design and synthesis of a new graphene ribbon architecture that consists of perylenediimide (PDI) subunits fused together by ethylene bridges. We created a prototype series of oligomers consisting of the dimer, trimer, and tetramer. The steric congestion at the fusion point between the PDI units creates helical junctions, and longer oligomers form helical ribbons. Thin films of these oligomers form the active layer in n-type field effect transistors. UV−vis spectroscopy reveals the emergence of an intense long-wavelength transition in the tetramer. From DFT calculations, we find that the HOMO−2 to LUMO transition is isoenergetic with the HOMO to LUMO transition in the tetramer. We probe these transitions directly using femtosecond transient absorption spectroscopy. The HOMO−2 to LUMO transition electronically connects the PDI subunits with the ethylene bridges, and its energy depends on the length of the oligomer.
In Chapter 3, I describe an efficiency of 6.1% for a solution processed non-fullerene solar cell using a helical PDI dimer as the electron acceptor. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor−acceptor interfaces, indicating that charge carriers are created from photogenerated excitons in both the electron donor and acceptor phases. Light-intensity-dependent current−voltage measurements suggested different recombination rates under short-circuit and open-circuit conditions.
In Chapter 4, I discuss helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometers in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.
In Chapter 5, I compare analogous cyclic and acyclic π-conjugated molecules as n-type electronic materials and find that the cyclic molecules have numerous benefits in organic photovoltaics. We designed two conjugated cycles for this study. Each comprises four subunits; one combines four electron-accepting, redox-active, diphenyl-perylenediimide subunits, and the other alternates two electron-donating bithiophene units with two diphenyl-perylenediimide units. We compare the macrocycles to acyclic versions of these molecules and find that, relative to the acyclic analogs, the conjugated macrocycles have bathochromically shifted UV-vis absorbances and are more easily reduced. In blended films, macrocycle-based devices show higher electron mobility and good morphology. All of these factors contribute to the more than doubling of the power conversion efficiency observed in organic photovoltaic devices with these macrocycles as the n-type, electron transporting material. This study highlights the importance of geometric design in creating new molecular semiconductors.
In Chapter 6, I describe a new molecular design that enables high performance organic photodetectors. We use a rigid, conjugated macrocycle as the electron acceptor in devices to obtain high photocurrent and low dark current. We directly compare the macrocyclic acceptor devices to an acyclic control device; we find that the superior performance of the macrocycle originates from its rigid, conjugated, and cyclic structure. The macrocycle’s rigid structure reduces the number of charged defects originating from deformed sp2 carbons and covalent defects from photo/thermo-activation. With this molecular design we are able to suppress dark current density while retaining high responsivity in an ultra-sensitive non-fullerene organic photodetector. Importantly, we achieve a detectivity of ~10^14 Jones at near zero bias voltage. This is without the need for extra carrier blocking layers commonly employed in fullerene-based devices. Our devices are comparable to the best fullerene-based photodetectors, and the sensitivity at low working voltages (< 0.1 V) is a record for non-fullerene OPDs.
|
25 |
Local measurements of cyclotron states in grapheneKubista, Kevin Dean 04 April 2011 (has links)
Multilayer epitaxial graphene has been shown to contain "massless Dirac fermions" and is believed to provide a possible route to industrial-scale graphene electronics. We used scanning tunneling microscopy (STM) and spectroscopy (STS) in high magnetic fields to obtain local information on these fermions. A new STS technique was developed to directly measure graphene's energy-momentum relationship and resulted in the highest precision measurement of graphene's Dirac cone. STS spectra similar to ideal graphene were observed, but additional anomalies were also found. Extra peaks and an asymmetry between electron and hole states were shown to be caused by the work function difference between the Iridium STM tip and graphene. This tip effect was extracted using modeled potentials and performing a least square fit using degenerate perturbation theory on graphene's eigenstates solved in the symmetric gauge. Defects on graphene were then investigated and magnetic field effects were shown to be due to a mixture of potential effect from defects and the tip potential. New defect states were observed to localize around specific defects, and are believed to interact with the STM tip by Stark shifting in energy. This Stark shift gives a direct measurement of the capacitive coupling between the tip and graphene and agrees with the modeled results found when extracting the tip potential.
|
26 |
Synthesis of copper-tantalum-ruthenium composites for electronics interconnection applications.Sule, Rasidi. January 2011 (has links)
M. Tech. Metallurgical Engineering. / Aims at improving Cu interconnection problem by homogeneous distribution of ruthenium and tantalum in Cu matrix for excellent interconnection in electronics packaging. The aim will be achieved through the following objectives.Development of appropriate technology for homogenizing submicron metal powders with suitable methods for controlling grain growth during sintering. Study the mechanisms of synergistic incorporation of Ru, and Ta on improving copper interconnection properties. To investigate metallurgical interactions and phenomena occurring during sintering. To investigate specific property and behaviour advantages intrinsic due to the composites and material mix.
|
27 |
High performance electrically conductive adhesives (ecas) for leadfree interconnectsLi, Yi 02 November 2007 (has links)
Electrically conductive adhesives (ECAs) are one of the lead-free interconnect materials with the advantages of environmental friendliness, mild processing conditions, fewer processing steps, low stress on the substrates, and fine pitch interconnect capability. However, some challenging issues still exist for the currently available ECAs, including lower electrical conductivity, conductivity fatigue in reliability tests, limited current-carrying capability, poor impact strength, etc. The interfacial properties is one of the major considerations when resolving these challenges and developing high performance conductive adhesives.
Surface functionalization and interface modification are the major approaches used in this thesis. Fundamental understanding and analysis of the interaction between various types of interface modifiers and ECA materials and substrates are the key for the development of high performance ECA for lead-free interconnects. The results of this thesis provide the guideline for the enhancement of interfacial properties of metal-metal and metal-polymer interactions. Systematic investigation of various types of ECAs contributes to a better understanding of materials requirements for different applications, such as surface mount technology (SMT), flip chip applications, flat panel display modules with high resolution, etc. Improvement of the electrical, thermal and reliability of different ECAs make them a potentially ideal candidate for high power and fine pitch microelectronics packaging option.
|
28 |
Solution Processing Electronics Using Si6 H12 Inks: Poly-Si TFTs and Co-Si MOS CapacitorsUllah, Syed Shihab January 2011 (has links)
The development of new materials and processes for electronic devices has been driven by the integrated circuit (IC) industry since the dawn of the computer era. After several decades of '"Moore's Law"-type innovation, future miniaturization may be slowed down by materials and processing limitations. By way of comparison, the nascent field of flexible electronics is not driven by the smallest possible circuit dimension, but instead by cost and form-factor where features typical of 1970s CMOS (i.e., channel length - IO μm) will enable flexible electronic technologies such as RFID, e-paper, photovoltaics and health monitoring devices. In this thesis. cyclohexasilane is proposed and used as a key reagent in solution processing of poly-Si and Co-Si thin films with the former used as the active layer in thin film transistors (TFTs) and the latter as the gate metal in metal-oxide-semiconductor (MOS) capacitors. A work function of 4.356 eV was determined for the Co-Si thin films via capacitance-voltage (C-Y) characterization which differs slightly from that extracted from ultraviolet photoemission spectroscopy (UPS) data (i.e., 4.8 eV). Simulation showed the difference between the C-V and UPS-derived data may be attributed to the existence of 8.3 x 10 (exponent 10) cm-2 interface charge density in the oxide-semiconductor junction. Poly-Si TFTs prepared using Si6 H12-based inks maintained the following electrical attributes: field effect mobility of 0.1 cm2V-1s-1; threshold voltage of 66 V; and, an on/off ratio of 1630. A BSIM3 version 3 NFET model was modified through global parametric extraction procedure to match the transfer characteristics of the fabricated poly-Si TFT. It is anticipated that this model can be utilized for future design simulation for solution-processed poly-Si circuits.
|
29 |
An assessment of silicon-germanium BiCMOS technologies for extreme environment applicationsLourenco, Nelson Estacio 13 November 2012 (has links)
This thesis evaluates the suitability of silicon-germanium technology for electronic systems intended for extreme environments, such as ambient temperatures outside of military specification (-55 degC to 125 degC) range and intense exposures to ionizing radiation. Silicon-germanium devices and circuits were characterized at cryogenic and high-temperatures (up to 300 degC) and exposed to ionizing radiation, providing empirical evidence that silicon-germanium is an excellent platform for terrestrial and space-based electronic applications.
|
30 |
PV Based Converter with Integrated Battery Charger for DC Micro-Grid ApplicationsSalve, Rima January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This thesis presents a converter topology for photovoltaic panels. This topology minimizes the number of switching devices used, thereby reducing power losses that arise from high frequency switching operations. The control strategy is implemented using a simple micro-controller that implements the proportional plus integral control. All the control loops are closed feedback loops hence minimizing error instantaneously and adjusting efficiently to system variations. The energy management between three components, namely, the photovoltaic panel, a battery and a DC link for a microgrid, is shown distributed over three modes. These modes are dependent on the irradiance from the sunlight. All three modes are simulated. The maximum power point tracking of the system plays a crucial role in this configuration, as it is one of the main challenges tackled by the control system. Various methods of MPPT are discussed, and the Perturb and Observe method is employed and is described in detail. Experimental results are shown for the maximum power point tracking of this system with a scaled down version of the panel's actual capability.
|
Page generated in 0.1078 seconds