Spelling suggestions: "subject:"elektronische bandstruktur"" "subject:"elektronische wandstruktur""
1 |
Electronic properties of organic-inorganic halide perovskites and their interfacesZu, Fengshuo 21 August 2019 (has links)
Über die besonders hohe Effizienz von Halid-Perowskit (HaP)-basierten optoelektronischen Bauteilen wurde bereits in der Literatur berichtet. Um die Entwicklung dieser Bauteile voranzutreiben, ist ein umfassendes und verlässliches Verständnis derer elektronischen Struktur, sowie der Energielevelanordnung (ELA) an HaP Grenzflächen von größter Bedeutung. Demzufolge beschäftigt sich die vorliegende Arbeit mit der Untersuchung i) der Bandstruktur von Perowskit-Einkristallen, um ein solides Fundament für die Darlegung der elektronischen Eigenschaften von polykristallinen Dünnschichten zu erarbeiten, und mit ii) den Einflüssen von Oberflächenzuständen auf die elektronische Struktur der Oberfläche, sowie deren Rolle bei der Kontrolle von ELA an HaP Grenzflächen. Die Charakterisierung erfolgt überwiegend mithilfe von Photoelektronenspektroskopie (PES) und ergänzenden Messmethoden wie Beugung niederenergetischer Elektronen an Oberflächen, UV-VIS-Spektroskopie, Rasterkraftmikroskopie und Kelvin-Sonde.
Erstens weist die Banddispersion von zwei prototypischen Perowskit-Einkristallen eine starke Dispersion des jeweiligen oberen Valenzbandes (VB) auf, dessen globales Maximum in beiden Fällen am R-Punkt in der Brillouin-Zone liegt. Dabei wird eine effektive Lochmasse von 0.25 m0 für CH3NH3PbBr3, bzw. von ~0.50 m0 für CH3NH3PbI3 bestimmt. Basierend auf diesen Ergebnissen werden die elektronischen Spektren von polykristallinen Dünnschichten konstruiert und es wird dadurch aufgezeigt, dass eine Bestimmung der Valenzbandkantenposition ausgehend von einer logarithmischen Intensitätsskala aufgrund von geringer Zustandsdichte am VB Maximum vorzuziehen ist.
Zweitens stellt sich bei der Untersuchung der elektronischen Struktur von frisch präparierten Perowskit-Oberflächen heraus, dass die n-Typ Eigenschaft eine Folge der Bandverbiegung ist, welche durch donatorartige Oberflächenzustände hervorgerufen wird. Des Weiteren weisen die PES-Messungen an Perowskiten mit unterschiedlichen Zusammensetzungen aufgrund von Oberflächenphotospannung eine Anregungslichtintensitätsabhängigkeit der Energieniveaus von bis zu 0.7 eV auf. Darüber hinaus wird die Kontrolle von ELA durch gezielte Variation der Oberflächenzustandsdichte gezeigt, wodurch sich unterschiedliche ELA-Lagen (mit Abweichungen von über 0.5 eV) an den Grenzflächen mit organischen Akzeptormolekülen erklären lassen. Die vorliegenden Ergebnisse verhelfen dazu, die starke Abweichung der in der Literatur berichteten Energieniveaus zu erklären und somit ein verfeinertes Verständnis des Funktionsprinzips von perowskit-basierten Bauteilen zu erlangen. / Optoelectronic devices based on halide perovskites (HaPs) and possessing remarkably high performance have been reported. To push the development of such devices even further, a comprehensive and reliable understanding of their electronic structure, including the energy level alignment (ELA) at HaPs interfaces, is essential but presently not available. In an attempt to get a deep insight into the electronic properties of HaPs and the related interfaces, the work presented in this thesis investigates i) the fundamental band structure of perovskite single crystals, in order to establish solid foundations for a better understanding the electronic properties of polycrystalline thin films and ii) the effects of surface states on the surface electronic structure and their role in controlling the ELA at HaPs interfaces. The characterization is mostly performed using photoelectron spectroscopy, together with complementary techniques including low-energy electron diffraction, UV-vis absorption spectroscopy, atomic force microscopy and Kelvin probe measurements.
Firstly, the band structure of two prototypical perovskite single crystals is unraveled, featuring widely dispersing top valence bands (VB) with the global valence band maximum at R point of the Brillouin zone. The hole effective masses there are determined to be ~0.25 m0 for CH3NH3PbBr3 and ~0.50 m0 for CH3NH3PbI3. Based on these results, the energy distribution curves of polycrystalline thin films are constructed, revealing the fact that using a logarithmic intensity scale to determine the VB onset is preferable due to the low density of states at the VB maximum. Secondly, investigations on the surface electronic structure of pristine perovskite surfaces conclude that the n-type behavior is a result of surface band bending due to the presence of donor-type surface states. Furthermore, due to surface photovoltage effect, photoemission measurements on different perovskite compositions exhibit excitation-intensity dependent energy levels with a shift of up to 0.7 eV. Eventually, control over the ELA by manipulating the density of surface states is demonstrated, from which very different ELA situations (variation over 0.5 eV) at interfaces with organic electron acceptor molecules are rationalized. Our findings further help to explain the rather dissimilar reported energy levels at perovskite surfaces and interfaces, refining our understanding of the operational principles in perovskite related devices.
|
2 |
Atomic Scale Images of Acceptors in III-V Semiconductors / Band Bending, Tunneling Paths and Wave FunctionsLoth, Sebastian 26 October 2007 (has links)
No description available.
|
Page generated in 0.0642 seconds