• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 20
  • 4
  • Tagged with
  • 67
  • 34
  • 23
  • 23
  • 19
  • 18
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 12
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

ESR and Magnetization Studies of Transition Metal Molecular Compounds

Aliabadi, Azar 26 January 2016 (has links) (PDF)
Molecule-based magnets (molecular magnets) have attracted much interest in recent decades both from an experimental and from a theoretical point of view, not only because of their interesting physical effects, but also because of their potential applications: e.g., molecular spintronics, quantum computing, high density information storage, and nanomedicine. Molecular magnets are at the very bottom of the possible size of nanomagnets. On reducing the size of objects down to the nanoscale, the coexistence of classical properties and quantum properties in these systems may be observed. In additional, molecular magnets exist with structural variability and permit selective substitution of the ligands in order to alter their magnetic properties. Therefore, these characteristics make such molecules suitable candidates for studying molecular magnetism. They can be used as model systems for a detailed understanding of interplay between structural and magnetic properties of them in order to optimize desired magnetic properties. This thesis considers the investigation of magnetic properties of several new transition metal molecular compounds via different experimental techniques (continuous wave electron spin resonance (CW ESR), pulse ESR, high-field/high-frequency ESR (HF-ESR) and static magnetization techniques). The first studied compounds were mono- and trinuclear Cu(II)-(oxamato, oxamidato)/bis(oxamidato) type compounds. First, all components of the g-tensor and the tensors of onsite ACu and transferred AN HF interactions of mononuclear Cu(II)- bis(oxamidato) compounds have been determined from CW ESR measurements at 10 GHz and at room temperature and pulse ELDOR detected NMR measurements at 35 GHz and at 20 K. The spin density distributions of the mononuclear compounds have been calculated from the experimentally obtained HF tensors. The magnetic exchange constants J of their corresponding trinuclear compounds were determined from susceptibility measurements versus temperature. Our discussion of the spin density distribution of the mononuclear compounds together with the results of the magnetic characterization of their corresponding trinuclear compounds show that the spin population of the mononuclear compounds is in interplay with the J values of their corresponding trinuclear compounds. The second studied compounds were polynuclear Cu(II)-(bis)oxamato compounds with ferrocene and ferrocenium ligands. The magnetic properties of these compounds were studied by susceptibility measurements versus temperature to determine J values. In addition, the ESR technique is used to investigate the magnetic properties of the studied compounds because they contain two different magnetic ions and because only the ESR technique can selectively excite different electron spin species. These studies together with geometries of the ferrocenium ligands determined by crystallographic studies indicate that the magnetic interaction between a central Cu(II) and a Fe(III) ions changed from the antiferromagnetic coupling to the ferromagnetic coupling when a stronger distortion of the axial symmetry in the feroccenium cation exists. Therefore, the degree of the distortion of the feroccenium cation is a control parameter for the sign of the interaction between the central Cu(II) ion and the Fe(III) spins of the studied compounds. The last two studied molecular magnets were a binuclear Ni(II) compound (Ni(II)-dimer) and a cube-like tetranuclear compound with a [Fe4O4]-cube core (Fe4-cube). HF-ESR measurements enabled us to determine the g-factor, the sign, and the absolute value of the magnetic anisotropy parameters. Using this information together with static magnetization measurements, the J value and the magnetic ground state of the studied compounds have been determined. In Ni(II)-dimer, two Ni(II) ions, each having a spin S = 1, are coupled antiferromagnetically that leads to a ground state with total spin Stot = 0. An easy plane magnetic anisotropy with a preferable direction for each Ni(II) ion is found. For Fe4-cube, a ground state with total spin Stot = 8 has been determined. The analysis of the frequency dependence and temperature dependence of HF-ESR lines reveals an easy axis magnetic anisotropy (Dcube = -22 GHz (-1 K)) corresponding to an energy barrier of U = 64 K for the thermal relaxation of the magnetization. These results indicate that Fe4-cube is favorable to show single molecular magnet (SMM) behavior.
42

Synthesis of bis(oxamato) transition metal complexes and Ni nanoparticles and their structural, magnetic, optical, and magneto-optical characterization

Bräuer, Björn 15 July 2008 (has links) (PDF)
Im Rahmen dieser Arbeit werden ein- und mehrkernige Cu(II)- und Ni(II)-bis(oxamato)-Komplexe im Hinblick auf ihre magneto-optischen Eigenschaften gezielt hergestellt und strukturell charakterisiert. Über ladungs- und übergangsmetallinduzierte Abweichungen vom allgemeinen in der Literatur beschriebenen Reaktionsverhalten wird berichtet. Aus Elektronenspinresonanz-Untersuchungen wird die Spindichteverteilung in den einkernigen Cu(II)-Komplexen abgeleitet. Die Beeinflussung dieser durch die Koordinationsgeometrie sowie die Auswirkungen auf die Superaustausch-Wechselwirkung werden diskutiert und mit Ergebnissen der Dichtefunktionaltheorie (DFT) verglichen. Dreikernige bis(oxamato)-Komplexe werden erstmals durch Spin-Coating auf Si(111)-Substraten aufgebracht und mit Hilfe der spektroskopischen Ellipsometrie sowie der Ramanspektroskopie untersucht und mittels DFT-Berechnungen ausgewertet. Magneto-optische Kerr-Effekt-Untersuchungen werden an dünnen Schichten dieser Komplexe sowie Phthalocyaninen durchgeführt. Zum Vergleich werden die magnetischen und magneto-optischen Eigenschaften von Ni-Nanopartikeln in verschiedenen organischen Matrizen untersucht. Mit Hilfe der Photoelektronenspektroskopie wird das Oxidationsverhalten dieser studiert und es werden Rückschlüsse auf Ladungstransferprozesse zwischen den Matrizen und den Nanopartikeln gezogen.
43

Electron spin resonance (ESR) spectroscopy of low-dimensional spin systems

Arango, Yulieth Cristina 14 June 2011 (has links) (PDF)
The research in low-dimensional (low-D) quantum spin systems has become an arduous challenge for the condensed matter physics community during the last years. In systems with low dimensional magnetic interactions the exchange coupling is restricted to dimensions lower than the full three-D exhibited by the bulk real material. The remarkable interest in this field is fueled by a continuous stream of striking discoveries like superconductivity, quantum liquid and spin gap states, chiral phases, etc, derived from the strong effect of quantum fluctuations on the macroscopic properties of the system and the competition between electronic and magnetic degrees of freedom. The main goal of the current studies is to reach a broad understanding of the mechanisms that participate in the formation of those novel ground states as well as the characteristic dependence with respect to relevant physical parameters. In this thesis we present the results of an Electron Spin Resonance (ESR)-based study on different quasi-1D spin systems, exemplifying the realization of 1D-magnetic spin-chains typically containing transition metal oxides such as Cu2+ or V4+. The local sensitivity of the ESR technique has been considered useful in exploring magnetic excitation energies, dominant mechanisms of exchange interactions, spin fluctuations and the dimensionality of the electron spin system, among others. Aside from ESR other experimental results, e.g., magnetization and nuclear magnetic resonance besides some theoretical approaches were especially helpful in achieving a proper understanding and modeling of those low-D spin systems. This thesis is organized into two parts: The first three chapters are devoted to the basic knowledge of the subject. The first chapter is about magnetic exchange interactions between spin moments and the effect of the crystal field potential and the external magnetic field. The second chapter is a short introduction on exchange interactions in a 1D-spin chain, and the third chapter is devoted to ESR basics and the elucidation of dynamic magnetic properties from the absorption spectrum parameters. The second part deals with the experimental results. In the fourth chapter we start with the magnetization results from the zero-dimensional endohedral fullerene Dy3N@C80. This system is seemingly ESR “silent” at the frequency of X-band experiments. The fifth chapter shows an unexpected temperature dependence of the anisotropy in the homometallic ferrimagnet Na2Cu5Si4O14 containing alternating dimer-trimer units in the zig-zag Cu-O chains. In the sixth chapter different magnetic species in the layer structure of vanadium oxide nanotubes (VOx-NT) have been identified, confirming earlier magnetization measurements. Moreover the superparamagnetic-like nature of the Li-doped VOx-NT samples was found to justify its ferromagnetic character at particular Li concentration on the room temperature scale. In the seventh chapter the Li2ZrCuO4 system is presented as a unique model to study the influence of additional interactions on frustrated magnetism. The eighth chapter highlights the magnetic properties of the pyrocompound Cu2As2O7. The results suggest significant spin fluctuations below TN. The thesis closes with the summary and the list of references.
44

ESR and Magnetization Studies of Transition Metal Molecular Compounds

Aliabadi, Azar 13 January 2016 (has links)
Molecule-based magnets (molecular magnets) have attracted much interest in recent decades both from an experimental and from a theoretical point of view, not only because of their interesting physical effects, but also because of their potential applications: e.g., molecular spintronics, quantum computing, high density information storage, and nanomedicine. Molecular magnets are at the very bottom of the possible size of nanomagnets. On reducing the size of objects down to the nanoscale, the coexistence of classical properties and quantum properties in these systems may be observed. In additional, molecular magnets exist with structural variability and permit selective substitution of the ligands in order to alter their magnetic properties. Therefore, these characteristics make such molecules suitable candidates for studying molecular magnetism. They can be used as model systems for a detailed understanding of interplay between structural and magnetic properties of them in order to optimize desired magnetic properties. This thesis considers the investigation of magnetic properties of several new transition metal molecular compounds via different experimental techniques (continuous wave electron spin resonance (CW ESR), pulse ESR, high-field/high-frequency ESR (HF-ESR) and static magnetization techniques). The first studied compounds were mono- and trinuclear Cu(II)-(oxamato, oxamidato)/bis(oxamidato) type compounds. First, all components of the g-tensor and the tensors of onsite ACu and transferred AN HF interactions of mononuclear Cu(II)- bis(oxamidato) compounds have been determined from CW ESR measurements at 10 GHz and at room temperature and pulse ELDOR detected NMR measurements at 35 GHz and at 20 K. The spin density distributions of the mononuclear compounds have been calculated from the experimentally obtained HF tensors. The magnetic exchange constants J of their corresponding trinuclear compounds were determined from susceptibility measurements versus temperature. Our discussion of the spin density distribution of the mononuclear compounds together with the results of the magnetic characterization of their corresponding trinuclear compounds show that the spin population of the mononuclear compounds is in interplay with the J values of their corresponding trinuclear compounds. The second studied compounds were polynuclear Cu(II)-(bis)oxamato compounds with ferrocene and ferrocenium ligands. The magnetic properties of these compounds were studied by susceptibility measurements versus temperature to determine J values. In addition, the ESR technique is used to investigate the magnetic properties of the studied compounds because they contain two different magnetic ions and because only the ESR technique can selectively excite different electron spin species. These studies together with geometries of the ferrocenium ligands determined by crystallographic studies indicate that the magnetic interaction between a central Cu(II) and a Fe(III) ions changed from the antiferromagnetic coupling to the ferromagnetic coupling when a stronger distortion of the axial symmetry in the feroccenium cation exists. Therefore, the degree of the distortion of the feroccenium cation is a control parameter for the sign of the interaction between the central Cu(II) ion and the Fe(III) spins of the studied compounds. The last two studied molecular magnets were a binuclear Ni(II) compound (Ni(II)-dimer) and a cube-like tetranuclear compound with a [Fe4O4]-cube core (Fe4-cube). HF-ESR measurements enabled us to determine the g-factor, the sign, and the absolute value of the magnetic anisotropy parameters. Using this information together with static magnetization measurements, the J value and the magnetic ground state of the studied compounds have been determined. In Ni(II)-dimer, two Ni(II) ions, each having a spin S = 1, are coupled antiferromagnetically that leads to a ground state with total spin Stot = 0. An easy plane magnetic anisotropy with a preferable direction for each Ni(II) ion is found. For Fe4-cube, a ground state with total spin Stot = 8 has been determined. The analysis of the frequency dependence and temperature dependence of HF-ESR lines reveals an easy axis magnetic anisotropy (Dcube = -22 GHz (-1 K)) corresponding to an energy barrier of U = 64 K for the thermal relaxation of the magnetization. These results indicate that Fe4-cube is favorable to show single molecular magnet (SMM) behavior.
45

Elektronenspinresonanz an Iridaten in Doppelperowskitstrukturen

Fuchs, Stephan 13 August 2018 (has links)
In der vorliegenden Promotion werden zwei ausgewählte Iridate mit Elektronen-Spin-Resonanz untersucht. Bei der ersten Probe handelt es sich um das Doppelperowskit Ba2YIrO6, das nach simpler theoretischer Auffassung kein paramagnetisches Signal besitzen sollte. Allerdings zeigen unterschiedliche magnetische Messungen schwache magnetische Spinkorrelationen. Mit Hilfe von ESR kann die Ursache dieser Signale paramagnetischen Verunreinigungen zugeschrieben werden. Zudem kann der Ursprung dieser Defekte mit zwei unterschiedlichen Oxidationsstufen des Iridiums assoziiert werden.    Bei der zweiten untersuchten Iridat-Probe La2CuIrO6 handelt es sich ebenfalls um ein Material mit Doppelperowskit-Struktur, allerdings interagieren hier zwei grundlegend verschiedene Spinsorten miteinander. Zum einen der sich aus der starken Spin-Bahn-Kopplung ergebende Jeff=1/2 Pseudospin des Iridats und zum anderen der reine S=1/2 Spin des Kupferions. Innerhalb der Kristallstruktur ergibt sich daraus eine komplexe antiferromagnetische Spinstruktur mit einer kleinen Verkippung der Spins. Diese nicht-kollineare Spinanordnung geht auf die Dzyaloshinskii-Moriya-Wechselwirkung zurück und führt letztendlich zu einem kleinen ferromagnetischen Nettomoment. Mit ESR konnte dabei vor allem die temperaturabhängige Wechselwirkung der einzelnen Untergitter gezielt untersucht werden. Zusätzlich zum experimentellen Teil war eine der Kernaufgaben dieser Arbeit die technische Realisierung eines Fabry-Perot Resonators. Ziel des Resonators ist dabei die Erhöhung des Signal/Rauschverhältnisses sowie die Implementierung die Probe innerhalb der Messapparatur zu rotieren. Um ein besseres Verständnis des zugrundeliegenden Resonanzverhaltens zu erhalten, wurden zudem einige Simulationen zum Verhalten der elektromagnetischen Wellen innerhalb des Resonators durchgeführt.
46

Electron spin resonance studies of frustrated quantum spin systems

Kamenskyi, Dmytro 24 June 2013 (has links) (PDF)
Since the last few decades frustrated spin systems have attracted much interest. These studies are motivated by the rich variety of their unusual magnetic properties and potential applications. In this thesis, excitation spectra of the weakly coupled dimer system Ba3Cr2O8, the spin-1/2 chain material with distorted diamond structure Cu3(CO3)2(OH)2 (natural mineral azurite), and the quasi-twodimensional antiferromagnet with triangle spin structure Cs2CuBr4 have been studied by means of high-field electron spin resonance. Two pairs of gapped modes corresponding to transitions from a spin-singlet ground state to the first excited triplet state with zero-field energy gaps, of 19.1 and 27 K were observed in Ba3Cr2O8. The observation of ground-state excitations clearly indicates the presence of a non-secular term allowing these transitions. Our findings are of crucial importance for the interpretation of the field-induced transitions in this material (with critical fields Hc1 = 12.5 T and Hc2 = 23.6 T) in terms of the magnon Bose-Einstein condensation. The natural mineral azurite, Cu3(CO3)2(OH)2, has been studied in magnetic fields up to 50 T, revealing several modes not observed previously. Based on the obtained data, all three critical fields were identified. A substantial zero-field energy gap, Δ = 9.6 K, has been observed in Cs2CuBr4 above the ordering temperature. It is argued that contrary to the case for the isostructural Cs2CuCl4, the size of the gap can not be explained solely by the uniform Dzyaloshinskii-Moriya interaction, but it is rather the result of the geometrical frustration stabilizing the spin-disordered state in Cs2CuBr4 in the close vicinity of the quantum phase transition between a spiral magnetically ordered state and a 2D quantum spin liquid.
47

Elektronenspinresonanz in Systemen mit ferromagnetischen Korrelationen

Förster, Tobias 12 December 2013 (has links) (PDF)
Die Arbeit befasst sich mit der Elektronenspinresonanz (ESR) stark korrelierter Elektronensysteme mit ferromagnetischen Wechselwirkungen. Es wurden dafür Messungen an den Kondogitter-Systemen CeRuPO und CeOsPO, der Dotierungsreihe CeFeAs1-xPxO, den niederdimensionalen frustrierten Quadratgittern AA’VO(PO4)2 sowie in dem schwach ferromagnetischen Metall Nb1-yFe2+y durchgeführt. Alle Verbindungen zeigen entweder eine ferromagnetische Ordnung oder befinden sich in der Nähe einer ferromagnetischen Instabilität, die die Eigenschaften des stark korrelierten Systems beeinflusst.
48

Magnetic Properties of Molecular and Nanoscale Magnets

Krupskaya, Yulia 20 October 2011 (has links) (PDF)
The idea of miniaturizing devices down to the nanoscale where quantum ffeffects become relevant demands a detailed understanding of the interplay between classical and quantum properties. Therefore, characterization of newly produced nanoscale materials is a very important part of the research in this fifield. Studying structural and magnetic properties of nano- and molecular magnets and the interplay between these properties reveals new interesting effects and suggests ways to control and optimize the respective material. The main task of this thesis is investigating the magnetic properties of molecular magnetic clusters and magnetic nanoparticles recently synthesized by several collaborating groups. This thesis contains two main parts focusing on each of these two topics. In the first part the fundamental studies on novel metal-organic molecular complexes is presented. Several newly synthesized magnetic complexes were investigated by means of different experimental techniques, in particular, by electron spin resonance spectroscopy. Chapter 1 in this part provides the theoretical background which is necessary for the interpretation of the effects observed in single molecular magnetic clusters. Chapter 2 introduces the experimental techniques applied in the studies. Chapter 3 contains the experimental results and their discussion. Firstly, the magnetic properties of two Ni-based complexes are presented. The complexes possess different ligand structures and arrangements of the Ni-ions in the metal cores. This difffference dramatically affffects the magnetic properties of the molecules such as the ground state and the magnetic anisotropy. Secondly, a detailed study of the Mn2Ni3 single molecular magnet is described. The complex has a bistable magnetic ground state with a high spin value of S = 7 and shows slow relaxation and quantum tunnelling of the magnetization. The third section concentrates on a Mn(III)-based single chain magnet showing ferromagnetic ordering of the Mn-spins and a strong magnetic anisotropy which leads to a hysteretic behavior of the magnetization. The last section describes a detailed study of the static and dynamic magnetic properties of three Mn-dimer molecular complexes by means of static magnetization, continuous wave and pulse electron spin resonance measurements. The results indicate a systematic dependence of the magnetic properties on the nearest ligands surrounding of the Mn ions. The second part of the thesis addresses magnetic properties of nano-scaled magnets such as carbon nanotubes fifilled with magnetic materials and carbon-coated magnetic nanoparticles. These studies are eventually aiming at the possible application of these particles as agents for magnetic hyperthermia. In this respect, their behavior in static and alternating magnetic fifields is investigated and discussed. Moreover, two possible hyperthermia applications of the studied magnetic nanoparticles are presented, which are the combination of a hyperthermia agents with an anticancer drug and the possibility to spatially localize the hyperthermia effffect by applying specially designed static magnetic fifields.
49

Elektronenspinresonanz in Yb-basierten Kondogitter-Systemen

Wykhoff, Jan 27 July 2010 (has links) (PDF)
Die Elektronenspinresonanz (ESR) untersucht die im quasistatischen Magnetfeld resonante Absorption eines an die Probe angelegten Mikrowellenmagnetfeldes. Es wurde das System Yb1-w A1-w (Rh1-x Cox)2 (Si1-y Gey) 2 mit A=La, bzw. Lu, sowie das System YbIr2Si2 mittels ESR untersucht. Unter Kondo-Wechselwirkung vieler Leitungselektronen mit einem lokalen 4f-Moment des Kondo-Ions bildet sich ein nicht-magnetisches Grundzustands-Singlett, was zur Abschirmung des magnetischen Moments führt. YbRh2Si2 ist das erste Schwere-Fermionen-System mit Kondo-Ionen, das ohne Dotierung zusätzlicher ESR-Sonden ein ESR-Signal unterhalb der Kondo-Temperatur aufweist. Es zeigt sich, dass das ESR-Signal nicht mittels gängiger ESR-Theorien konsistent beschrieben werden kann. Die Messungen, die im Rahmen dieser Arbeit angestellt wurden, flossen in die Entwicklung von weiterführenden Theorien (z.B. [1], [2]) ein. Die Temperaturabhängigkeit des ESR-g-Faktors konnte damit erfolgreich beschrieben werden, womit erstmals der Nachweis einer Kondo-Wechselwirkung in Kondo-Gitter-Systemen mittels ESR gelang. Ferner konnte die Bedeutung von ferromagnetischen Fluktuationen für eine kleine, beobachtbare Linienbreite beschrieben werden. Der ESR-Methode ist somit die Kondo-Spindynamik direkt zugänglich. Dieser Zugang ist neu und einzigartig, denn andere Methoden (NMR, inelastische Neutronenstreuung) charakterisieren die Kondo-Spindynamik auf indirekte Weise. [1] P. Wölfle und E. Abrahams. Phenomenology of esr in heavy-fermion systems: Fermi-liquid und nicht-fermi-liquid regimes Phys. Rev. B, 80(23): 235112, 2009. [2] B. I. Kochelaev, S. I. Belov, A. M. Skvortsova, A. S. Kutusov, J. Sichelschmidt, J. Wykhoff, C. Geibel und F. Steglich. Why could electron spin resonance be observed in a heavy fermion kondo lattice? Eur. Phys. J. B, 72(4): 485, 2009.
50

Synthesis of bis(oxamato) transition metal complexes and Ni nanoparticles and their structural, magnetic, optical, and magneto-optical characterization

Bräuer, Björn 02 July 2008 (has links)
Im Rahmen dieser Arbeit werden ein- und mehrkernige Cu(II)- und Ni(II)-bis(oxamato)-Komplexe im Hinblick auf ihre magneto-optischen Eigenschaften gezielt hergestellt und strukturell charakterisiert. Über ladungs- und übergangsmetallinduzierte Abweichungen vom allgemeinen in der Literatur beschriebenen Reaktionsverhalten wird berichtet. Aus Elektronenspinresonanz-Untersuchungen wird die Spindichteverteilung in den einkernigen Cu(II)-Komplexen abgeleitet. Die Beeinflussung dieser durch die Koordinationsgeometrie sowie die Auswirkungen auf die Superaustausch-Wechselwirkung werden diskutiert und mit Ergebnissen der Dichtefunktionaltheorie (DFT) verglichen. Dreikernige bis(oxamato)-Komplexe werden erstmals durch Spin-Coating auf Si(111)-Substraten aufgebracht und mit Hilfe der spektroskopischen Ellipsometrie sowie der Ramanspektroskopie untersucht und mittels DFT-Berechnungen ausgewertet. Magneto-optische Kerr-Effekt-Untersuchungen werden an dünnen Schichten dieser Komplexe sowie Phthalocyaninen durchgeführt. Zum Vergleich werden die magnetischen und magneto-optischen Eigenschaften von Ni-Nanopartikeln in verschiedenen organischen Matrizen untersucht. Mit Hilfe der Photoelektronenspektroskopie wird das Oxidationsverhalten dieser studiert und es werden Rückschlüsse auf Ladungstransferprozesse zwischen den Matrizen und den Nanopartikeln gezogen.

Page generated in 0.0538 seconds