Spelling suggestions: "subject:"enantioselective bsynthesis"" "subject:"enantioselective csynthesis""
21 |
THE ASYMMETRIC HYDROVINYLATION REACTION: APPLICATIONS IN THE SYNTHESIS OF PSEUDOPTEROGORGIA ELISABETHAE NATURAL PRODUCTSCox, Glen Adam 20 June 2012 (has links)
No description available.
|
22 |
Enantioselective synthesis and reactivity of benzylic fluoridesBlessley, George Richard January 2013 (has links)
Benzylic fluorides are attractive target molecules for medicinal chemistry, agrochemicals and materials chemistry. The enantioselective synthesis of benzylic fluorides is challenging and few general methods exist. This thesis describes several approaches to the synthesis of benzylic fluoride targets, including enantioselective processes. Chapter 1: Reviews the properties, uses and synthetic approaches to fluorinated molecules, with a particular focus on benzylic fluorides and enantioselective syntheses. Chapter 2: Describes the fluorination cyclisation of prochiral indole precursors. The use of catalytic amounts of a bis-cinchona alkaloid gave good enantioselectivities for the cyclisation. Alcohol, tosylamine, amide and carbamate pendant nucleophiles all cyclised successfully to give quaternary benzylic fluorides in moderate yields and with enantioselectivities up to 92%. The substrate scope of the reaction is described, as well as methodology for deprotection of cyclised nitrogen nucleophiles. Chapter 3: Details an investigation of the Pd catalysed substitution of polycyclic benzylic fluorides by a range of nucleophiles and their relative reactivity in comparison to oxygen leaving groups. Modification of the methodology to enable reaction of monocyclic substrate substitution was enabled by the use of a protic solvent. Chemoselective reaction conditions were identified for selective reaction of Bn-F or Ar-Cl bonds and comparative reactivity studies were undertaken. The feasibility of Pd(0)/(II) catalysed nucleophilic C-F bond formation was examined. Chapter 4: The development of the defluorination methodology from Chapter 3 for secondary substrates is described. The stereochemical course of defluorination was probed, showing that displacement of fluoride is mechanistically similar to that of oxygen leaving groups. A kinetic resolution with a low selectivity was developed for access to enantioenriched benzylic fluorides.
|
23 |
Enantiopure 3-substituted piperidines via an aziridinium ion ring expansionJarvis, Scott 03 1900 (has links)
Ce mémoire décrit le développement d’une nouvelle méthodologie d’expansion de cycle
irréversible à partir de N-alkyl-3,4-déhydroprolinols pour former des N-alkyl
tétrahydropyridines 3-substituées en passant par un intermédiaire aziridinium bicyclique.
Cette méthode permet l’introduction d’un vaste éventail de substituants à la position 3 et tolère bien la présence de groupements aux positions 2 et 6, donnant accès à des
pipéridines mono-, di- ou trisubstituées avec un excellent diastéréocontrôle. De plus, il est démontré que l’information stéréogénique du 3,4-déhydroprolinol de départ est totalement transférée vers le produit tétrahydropyridine. Additionnellement, une méthodologie fut
dévelopée pour la préparation des produits de départ 3,4-déhydroprolinols en forme
énantiopure, avec ou sans substituants aux positions 2 et 5, avec un très bon stéréocontrôle.
Le premier chapitre présente un résumé de la littérature sur le sujet, incluant un bref survol
des méthodes existantes pour la synthèse de pipéridines 3-substituées, ainsi qu’une vue
d’ensemble de la chimie des aziridiniums. L’hypothèse originale ainsi que le raisonnement
pour l’entreprise de ce projet y sont également inclus.
Le second chapitre traite de la synthèse des N-alkyl-3,4-déhydroprolinols utilisés comme
produits de départ pour l’expansion de cycle vers les tétrahydropyridines 3-substituées,
incluant deux routes synthétiques différentes pour leur formation. Le premier chemin
synthétique utilise la L-trans-4-hydroxyproline comme produit de départ, tandis que le
deuxième est basé sur une modification de la réaction de Petasis-Mannich suivie par une
métathèse de fermeture de cycle, facilitant l’accès aux précurseurs pour l’expansion de
cycle.
Le troisième chapitre présente une preuve de concept de la viabilité du projet ainsi que
l’optimisation des conditions réactionnelles pour l’expansion de cycle. De plus, il y est
démontré que l’information stéréogénique des produits de départs est transférée vers les
produits.
iv
Au quatrième chapitre, l’étendue des composés pouvant être synthétisés par cette
méthodologie est présentée, ainsi qu’une hypothèse mécanistique expliquant les
stéréochimies relatives observées. Une synthèse énantiosélective efficace et divergente de
tétrahydropyridines 2,3-disubstituées est également documentée, où les deux substituants
furent introduits à partir d’un intermédiaire commun en 3 étapes. / This thesis describes the development of a novel methodology of irreversible ring
expansion from N-alkyl-3,4-dehydroprolinols to N-alkyl-3-substituted tetrahydropyridines
through a bicyclic aziridinium ion intermediate. This method allows a wide variety of
substituents at the 3-position, and also permits substitution at the 2- and 6-positions of the
tetrahydropyridine giving mono-, di- or tri-substituted piperidines with excellent
diasterocontrol. Complete transfer of the stereogenic information of the 3,4-
dehydroprolinol to the tetrahydropyridine product is demonstrated. Also, a methodology
was developed to prepare the 3,4-dehydroprolinol starting materials in enantiopure form,
with the possibility of substitution at the 2- and 5-positions with excellent diasterocontrol.
The first chapter presents the literature background, including a brief summary of
methodologies for the synthesis of 3-substituted piperidines, and an overview of
aziridinium ion chemistry. Also presented is the original hypothesis of the project, and our reasoning for undertaking this project.
The second chapter describes the synthesis of N-alkyl-3,4-dehydroprolinols used as
precursors for the ring expansion to 3-substituted tetrahydropyridines, including two different synthetic routes. The first route route converts L-trans-4-hydroxyproline to enantioenriched N-benzyl-3,4-dehydroprolinol in 6 steps. The second synthetic route was developed using a variant of the Petasis-Mannich reaction and a ring closing metathesis,making the precursors more readily available and simple to synthesize.
The third chapter presents the proof of concept of the viability of the project and
optimization studies. Moreover, the transfer of stereogenic information to the resulting
product is demonstrated.
The fourth chapter demonstrates the broad scope of the ring expansion and mechanistic
insight is given based on the relative configuration of the products. An expedient divergent enantioselective synthesis of a 2,3-disubstituted tetrahydropyridine is also shown, with both substituents being chosen from a common intermediate in 3 steps.
|
24 |
Enantioselective Synthesis Of Bio-Active Bicyclic Acetals, Cyclic Ethers And LactonesAnbarasan, P 07 1900 (has links)
The thesis entitled “Enantioselective synthesis of bio-active bicyclic acetals, cyclic ethers and lactones” demonstrates the utility of chiral pool tartaric acid as the source in the synthesis of natural products. The results are discussed in three chapters; 1) Enantioselective synthesis of bio-active bicyclic acetals, 2) Enantioselective synthesis of bio-active cyclic ethers and 3) Enantioselective synthesis of bio-active lactones. A brief introduction is provided in each chapter to keep the present work in proper perspective. Compounds (in bold) and references (in superscripts) are sequentially numbered differently for each chapter and references are given as foot notes. Experimental procedures are given differently for each chapter and placed at the end of chapter. Scanned 1H and 13C NMR spectras are given with description of signals.
Chapter 1 describes the enantioselective synthesis of bicyclic acetal containing insect pheromones. First part of this chapter deals with the enantiodivergent synthesis of both enantiomers of hydroxy-exo-brevicomin and 2-hydroxy-exo-brevicomin starting from a single chiral compound, bis-Weinreb amide derived from L-(+)-tartaric acid. Controlled addition of Grignard reagent to bis-Weinreb amide followed by diastereoselective reduction of the resultant ketone was employed as the key step for the enantiodivergent synthesis of
hydroxy-exo-brevicomin and 2-hydroxy-exo-brevicomin. In the second part, enantioselective synthesis of exo-brevicomin, iso-exo-brevicomin and formal synthesis of frontalin comprising similar framework is demonstrated, utilizing á -benzyloxy aldehydes derived from L-(+)-tartaric acid as chiral building block.
Second Chapter describes the enantioselective synthesis of bio-active cyclic ethers, disparlure, centrolobine and isolaurepan. Employing á-benzyloxy aldehydes derived from L-(+)-tartaric acid as the chiral building block, synthesis of both enantiomers of insect pheromone disparlure is achieved involving the diastereoselective addition of allyltributyl tin to the á-benzyloxy aldehyde and cross metathesis of the resultant homoallylic alcohol with
4-methyl-1-pentene. Formal synthesis of centrolobine and isolaurepan are accomplished. Pivotal step involved in the synthesis of centrolobine is iron(III) mediated cyclization of 1,5-diol derived from L-(+)-tartaric acid, while Lewis acid mediated reductive cyclization of the hydroxy ketone derived from á-benzyloxy aldehyde is the key step in the synthesis of
isolaurepan.
Third chapter in the thesis deals with the enantioselective synthesis of bio-active
lactones muricatacin, 6-acetoxy-5-hexadecanolide and boronolide. Utilizing á-benzyloxy aldehyde as the building block, synthesis of five and six membered lactones, muricatacin and 6-acetoxy-5-hexadecanolide were accomplished via the diastereoselective addition of 3-butenylmagnesium bromide and allyltributyl tin to á-benzyloxy aldehyde, respectively. Stereoselective formal synthesis of boronolide was described, starting from D-(–)-tartaric acid. Key reaction sequence includes the elaboration of ã-hydroxy amide obtained by a combination of controlled Grignard addition and diastereoselective reduction from bis-
Weinreb amide derived from D-(–)-tartaric acid.
|
25 |
Enantiopure 3-substituted piperidines via an aziridinium ion ring expansionJarvis, Scott 03 1900 (has links)
Ce mémoire décrit le développement d’une nouvelle méthodologie d’expansion de cycle
irréversible à partir de N-alkyl-3,4-déhydroprolinols pour former des N-alkyl
tétrahydropyridines 3-substituées en passant par un intermédiaire aziridinium bicyclique.
Cette méthode permet l’introduction d’un vaste éventail de substituants à la position 3 et tolère bien la présence de groupements aux positions 2 et 6, donnant accès à des
pipéridines mono-, di- ou trisubstituées avec un excellent diastéréocontrôle. De plus, il est démontré que l’information stéréogénique du 3,4-déhydroprolinol de départ est totalement transférée vers le produit tétrahydropyridine. Additionnellement, une méthodologie fut
dévelopée pour la préparation des produits de départ 3,4-déhydroprolinols en forme
énantiopure, avec ou sans substituants aux positions 2 et 5, avec un très bon stéréocontrôle.
Le premier chapitre présente un résumé de la littérature sur le sujet, incluant un bref survol
des méthodes existantes pour la synthèse de pipéridines 3-substituées, ainsi qu’une vue
d’ensemble de la chimie des aziridiniums. L’hypothèse originale ainsi que le raisonnement
pour l’entreprise de ce projet y sont également inclus.
Le second chapitre traite de la synthèse des N-alkyl-3,4-déhydroprolinols utilisés comme
produits de départ pour l’expansion de cycle vers les tétrahydropyridines 3-substituées,
incluant deux routes synthétiques différentes pour leur formation. Le premier chemin
synthétique utilise la L-trans-4-hydroxyproline comme produit de départ, tandis que le
deuxième est basé sur une modification de la réaction de Petasis-Mannich suivie par une
métathèse de fermeture de cycle, facilitant l’accès aux précurseurs pour l’expansion de
cycle.
Le troisième chapitre présente une preuve de concept de la viabilité du projet ainsi que
l’optimisation des conditions réactionnelles pour l’expansion de cycle. De plus, il y est
démontré que l’information stéréogénique des produits de départs est transférée vers les
produits.
iv
Au quatrième chapitre, l’étendue des composés pouvant être synthétisés par cette
méthodologie est présentée, ainsi qu’une hypothèse mécanistique expliquant les
stéréochimies relatives observées. Une synthèse énantiosélective efficace et divergente de
tétrahydropyridines 2,3-disubstituées est également documentée, où les deux substituants
furent introduits à partir d’un intermédiaire commun en 3 étapes. / This thesis describes the development of a novel methodology of irreversible ring
expansion from N-alkyl-3,4-dehydroprolinols to N-alkyl-3-substituted tetrahydropyridines
through a bicyclic aziridinium ion intermediate. This method allows a wide variety of
substituents at the 3-position, and also permits substitution at the 2- and 6-positions of the
tetrahydropyridine giving mono-, di- or tri-substituted piperidines with excellent
diasterocontrol. Complete transfer of the stereogenic information of the 3,4-
dehydroprolinol to the tetrahydropyridine product is demonstrated. Also, a methodology
was developed to prepare the 3,4-dehydroprolinol starting materials in enantiopure form,
with the possibility of substitution at the 2- and 5-positions with excellent diasterocontrol.
The first chapter presents the literature background, including a brief summary of
methodologies for the synthesis of 3-substituted piperidines, and an overview of
aziridinium ion chemistry. Also presented is the original hypothesis of the project, and our reasoning for undertaking this project.
The second chapter describes the synthesis of N-alkyl-3,4-dehydroprolinols used as
precursors for the ring expansion to 3-substituted tetrahydropyridines, including two different synthetic routes. The first route route converts L-trans-4-hydroxyproline to enantioenriched N-benzyl-3,4-dehydroprolinol in 6 steps. The second synthetic route was developed using a variant of the Petasis-Mannich reaction and a ring closing metathesis,making the precursors more readily available and simple to synthesize.
The third chapter presents the proof of concept of the viability of the project and
optimization studies. Moreover, the transfer of stereogenic information to the resulting
product is demonstrated.
The fourth chapter demonstrates the broad scope of the ring expansion and mechanistic
insight is given based on the relative configuration of the products. An expedient divergent enantioselective synthesis of a 2,3-disubstituted tetrahydropyridine is also shown, with both substituents being chosen from a common intermediate in 3 steps.
|
26 |
Total Synthesis Of Palmerolide A, Dihydroconduritols And LentiginosinePawar, Amit Balkrishna 03 1900 (has links) (PDF)
The thesis entitled “Total synthesis of palmerolide A, dihydroconduritols and lentiginosine” is divided into two chapters.
First chapter of the thesis describes the formal total synthesis of bioactive marine macrolide palmerolide A. Palmerolide A was isolated by Baker and co-workers from an Antarctic tunicate Synoicum adareanum. Palmerolide A is a 20-membered macrolactone containing five chiral centers and seven unsaturations. Palmerolide A was found to be potent and selectively cytotoxic against human melanoma cancer cell lines and was also shown to inhibit vacuolar V-ATPase.
In section A, enantioselective formal total synthesis of palmerolide A is described. key
steps in the synthesis involve Jung non-aldol aldol reaction to construct the C16-C23 fragment 1 and oxidation of a chiral furyl carbinol to assemble the C1-C15 fragment 2.
Scheme 1: Synthesis of C16-C23 fragment of palmerolide A.
Scheme 2: Formal total synthesis of palmerolide A
In section B, enantiospecific formal total synthesis of palmerolide A is presented from chiral pool tartaric acid. This approach is based on coupling of the three fragments viz. C1-C8 enoic acid fragment 3, C9-C15 vinyl stannane fragment 4 and the C16-C23 vinyl iodide fragment 1. The C1-C8 enoic acid fragment 3 is synthesized from L-threotol obtained from L-tartaric acid, while synthesis of the C9-C15 fragment 4 involved the elaboration of a γ-hydroxy amide derived from the bis-Weinreb amide of tartaric acid. Stille coupling of the vinyl iodide 1 obtained by Jung non-aldol aldol process with the vinyl stannane 4 delivered the C9-C23 unit. Esterification of this unit with the enoic acid 3 followed by zinc mediated Boord olefination and RCM furnished the macrolactone which is further elaborated to palmerolide A.
Scheme 3: Synthesis of C1-C8 fragment of palmerolide A.
Scheme 4: Enantiospecific formal total synthesis of palmerolide A.
Section A of the second chapter deals with the enantiospecific synthesis of dihydroconduritols E and F from tartaric acid. Conduritols are 1,2,3,4-cyclohex-5-ene tetrols and are shown to be inhibitors of glycosidase. A number of derivatives of conduritols were found to possess various biological activities. Enantiospecific synthesis of dihydroconduritol E and F is accomplished from tartaric acid employing the Boord type fragmentation and ring closing metathesis as the key steps.
Scheme 5: Enantiospecific synthesis of dihydroconduritols E and F
Section B of the second chapter describes the enantiospecific total synthesis of ()lentiginosine. Lentiginosine is a dihydroxylated indolizidine alkaloid isolated from leaves of the plant Astragalus lentiginosus. Lentiginosine is the most powerful and competitive inhibitor (IC50 5µg/mL) of amyloglucosidase known so far. Key transformation in the synthesis include the in situ reduction and cyclization of a dihydroxyazide derived from the γ-hydroxy amide prepared from tartaric acid amide.
(for structural formula pl see the abstract file.)
|
27 |
Etude de la réaction de Povarov : synthèse énantiosélective de composés diaminés organocatalysée par des acides phosphoriques chiraux / Study of the Povarov reaction : enantioselective chiral acid phosphoric-catalyzed synthesis of diamino compoundsDagousset, Guillaume 29 November 2011 (has links)
Ce travail porte sur l’étude de la réaction de Povarov, une réaction de type aza-Diels-Alder à demande inverse d’électrons entre un diène de type 2-aza-diène (généralement une imine dérivée d’une aniline) et un diénophile tel qu’une oléfine riche en électrons, aboutissant ainsi à la formation de tétrahydroquinoléines. Nous sommes parvenus à réaliser cette réaction dans sa version multicomposants, c’est-à-dire en formant in situ l’imine à partir de l’aldéhyde et de l’aniline correspondants. De plus, cette réaction multicomposants a pu être effectuée de manière énantiosélective, en utilisant comme catalyseur des organocatalyseurs de type acides phosphoriques chiraux, et en choisissant judicieusement comme diénophile des ène-carbamates, qui possèdent une liaison N-H capable d’interagir avec l’acide phosphorique. Cette méthodologie a ainsi permis la synthèse de 4-amino-tétrahydroquinoléines avec une diastéréosélectivité totale, de bons rendements, et d’excellents excès énantiomériques. L’utilisation de diénophiles de type ène-thiourées a permis selon la même stratégie d’accéder à des composés hexahydropyrroloquinoléines avec des sélectivités similaires.Nous nous sommes également intéressés au mécanisme de cette réaction de Povarov, qui s’est révélé se dérouler en deux étapes distinctes, l’intermédiaire immonium pouvant être piégé, soit de manière intermoléculaire par l’éthanol, conduisant après réduction à des 1,3-diamines chirales, soit de manière intramoléculaire dans le cas particulier de l’utilisation du phénylacétaldéhyde, conduisant alors à des 1,3-diaminotétralines. / This work deals with the Povarov reaction, an inverse electron-demanding Diels-Alder reaction between 2-aza-dienes (generally an N-aryl-imine) and a dienophile such as an electron-rich olefin, leading to the formation of tetrahydroquinolines. We were able to perform this reaction in a multicomponent way, ie by the in situ formation of the imine from the corresponding aldehyde and aniline. Moreover, this multicomponent reaction was also énantiosélective, by using chiral phosphoric acids as catalysts, and by choosing enecarbamates as diénophiles, which could interact with the catalyst thanks to their N-H bond. This methodology allowed to synthesize 4-amino-tetrahydroquinolines in good yields with total diastereoselectivities and excellent enantioselectivities. The use of ene-thioureas as dienophiles also allowed to synthesize hexahydropyrroloquinolines with the same selectivities, following the same method.We also studied the mechanism of this Povarov reaction. We proved that it is a stepwise mechanism, by trapping the iminium intermediate, either via an intermolecular reaction with ethanol leading to chiral 1,3-diamines, or via an intramolecular reaction in the particular case of phenylacetaldehyde, then leading to 1,3-diaminotetralins.
|
28 |
Síntese enantiosseletiva de fenilselenolactonas e feniltelurolactonas / Enantioselective synthesis of phenylselenolactones and phenyltelurolactonesNogueira, Alessandro Leal 07 June 2002 (has links)
Este trabalho descreve uma nova metodologia sintética que combina a química de espécies organometálicas contendo Se e Te com biotransformações usando lipases, para a síntese enantiosseletiva de fenilselenolactonas 7a e feniltelurolactonas 7b. Estas lactonas foram obtidas pela resolução cinética de álcoois secundários racêmicos 6, pela ação da lipase de pâncreas de porco (PPL- Sigma-Aldrich) em meio orgânico anidro. (Ver arquivo PDF). / This work describes a novel synthetic methodology that combines the chemistry of organic compounds, organometalic species containing Se and Te and biotransformations using lipases for the enantioselective synthesis of phenylselenolactones 7a and phenyltelurolactones 7b. These lactones were obtained by kinetic resolution of racemic sec-alcohols 6 by the action of pig pancreatic lipases (PPL- Sigma-Aldrich) in organic media (Scheme1). (See files PDF)
|
29 |
Novel Approaches For The Synthesis Of Amino Acids And Piperidines, Including Asymmetric StrategiesVippila, Mohana Rao 07 1900 (has links) (PDF)
Chapter I deals with novel approaches for α-amino acids. This chapter has been divided into three sections. Section A describes the synthesis of α-amino acids via the Beckmann rearrangement of carboxyl-protected β-keto acid oximes. The synthesis of α-amino acids using the Beckmann rearrangement involves the preparation of the Z-oxime and efficient protection of the carboxyl group. Various 2-substituted benzoylacetic acids were synthesized, in which the carboxyl function was masked as a 2,4,10-trioxaadamantane unit (an orthoacetate), and were converted to their oximes (Scheme 1).1 The oximes were converted to the their mesylates, which underwent the Beckmann rearrangement with basic Al2O3 in refluxing CHCl3. The corresponding 2-substituted-N-benzoyl-α-amino orthoacetates were obtained in excellent overall yields.
In Section B, the synthesis of α-amino acids via the Hofmann rearrangement of carboxyl-protected malonamic acids is described. The Hofmann rearrangement involves the migration of the alkyl moiety of the amide onto the N-centre. Various 2-substituted malonamic acids (malonic acid mono amides) were synthesized with the carboxyl group masked as a 2,4,10¬trioxaadamantane unit (an orthoacetate). These underwent the Hofmann rearrangement with phenyliodoso acetate and KOH/MeOH (Scheme 2). The resulting (N-methoxycarbonyl)¬trioxaadmantylmethylamines (carbamates) were formed in yields > 90%, and are α-amino acids with both carboxyl and amino protection.2
In Section C, an approach to chiral amino acids via the reductive amination of ketones, involving the hydride reduction of 1-(S)-phenethyl amine derived Schiff bases of C-protected α¬keto acids is described. An efficient synthesis of α-amino acids has thus been developed in high diastereoselectivity. Various 1-acyl-2,4,10-trioxaadamantanes were prepared from the corresponding 1-methoxycarbonyl derivatives, via conversion to the N-acylpiperidine derivative followed by reaction with a Grignard reagent in refluxing THF (Scheme 3). These α-keto orthoformates were converted to corresponding imines with 1-(S)-phenethyl amine (TiCl4/Et3N/toluene/reflux), the Schiff bases being reduced with NaBH4 (MeOH/0 °C) to the corresponding 1-(S)-phenethyl N-alkylamines (diastereomeric excess by NMR ~ 90:10).3 Hydrogenolysis of the phenethyl group (Pd-C/H2/MeOH) finally led to the (aminoalkyl)trioxaadamantanes, which are chiral C-protected α-amino acids, in excellent overall yields. Here a mild, inexpensive and efficient hydride reducing agent for the reductive amination of α-keto acids has been developed.
Chapter II deals with the enantioselective synthesis of piperidines and its applications in the synthesis of piperidine alkaloids.4 This chapter has been divided into two sections. In Section A, the enantioselective synthesis of 2-substituted piperidines and its applications in the synthesis of (R)-(-)-coniine and (R)-(+)-anatabine are described. Various N-tert-butylsulfinyl imines were synthesized, which upon allyl Grignard addition followed by N-allylation gave the diallyl compound with good diastereoselectivity (Scheme 4). The diallyl compound underwent ring closing metathesis with Grubbs’ first generation catalyst and subsequent reduction of the double bond with H2-Pd/C, furnished N-sulfinyl-2-susbstituted piperidines. Using this methodology (R)¬(-)-coniine hydrochloride and (R)-(+)-anatabine were synthesized.
In Section B, the enantioselective synthesis of (S)-tert-butyl 2-(2¬hydroxyethyl)piperidine-1-carboxylate and its elaboration to the synthesis of (S)-(+)-δ-coniceine and (S)-(+)-pelletierine are described. The (S)-tert-butyl 2-(2-hydroxyethyl)piperidine-1¬carboxylate is a synthon used for the synthesis of various 2-substituted piperidine natural products. Using the above methodology (S)-tert-butyl 2-(2-hydroxyethyl)piperidine-1¬carboxylate was synthesized starting from (S)-(+)-2-methyl-2-propanesulfinamide and 3¬(benzyloxy)propanal (Scheme 5). This alcohol was further elaborated to furnish two piperidine alkaloids (S)-(+)-pelletierine and (S)-(+)-δ-coniceine.
Scheme 5. Enantioselective synthesis of (S)-tert-butyl 2-(2-hydroxyethyl)piperidine-1¬carboxylate, (S)-(+)-pelletierine and (S)-(+)-δ-coniceine.
Chapter III deals with the formation of barbituric acid in an aprotic medium and related mechanistic studies. The generally accepted mechanism for the formation of barbituric acid involves the nucleophilic attack of urea anion on diethyl malonate.5 This is debatable for at least two reasons: (1) the normally employed base, sodium ethoxide, is too weak to deprotonate urea and (2) diethyl malonate is more acidic than urea, so the initial deprotonation by base has to be from diethyl malonate. When diethyl malonate (DEM) enolate was treated with urea in DMF, barbituric acid was formed in 61% yield. The reaction was also extended to several 2-substituted DEM derivatives, the corresponding substituted barbituric acids being formed in reasonable yields. The reaction between diethyl 2-(ethoxycarbonyl)malonate and urea, with potassium carbonate in refluxing ethanol, led to the formation of barbituric acid. This is apparently facilitated by hydrogen bonding involving the enolate oxygen atom, which renders one of the carbonyl groups relatively electrophilic (Scheme 6). Meldrum’s acid failed to react with urea, despite its greater acidity, indicating that the reaction requires the formation of the E from of the s-trans enolate ion, in which the hydrogen bonding interaction and nucleophilic attack can occur in concert.
Scheme 6. Proposed transition state for formation of Barbituric acid.
Chapter IV deals with an improved Erlenmeyer synthesis with 5-thiazolone and catalytic manganese (II) acetate for aliphatic and aromatic aldehydes. A serious limitation to the classical Erlenmeyer reaction is that it generally fails in the case of aliphatic aldehydes. This chapter describes a convenient approach to this problem that extends the scope of the Erlenmeyer synthesis. The present study was aimed at developing milder conditions for the synthesis of 4¬arylidene and alkylidenethioazlactones. Thus, N-(thiobenzoyl)glycine was treated with DCC in DCM at room temperature for 10 min., according to a reported procedure, to form the thioazlactone.6 The same reaction mixture was treated with catalytic Mn(II) acetate and an equivalent of an aromatic aldehyde, to furnish the corresponding 4-arylidenethioazlactones in good yields. The scope of the reaction was extended to alphatic aldehydes also under similar reaction conditions, to obtain the 4-alkylidene thioazlactones in good to moderate yields (Scheme 7).
Scheme 7. The Erlenmeyer synthesis with 5-thiazolone and manganese acetate.
(for figures & structural formula pl refer pdf file)
|
30 |
Síntese enantiosseletiva de fenilselenolactonas e feniltelurolactonas / Enantioselective synthesis of phenylselenolactones and phenyltelurolactonesAlessandro Leal Nogueira 07 June 2002 (has links)
Este trabalho descreve uma nova metodologia sintética que combina a química de espécies organometálicas contendo Se e Te com biotransformações usando lipases, para a síntese enantiosseletiva de fenilselenolactonas 7a e feniltelurolactonas 7b. Estas lactonas foram obtidas pela resolução cinética de álcoois secundários racêmicos 6, pela ação da lipase de pâncreas de porco (PPL- Sigma-Aldrich) em meio orgânico anidro. (Ver arquivo PDF). / This work describes a novel synthetic methodology that combines the chemistry of organic compounds, organometalic species containing Se and Te and biotransformations using lipases for the enantioselective synthesis of phenylselenolactones 7a and phenyltelurolactones 7b. These lactones were obtained by kinetic resolution of racemic sec-alcohols 6 by the action of pig pancreatic lipases (PPL- Sigma-Aldrich) in organic media (Scheme1). (See files PDF)
|
Page generated in 0.1081 seconds