• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 204
  • 31
  • 27
  • 25
  • 22
  • 9
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 420
  • 420
  • 420
  • 103
  • 81
  • 52
  • 48
  • 42
  • 42
  • 40
  • 40
  • 39
  • 39
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

The Characterization of a Human Disease-Associated Mutation Nkx2.5 R142C Using In vitro and In vivo Models

Zakariyah, Abeer January 2017 (has links)
Nkx2.5 is a cardiac transcription factor that plays a critical role in heart development. In humans, heterozygous mutations in the NKX2.5 gene result in congenital heart defects (CHDs), but the molecular mechanisms by which these mutations cause the defects are still unknown. NKX2.5 R142C is a mutation that is found to be associated with atrial septal defect and atrioventricular block in 13 patients from one family. The R142C mutation is located within both the DNA-binding domain and the nuclear localization sequence of NKX2.5 protein. The pathogenesis of CHDs in humans with R142C point mutation is not well understood. Also, a previous study in our laboratory has identified Mypt1/PP1 as a novel interacting partner of Nkx2.5 in stem cells during cardiomyogenesis. Nkx2.5 has a PP1-binding consensus sequence RVxF located in the N-terminus of the homeodomain. Notably, the PP1-binding sequence, RVxF, is mutated from arginine to cysteine in patients with the R142C heterozygous mutation. However, the ability of the R142C mutation to bind to the Mypt1/PP1 complex has not been investigated yet. The following thesis addresses the functional deficit associated with R142C by utilizing a combination of in vitro, and in vivo models. It also addresses the interaction of Mypt1/PP1 with the R142C mutation. We have generated a heterozygous mouse embryonic stem cell (mESC) line, harboring the murine homologue (R141C) of the human mutation R142C in Nkx2.5 gene. We show reduced cardiomyogenesis and impaired subcellular localization of Nkx2.5 protein in Nkx2.5R141C/+ mESCs. Gene expression profiling of Nkx2.5R141C/+ mESCs revealed a global misregulation of genes important for heart development and identified putative direct target genes of Nkx2.5 that are affected by the R141C heterozygous mutation. We also generated a mouse model harboring the human mutation R142C. We show that the Nkx2.5R141C/R141C homozygous embryos are developmentally arrested around E10.5 with delayed heart morphogenesis. Moreover, Nkx2.5R141C/+ newborn mice are grossly normal but show variable cardiac defects and downregulation of ion channel genes that later cause AV block in adult mice. Finally, we show that the R141C mutant binds to the Mypt1/PP1 complex but is not inhibited or translocated to the perinuclear region in the presence of Mypt1/PP1 as the WT Nkx2.5 is.
242

Différenciation des cellules souches embryonnaires humaines vers l'hépatocyte / Production of hepatocytes from human embryonic stem cells

Funakoshi, Natalie 06 December 2011 (has links)
Les hépatocytes humains adultes en culture primaire (HHCP) ont de nombreuses applications en physiopathologie hépatique, en pharmacologie et en biothérapie, mais sont limitées par leur faible disponibilité. Les cellules souches embryonnaires humaines (hES) sont une source prometteuse pour l'obtention d'hépatocytes en grande quantité. Nous avons développé un modèle in vitro de différenciation de hES en hépatocytes en reproduisant toutes les étapes de l'ontogenèse hépatique. Au cours de la différenciation, l'expression de 41 gènes marqueurs du foie a été étudiée et comparée aux HHCP, au foie fœtal et aux progéniteurs hépatiques issus du foie adulte. Les résultats démontrent qu'au bout de 21 jours de différenciation, les cellules souches embryonnaires différenciées en hépatocytes (hES-Hep) ont atteint un état de maturation équivalente aux hépatocytes fœtaux aux alentours de 20 semaines de gestation. L'expression forcée du xénorécepteur CAR dans les hES-Hep a induit l'expression des gènes de la détoxification et la biotransformation de midazolam, un substrat de CYP3A4. Ces résultats pourront contribuer au développement de cultures de hES-Hep comme alternative aux HHCP pour les études du métabolisme des xénobiotiques et pour la thérapie cellulaire. / Primary cultures of human adult hepatocytes (PCHH) have widespread potential applications in liver physiopathology , pharmacology, and cell-based therapies, but are currently limited by poor availability. Human embryonic stem cells (hES) are a promising source for the generation of hepatocytes in large quantities. In this study, we differentiated hES into hepatocytes by mimicking in vitro the various stages of hepatic ontogenesis. We analyzed the expression of a panel of 41 liver marker genes in hepatocyte-like cells derived from hES (hES-Hep) in comparison with PCHH, fetal liver and progenitors obtained from adult liver. The data revealed that after 21 days of differentiation ES-Hep are representative of fetal hepatocytes at around 20 weeks of gestation. The forced expression of the xenoreceptor CAR in hES-Hep induced the expression of detoxification genes as well as the biotransformation of midazolam, a substrate of CYP3A4. These results may contribute to the development of hES-Hep cultures as an alternative to PCHH for studies of xenobiotic metabolism and for cell-based therapies.
243

Etude de la balance pluripotence-differenciation des cellules souches embryonnaires murines sous l'effet du LIF : rôle du gène MRAS / Study of balance pluripotency - differentiation of murine embryonic stem cells under the effect of LIF : Role of MRAS gene

Mathieu, Marie-Emmanuelle 12 December 2011 (has links)
Le LIF (Leukemia Inhibitory factor), une cytokine de la famille de l’Interleukine 6, permet le maintien de la pluripotence des cellules souches embryonnaires murines (CSEm) in vitro. Dans le but de comprendre les mécanismes d’action du LIF dans ce modèle d’étude, une analyse sur puces à ADN a été réalisée et a permis d’identifier trois « signatures LIF » : les gènes « Pluri » (pour Pluripotence), dont le niveau d’expression relatif chute suite au retrait de cette cytokine, et deux catégories de gènes « Lifind » (pour LIF induit) dont le niveau d’expression relatif augmente suite à un ajout de LIF après une culture de 24 ou 48 heures sans cette cytokine. Nous avons mis au point des tests fonctionnels permettant d’étudier la fonction des gènes cibles du LIF dans notre modèle d’étude. Ainsi, nous avons mis en évidence le rôle d’un gène « Pluri », Mras/Rras3, une petite GTPase de la famille Ras, dans la régulation de l’expression d’une part de marqueurs de pluripotence, tels que Oct4 et Nanog et d’autre part de marqueurs de différenciation, tels que Lef1 et Fgf5. / LIF (Leukemia Inhibitory factor), a cytokine Interleukin 6 family, allows maintaining the pluripotency of murine embryonic stem cells (mESC) in vitro. To understand the mechanisms of action of the LIF in this model, a microarray analysis was conducted and identified three « signatures LIF » : the « Pluri » (for Pluripotency) genes, whose the relative level of expression falls following the withdrawal of this cytokine, and two classes of « Lifind » (for LIF induced) genes, whose the relative expression level increases as a result of LIF addition after a culture of 24 or 48 hours without this cytokine. We have developed functional tests to study the function of the target genes of LIF in our study model. Thus, we have investigated the role of a « Pluri » gene, Mras/Rras3, a small GTPase of the Ras family, in the regulation of the expression on the one hand of markers of pluripotency, such as Oct4 and Nanog, and on the other hand of differentiation markers, such as Lef1 and Fgf5.
244

Genome stability in the preimplantation embryo

Zuccaro, Michael V. January 2021 (has links)
The mammalian zygote and resulting embryo is the starting point of life, and thus must overcome continuous insult from DNA stress and damage while maintaining genome stability and integrity. This thesis examines genome stability in the context of chromosome changes, both in the context of ploidy and whole genome duplications as well as double-strand DNA breakage and chromosome loss. Regarding the ploidy portion of this work, while possible to derive and maintain, mammalian haploid stem cells undergo spontaneous, irreversible diploidization. Here, we investigated the mechanisms driving diploidization using human and mouse embryos, and human embryonic stem cells experimental systems. We demonstrate that diploidization occurs early in development and is often unproductive, with diploidized cells failing to contribute to the developing embryo. Diploidization involves delayed mitotic progression, incomplete alignment of chromosomes, and occurs through mitotic slippage or failed cytokinesis after exit from mitosis without formation of a midbody. Diploidization is associated with DNA damage and aneuploidies, with an upstream component being a decreased nuclear to cytoplasmic ratio. Increasing this ratio in haploid mouse embryos improves developmental outcomes and decreasing this ratio in diploids results in poor outcomes. A sensor of the nuclear to cytoplasmic ratio, CHK1, is required for haploid maintenance as inhibition increases binucleation and diploidization in haploid human embryonic stem cells. Thus, we demonstrate the earliest upstream driver of diploidization as being the nuclear-cytoplasmic ratio in haploid mammalian cells, rather than the actual haploid state. Regarding the double-strand DNA breakage portion of this work, the preferred mechanism by which human embryos repair double-strand breaks was investigated. Utilizing allele-specific CRISPR-Cas9 cleavage, we show that human embryos repair double-strand breaks primarily through non-homologous end joining. In embryos left unrepaired or misrepaired, partial or whole chromosome loss occurs, which can be easily overlooked and misinterpreted with common on-target analyses such as PCR. Off-target Cas-9 activity recapitulated findings on an entirely separate chromosome, confirming the preference of the human embryo for non-homologous end joining and microhomology-mediated end joining, as well as chromosome loss where repair was unsuccessful.
245

Correlation Analysis of Calcium Signalling Networks in Living Cells

Nilsson, Erik January 2008 (has links)
In living cells, calcium ions (Ca2+) play an important role as an intracellular second messenger. It mediates the regulation of cellular processes such as gene expression, initiation of vesicle fusion in synapses, is used in muscle contraction and is believed to play a fundamental role in synaptic plasticity as a molecular substrate for learning. The Ca2+ signals are created by the fact that the concentration of Ca2+ in the cytosol is four orders of magnitude lower than in the extracellular fluid as well as in cytoplasmic compartments such as the endoplasmic reticulum (ER). This enables fast increments in the cytosol concentration, which is regulated back to normal concentration by different mechanisms. In this project, the connection between Ca2+ signals of different cells was analysed using different correlation techniques: cross-correlation of continuous signals and digitalised signals. Therefore a software tool was developed in MATLAB, which takes Ca2+ recordings from time-lapse fluorescence microscopy as input and calculates the pair wise correlation for all cells. The software was tested by using previous data from experiments with embryonic stem cells from mouse (mES) and human (hES) as well as data from recordings done as part of the project. The study shows that the mathematical method of cross-correlation can successfully be applied to quantitative and qualititative analysis of Ca2+ signals. Furthermore, there exist strongly correlated cells in colonies of mES cells and hES cells. We suggest the synchronisation is achieved by physical coupling implicating a decrease of correlation as the distance increases for strong correlations. In addition, the lag used by the cross-correlation function (an effective phase shift) decreases as the correlation coefficient increases and increases as the intercellular distance increases for high correlation coefficients. Interestingly, the number of cells included in small scale clusters of strongly correlated cells is significantly larger for the differentiating mES cells than for the proliferating mÉS cells. In a broader perspective, the developed software might be usd in for instance analysis of cellular electrical activity and shows the relevance of applying methods from the exact sciences to biology. / QC 20100708
246

Identification of microRNAs involved in osteoblast differentiation of murine embryonic stem cells

Kaniowska, Dorota 29 May 2012 (has links)
Skeletal development requires stringent control of programs for gene activation and suppression in response to physiological cues. There has been a principal focus on the identification of the mechanisms by which a particular cell phenotype is activated. MicroRNAs (miRNAs, miRs) have emerged as key negative regulators of diverse biological and pathological processes, including developmental timing, organogenesis, apoptosis, cell proliferation and differentiation; how they regulate osteoblast specific gene expression, is poorly understood. miRNAs are small 22 nucleotides (nt) endogenous non-coding RNAs (ncRNAs) that anneal to 3’ untranslated region (3’UTR) of target messenger RNA (mRNA) to mediate inhibition of translation and lower protein level. It remains to be established how specific miRNAs contribute to regulate the onset of a tissue-specific phenotype. One previously identified important player in the activation of skeletal-related genes that control formation of bone tissue is Wnt (wingless) signaling. The Wnts are regulating the differentiation of multiple cell types but also are driving embryonic stem cells (ESCs) into specific lineages, for example they support osteoblastogenesis. By attaching to the membrane, Wnts direct a signaling cascade for accumulation of β-catenin (CatnB), which in turn activates osteoblast-essential genes. The contribution of global mechanisms is equally important for understanding tissue development and diseases. The aim of this study was to identify miRNAs that are differentially expressed in osteogenically differentiated ESCs. In addition, functional characterization of these miRNAs was performed to further unravel the molecular mechanisms underlying osteogenesis. Finally, an important goal was to identify the mRNA targets of these miRNAs, which are required for differentiation of ESCs into osteoblasts with a primary focus on mRNAs associated with the Wnt signaling pathway. miRNA expression profiling reveals an overall down-regulation of miRNAs during osteogenic differentiation of ESCs To identify miRNAs that are potentially involved in osteogenesis ESCs were differentiated into osteoblasts and compared to undifferentiated ESCs using a miRNA microarray. miRNA profiling during the initial stages of osteoblast differentiation showed 25 miRNAs significantly differentially expressed. Differential expression of 4 miRNAs tested was confirmed using quantitative real-time PCR (RT-qPCR). Many miRNAs were expressed at low levels in differentiated ESCs. Indeed, down-regulation of miRNAs appeared to be common during differentiation. Furthermore, related miRNAs encoded on the same chromosome showed similar expression profiles. In summary, though several miRNAs were identified that can significantly distinguish between undifferentiated and osteogenically differentiated ESCs, 11 were chosen for further functional analysis. Functional studies show that miR-127, miR-183, miR-291b-5p, miR-293, miR-361, miR-467b and miR-665 affect osteogenesis of ESCs Undifferentiated and differentiated ESCs were used for functional studies of 11 miRNAs (miR-22, miR-127, miR-130a, miR-183, miR-291b-5p, miR-293, miR-300, miR-361, miR-467b, miR-665 and miR-690), which were down-regulated during osteogenic differentiation. To asses the function of these miRNAs, gain- and loss-of-function experiments were performed. Overexpressing and knocking down these miRNAs caused changes in cell survival, cell morphology, and osteogenic differentiation capacity as measured with calcium deposition, ALP activity and expression of osteogenic markers. Particularly, overexpression of miR-361 and knockdown of miR-665 significantly enhanced mineralization and expression levels of osteogenic markers. Thus, both miRNAs might regulate osteogenic differentiation in the early stages of lineage specification and commitment. miRNAs are modulators of osteogenic differentiation To identify miRNA target candidates that may account for the observed effects on cell survival and osteogenic differentiation of ESCs, a combined approach of bioinformatic predictions, mRNA expression analysis, and TurboGFP reduction upon miRNA overexpression coupled with the search of known literature was performed to identify cellular events that the identified miRNAs might be involved in. Target identification suggested that the candidate miRNAs may interfere with the Wnt pathway as many target candidates were detected that were known to be Wnt signaling-associated. To confirm that miR-183, miR-293, miR-361, miR-665 and miR-690 regulated osteoblast differentiation, target mRNA/miRNA interaction was studied using RT-qPCR. Overexpression of these miRNAs reduced the levels of the key factors involved in Wnt signaling; particularly Wnt inhibitor factor 1 (WIF-1) levels were decreased by miR-293, nuclear factor of activated T cells 3 (NFATc-3) and Prickle-1 by miR-361, Dishevelled 1 (Dvl-1) by miR-665 and for forkhead box O 3 (FoxO-3), Ras homolog gene family, member A (RhoA) and CatnB-1 by miR-690. Thus, to address the hypothesis that miR-361 activates osteoblast differentiation by targeting Prickle-1 and NFATc-3, the p2FP-RNAi vector system was applied. It was shown that expression of miR-361 down-regulates Prickle-1 levels, which to our knowledge have not been described so far. As it was found previously, Prickle-1 reduced Dvl-3 levels by promoting its ubiquitination, resulting in inhibition of Wnt canonical signaling in liver cancer. Since Dvls are positive regulators of osteogenesis by elevating CatnB levels and stimulating lymphoid enhancer factor/T cell factor proteins (LEF/TCF) -dependent transcription in the canonical Wnt pathway, Prickle-1 might be a negative regulator of osteogenic differentiation by eliminating Dvls from the complex. This interaction offers a novel mechanism of Wnt signaling activation in osteogenesis and can be explored to identify key components in the Wnt signaling pathway. In summary, we suggested that miR-361 acts as an activator in osteogenic differentiation of ESCs. / Die Embryonalentwicklung des Skelettsystems ist in Bezug auf programmierte Genaktivierung in Antwort auf physiologische Schlüsselreize strikten Kontrollen unterworfen. Studien zur Untersuchung solcher Kontrollelemente haben sich dabei vor allem auf die Identifikation von Mechanismen fokussiert, die einen bestimmten zellulären Phänotyp aktivieren. Zum Vorschein kamen microRNAs (miRNAs), die als negative Schlüsselregulatoren diverser biologischer und pathologischer Prozesse wirken, wie zum Beispiel der zeitlichen Regulation von Entwicklung, der Organogenese, Apoptose, zellulärer Proliferation und Differenzierung. Wie sie allerdings die Osteogenese, den Prozess der Knochenbildung, regulieren ist weitestgehend unbekannt. MiRNAs sind kurze 22 Nukleotid lange endogene nicht-kodierende RNAs (ncRNAs), die an die 3\'' nicht translatierte Region (3\''UTR) einer Ziel mRNA binden und somit die Inhibition der Translation vermitteln, was letzten Endes zu einer Erniedrigung des Proteinlevels führt. Es bleibt allerdings zu etablieren, wie spezifische miRNAs zur Spezifikation in einen bestimmten Zell- oder Gewebephänotyps beitragen. Einer der bisher identifizierten Akteure, der die Aktivierung von skelettalen Genen kontrolliert, ist der Wnt (wingless) Signalweg. Wnt Moleküle regulieren die Differenzierung vieler unterschiedlicher Zelltypen, aber lenken auch die Differenzierung von embryonalen Stammzellen (ESCs) in spezifische Richtungen, so z.B. in die Richtung von Knochenzellen, den Osteoblasten. Indem sie an die Zellmembran andocken, dirigieren Wnts eine Signalkaskade, die die Akkumulation von beta-catenin (CatnB) im Zellkern nach sich zieht, wodurch knochenspezifische Gene aktiviert werden. Obwohl die Wnt Signalkaskade weitestgehend beschrieben ist, ist der Beitrag globalerer Regulationsmechanismen, wie die der miRNAs, an der Osteogenese jedoch gleichfalls für das Verständnis von Gewebeentwicklung und -fehlfunktion von Bedeutung. Das Ziel dieser Arbeit war es deshalb bestimmte miRNAs zu identifizieren, die differentiell in ESCs exprimiert werden, die zu Knochenzellen ausdifferenzieren. Desweiteren sollten diese miRNAs funktionell charakterisiert werden, um die molekularen Mechanismen, die der Osteogenese unterliegen, aufzudecken. Letztendlich war es ein weiteres wichtiges Ziel die Ziel mRNAs der knochenspezifischen miRNAs zu identifizieren und deren Bezug zum Wnt Signalweg zu charakterisieren. miRNA Expression ist während der osteogenen Differenzierung herunter reguliert Um solche miRNAs zu identifizieren, die potentiell in die Osteogenese eingreifen, wurden ESCs zu Osteoblasten differenziert und mit undifferenzierten ESCs mit Hilfe eines miRNA Microarrays verglichen. Das so durchgeführte miRNA Profiling zeigte, dass 25 miRNAs während der initialen Phase der osteogenen Differenzierung signifikant unterschiedlich exprimiert wurden. Die differentielle Expression von 4 getesteten miRNAs wurde in einem nächsten Schritt über quantitative real-time PCR (RT-qPCR) beispielhaft bestätigt. Generell zeigte sich, dass differenzierende ESCs viele miRNAs auf geringem Niveau exprimieren. Tatsächlich schien die Herunterregulation der miRNA Expression mit der Differenzierung der Zellen einherzugehen. Desweiteren zeigten miRNAs, die auf dem gleichen Chromosom kodiert sind, ähnliche Expressionsmuster. Zusammenfassend fanden sich etliche miRNAs, die in undifferenzierten Zellen im Vergleich zu differenzierenden Zellen unterschiedlich exprimiert werden, von denen schlussendlich 11 für weitere Analysen ausgewählt wurden (miR-22, miR-127, miR-130a, miR-183, miR-291b-5p, miR-293, miR-300, miR-361, miR-467b, miR-665 and miR-690). miR-127, miR-183, miR-291b-5p, miR-293, miR-361, miR-467b und miR-665 beeinflussen die Osteogenese In einem nächsten Schritt wurden undifferenzierte und differenzierende ESCs für funktionelle Studien dieser 11 herrunterregulierten miRNAs herangezogen. Um die Funktion dieser miRNAs aufzudecken, wurden sogenannte Gain-of-function und Loss-of-function Studien durchgeführt. Die experimentelle Überexpression und der Knock-down dieser miRNAs führten zu Änderungen in der zellulären Morphologie, der Viabilität und der osteogenen Differenzierungskapazität wie durch einen Kalziumdepositionsassay, einen ALP Aktivitätsassay und die Expression knochenspezifischer Markergene gezeigt werden konnte. Im Besonderen erhöhte die Überexpression der miR-361 und der Knock-down der miR-665 den Mineralisierungsgrad der Zellen und die Expressionniveaus knochenspezifischer Gene. Daher ist zu schließen, dass beide miRNAs das Potential besitzen, die Osteogenese - besonders in den frühen Stadien der Keimbahnspezifikation - zu regulieren. miRNAs als Modulatoren der Osteogenese Um miRNA Zielkandidaten zu identifizieren, die die beobachteten Effekte auf die Zellviabilität und auf die osteogene Differenzierungen bedingen könnten, wurde ein kombinierter Ansatz aus Bioinformatischer Sequenz- und Prädiktionsanalyse, mRNA Expressionsanalyse und TurboGFP Reduktion nach miRNA Überexpression gewählt. Gepaart mit einer Literatursuche deutete diese Zielkandidatenanalyse darauf hin, dass die identifizierten miRNAs tatsächlich den Aktivierungsstatus des Wnt Signalwegs manipulieren könnten, da viele der prädiktierten Target mRNAs bekannt dafür sind, mit dem Wnt Signalweg zu interagieren. Um zu bestätigen, dass miR-183, miR-293, miR-361, miR-665 und miR-690 die Osteogenese regulieren, wurde die mRNA/miRNA Interaktion indirekt mittels RT-qPCR studiert. Die Überexpression dieser miRNAs führte zu einer Erniedrigung des mRNA Expressionsspiegels von WIF-1 (Wnt inhibitory factor 1) durch miR-293, NFATc-3 (nuclear factor of activated T cells 3) und Prickle-1 durch miR-361, Dishevelled 1 (Dvl-1) durch miR-665, sowie forkhead box O3 (FoxO-3), Ras homolog gene family, member A (RhoA) und CatnB durch miR-690. In einem nächsten Schritt konnte durch Nutzung eines speziellen Reportersystems (TurboGFP) eine direkte Interaktion zwischen miR-361 und Prickle-1 nachgewiesen werden. Wie bereits in anderen Studien gezeigt, ist Prickle-1 in der Lage, die Spiegel an Dvl-3 durch Ubiquitinierung des Proteins zu reduzieren, was zur Inhibierung des kanonischen Wnt Signalweges führt. Da Dvls als positive Regulatoren der Osteogenese bekannt sind, indem sie den CatnB Spiegel erhöhen und die lymphoid enhancer factor/T cell factor protein (LEF/TCF) abhängige Transkription stimulieren, könnte Prickle-1 als negativer Regulator fungieren, indem es Dvls von diesem Transkriptionskomplex entfernt. Abschließend lässt sich zusammenfassen, dass miR-361 in dieser Arbeit als neuartiger Aktivator der osteogenen Differenzierung vorgeschlagen wird. Die molekulare Interaktion zwischen miR-361, Prickle-1 und Dvls bietet einen neuartigen Mechanismus der Wnt Signalaktivierung während der Osteogenese und kann für weitere Untersuchungen zur Identifizierung von Schlüsselkomponenten des Wnt Signalweges herangezogen werden.
247

Regulation of Pluripotency and Differentiation by Chromatin Remodeling Factors

Ee, Ly-Sha 08 August 2017 (has links)
Central to the control of virtually all cellular activity is the regulation of gene expression. In eukaryotes, this regulation is greatly influenced by chromatin structure, which is itself regulated by numerous chromatin-remodeling complexes. These are typically large protein complexes with interchangeable subunits that allow for highly specialized functions in different cell types. Moreover, additional specificity can be gained through complexes formed from different subunit isoforms. Histone modifications also regulate chromatin by recruiting remodeling complexes to particular genomic regions. In this thesis we characterize MBD3C, an isoform of the Nucleosome Remodeling and Deacetylase (NuRD) complex subunit MBD3. MBD3 is essential for pluripotency and development, but MBD3C appears to be expressed only in embryonic stem cells (ESCs), and whether it forms a distinct NuRD complex, how its expression is regulated, and its precise function(s) remain unknown. We show that MBD3C forms a complete NuRD complex that functions redundantly with the other MBD3 isoforms in ESC gene regulation. Furthermore, MBD3C binds the SET/MLL complex subunit WDR5 through a conserved motif within its unique N-terminal region, and this interaction is necessary for the regulation of >2,000 ESC genes. Together, these findings indicate that ESCs can utilize isoforms of the same protein to achieve similar functions through diverse mechanisms. The second part of this thesis focuses on the role of the histone modification H3.3K56ac in pluripotency and differentiation. Although H3K56ac is well-studied in yeast, in mammalian cells it is far less abundant and its functions are largely unknown. Our data indicate that the H3.3K56R mutant is largely normal for ESC maintenance and loss of pluripotency markers during differentiation, but H3.3K56ac is necessary for proper lineage commitment. Ongoing studies will characterize the H3.3K56Q phospho-mimetic mutant during differentiation, and examine H3.3K56ac function at lineage-specific genes.
248

Induction of mouse germ-cell fate by transcription factors in vitro / 転写制御因子によるマウス生殖細胞系譜の試験管内誘導

Nakaki, Fumio 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18172号 / 医博第3892号 / 新制||医||1003(附属図書館) / 31030 / 京都大学大学院医学研究科医学専攻 / (主査)教授 篠原 隆司, 教授 中辻 憲夫, 教授 萩原 正敏, 教授 小西 郁生 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DGAM
249

PARI Regulates Stalled Replication Fork Processing To Maintain Genome Stability upon Replication Stress in Mice / マウスPARIは停止した複製フォークの処理を制御することにより複製ストレス存在下のゲノム安定性を保つ

Mochizuki, Ayako 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医科学) / 甲第21026号 / 医科博第87号 / 新制||医科||6(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 篠原 隆司, 教授 松田 道行, 教授 松本 智裕 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
250

Ergon and the Embryo

Brown, Brandon Patrick 13 October 2008 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Ethical considerations of the human embryo have involved heated dispute and seem always to result in the same interminable debate. A history of this debate, however, shows a shift in the language used to distinguish between degrees of moral status – while the debate once focused on the presence or absence of “human life,” now it is more likely to hear whether the qualifications for “personhood” have been met. In other words, any member of the human species may deserve some level of respect, but only the “persons” deserve full moral respect. This leaves open the possibility for a human being who is not actually a person – a “nonperson human being.” As an answer to the question of exactly what kind of respect to give the human embryo, Aristotelian moral philosophy offers a unique perspective, one which is distinctive from the familiar debate. Aristotle’s concept of ergon, or function, is a key to understanding what is essential in any human being, because it reveals the importance of potentiality to our nature as rational beings. A philosophical view of function, combined with the data of modern embryology, makes the case that our proper function is the vital part of who we are as human beings, and that a disruption of human function constitutes a true harm. This thesis contrasts Aristotelian proper human function with the modern understanding of a “nonperson human being,” especially as articulated within the ethical theory of Peter Singer. This understanding of function, revealing the essence of human potential and linked with human development, offers a sort of “common-sense morality” response to modern views on personhood.

Page generated in 0.0777 seconds