• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 6
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 16
  • 15
  • 13
  • 11
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Homéostasie phosphocalcique et vitamine D : effets sur le cartilage de croissance par la mesure des paramètres physiques, biochimiques et géniques liés à la croissance osseuse

Desrosiers, Mélissa January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
42

Expression and Functional Analysis of pthrp1 and ihha in the Regeneration of Bones in Zebrafish Caudal Fin

Al-Rewashdy, Ali 18 September 2013 (has links)
The parathyroid hormone related protein (PTHrP) and Indian Hedgehog (IHH) are two secreted molecules, acting as paracrine factors during embryonic development and post-natal growth of endochondral bones. PTHrP and IHH are essential factors for the regulation of chondrocyte proliferation and differentiation. However, it has previously been shown that PTHrP and IHH are also expressed in the chick and mouse embryos intramembranous bones, which do not form through a cartilage intermediate and in which chondrocytes are absent. Similarly, the zebrafish orthologs, pthrp1 and ihha, are also expressed during the regeneration of the intramembranous bones of the fin rays of the zebrafish caudal fin. This surprising observation led us to further analyze the expression and function of pthrp1 and ihha in the regenerating fin rays. Gene expression analysis using in situ hybridization shows that pthrp1 is expressed in a stripe of cells located within the domain of expression of ihha in the newly differentiating osteoblasts in the regenerating fin rays. Also, pthrp1 expression is observed at the level of the joints between the bone segments forming the rays and co-localizes with the expression domain of evx1, a transcription factor that has been implicated in the formation of joints in the caudal fin. Furthermore, RT-PCR analyses show that pthrp2 and the pthrp receptors mRNA (pth1r, pth2r and pth3r) are also present in the fin regenerate. Finally, functional analysis shows that the knockdown of pthrp1 or ihha expression by electroporation of morpholinos induces a delay of the regenerative outgrowth of the fin. These results suggest that pthrp1 and ihha may be involved in the regulation of proliferation and differentiation of chondrocyte-like osteoblasts in the fin rays, playing a role similar to that described in the mammalian growth plate of endochondral bones. In addition, pthrp1 is possibly an important factor involved in the formation and maintenance of joints of the dermal bones of the fin rays.
43

Rôle du facteur de transcription PITX1 dans la pathogenèse de l'arthrose.

Picard, Cynthia 06 1900 (has links)
L'arthrose ou ostéoarthrite (OA) est la plus commune des maladies chroniques associées au vieillissement. La multiplicité des loci et des polymorphismes associés à l'OA suggère l'implication de nombreuses voies de signalisation. La plupart des voies empruntées partagent des points en commun avec le processus d'ossification endochondrale. Dans l'arthrose, la réinitiation de ce processus pourrait être responsable de la dégradation du cartilage et de la présence d'ostéophytes. Un des gènes ayant fait surface autant dans l'OA que dans le développement musculosquelettique est PITX1. Contrairement à ce que son nom l'indique, PITX1 n'est pas seulement exprimé dans la glande pituitaire mais également dans l'os, le cartilage, les muscles et les fibroblastes. Pitx1 joue un rôle clé dans l'identité des membres inférieurs et son inactivation complète chez la souris mène à un phénotype ressemblant aux membres supérieurs. Moins sévère, son inactivation partielle provoque des symptômes apparentés à l'arthrose précoce chez la souris vieillissante. Chez l'humain, une perte d'expression de PITX1 est observée dans le cartilage OA de concert avec une augmentation des protéines EXTL3, REG1 et PARP1. Ces dernières pourraient favoriser la phase initiale de régénération associée à l'arthrose. Pour induire la prolifération des chondrocytes, de bas niveaux de PITX1 sont nécessaires. À l'inverse, de hauts niveaux de PITX1 pourraient prévenir la prolifération et être responsables du statut différencié des chondrocytes articulaires normaux. L'étude des mécanismes de régulation du gène PITX1 a mené à l'identification d'un co-répresseur, nommé prohibitine (PHB1), lié sur une région promotrice distale. PHB1 est normalement retrouvé au niveau des mitochondries mais son accumulation nucléaire semble corréler avec la perte de PITX1 et l'initiation de l'OA. Cette découverte pourrait avoir un impact sur le diagnostic et d'éventuels traitements visant à prévenir l'apparition de l'arthrose. / Osteoarthritis (OA) is one of the most common age-related chronic disorders. The multiplicity of loci identified in OA linkage studies and the large number of associated SNPs suggests that many molecular pathways are involved in OA pathogenesis. Most of these pathways share common features with the process of endochondral ossification, normally occuring during embryogenesis. Cartilage degradation and the presence of osteophytes, hallmarks of OA, could be attributable to the reinitiation of this process. One gene that has surfaced both in OA and in musculoskeletal development is PITX1. Contrary to its original moniker, PITX1 is expressed in many tissues beyond the pituitary gland, including bone, cartilage, muscle and fibroblast cells. Pitx1 is considered as a master regulator of hindlimb identity and its complete inactivation in mice leads to a forelimb-like phenotype. Less severe, its partial inactivation results in early OA symptoms in aging mice. In humans, loss of PITX1 expression is observed in OA cartilage concomitantly with the upregulation of EXTL3, REG1 and PARP1. The association between these proteins and tissue regeneration is consistent with the biosynthesis phase initially taking place in OA cartilage. The dose-dependent relationship between PITX1 and cell proliferation supports the view that low PITX1 expression levels are necessary for chondrocytes to proliferate. Conversely, high levels of PITX1 would prevent proliferation and be required to maintain a differentiated state in normal articular chondrocytes. The regulation of PITX1 gene is of particular interest since it could help to better understand its role in osteoarthritis pathogenesis and in the process of endochondral ossification. Search for mechanisms responsible for the downregulation of PITX1 in OA led to the identification of prohibitin (PHB1) bound to its distal promoter region. PHB1 is a mitochondrial marker but its presence in chondrocytes nuclei seems to correlate with the initiation stage of OA. This discovery could impact diagnosis as well as possible treatments for osteoarthritis.
44

Rôle du facteur de transcription PITX1 dans la pathogenèse de l'arthrose

Picard, Cynthia 06 1900 (has links)
No description available.
45

Expression and Functional Analysis of pthrp1 and ihha in the Regeneration of Bones in Zebrafish Caudal Fin

Al-Rewashdy, Ali January 2013 (has links)
The parathyroid hormone related protein (PTHrP) and Indian Hedgehog (IHH) are two secreted molecules, acting as paracrine factors during embryonic development and post-natal growth of endochondral bones. PTHrP and IHH are essential factors for the regulation of chondrocyte proliferation and differentiation. However, it has previously been shown that PTHrP and IHH are also expressed in the chick and mouse embryos intramembranous bones, which do not form through a cartilage intermediate and in which chondrocytes are absent. Similarly, the zebrafish orthologs, pthrp1 and ihha, are also expressed during the regeneration of the intramembranous bones of the fin rays of the zebrafish caudal fin. This surprising observation led us to further analyze the expression and function of pthrp1 and ihha in the regenerating fin rays. Gene expression analysis using in situ hybridization shows that pthrp1 is expressed in a stripe of cells located within the domain of expression of ihha in the newly differentiating osteoblasts in the regenerating fin rays. Also, pthrp1 expression is observed at the level of the joints between the bone segments forming the rays and co-localizes with the expression domain of evx1, a transcription factor that has been implicated in the formation of joints in the caudal fin. Furthermore, RT-PCR analyses show that pthrp2 and the pthrp receptors mRNA (pth1r, pth2r and pth3r) are also present in the fin regenerate. Finally, functional analysis shows that the knockdown of pthrp1 or ihha expression by electroporation of morpholinos induces a delay of the regenerative outgrowth of the fin. These results suggest that pthrp1 and ihha may be involved in the regulation of proliferation and differentiation of chondrocyte-like osteoblasts in the fin rays, playing a role similar to that described in the mammalian growth plate of endochondral bones. In addition, pthrp1 is possibly an important factor involved in the formation and maintenance of joints of the dermal bones of the fin rays.
46

Ossification of the mammalian metatarsal: proliferation and differentiation in the presence/absence of a defined growth plate

Reno, Philip Louis 15 August 2006 (has links)
No description available.
47

READILY IMPLANTABLE HIGH DENSITY STEM CELL SYSTEMS WITH CONTROLLED GROWTH FACTOR PRESENTATION FROM BIOACTIVE MICROPARTICLES FOR BONE REGENERATION VIA ENDOCHONDRAL OSSIFICATION

Dang, Phuong Ngoc 03 June 2015 (has links)
No description available.
48

The role of PPARgamma in cartilage growth and development using cartilage-specific PPARgamma knockout mice

Monemdjou, Roxana 07 1900 (has links)
Le cartilage est un tissu conjonctif composé d’une seule sorte de cellule nommée chondrocytes. Ce tissu offre une fondation pour la formation des os. Les os longs se développent par l'ossification endochondral. Ce processus implique la coordination entre la prolifération, la différenciation et l'apoptose des chondrocytes, et résulte au remplacement du cartilage par l'os. Des anomalies au niveau du squelette et des défauts liés à l’âge tels que l’arthrose (OA) apparaissent lorsqu’il y a une perturbation dans l’équilibre du processus de développement. À ce jour, les mécanismes exacts contrôlant la fonction et le comportement des chondrocytes pendant la croissance et le développement du cartilage sont inconnus. Le récepteur activateur de la prolifération des peroxysomes (PPAR) gamma est un facteur de transcription impliqué dans l'homéostasie des lipides. Plus récemment, son implication a aussi été suggérée dans l'homéostasie osseuse. Cependant, le rôle de PPARγ in vivo dans la croissance et le développement du cartilage est inconnu. Donc, pour la première fois, cette étude examine le rôle spécifique de PPARγ in vivo dans la croissance et le développement du cartilage. Les souris utilisées pour l’étude avaient une délétion conditionnelle au cartilage du gène PPARγ. Ces dernières ont été générées en employant le système LoxP/Cre. Les analyses des souris ayant une délétion au PPARγ aux stades embryonnaire et adulte démontrent une réduction de la croissance des os longs, une diminution des dépôts de calcium dans l’os, de la densité osseuse et de la vascularisation, un délai dans l’ossification primaire et secondaire, une diminution cellulaire, une perte d’organisation colonnaire et une diminution des zones hypertrophiques, une désorganisation des plaques de croissance et des chondrocytes déformés. De plus, la prolifération et la différenciation des chondrocytes sont anormales. Les chondrocytes et les explants isolés du cartilage mutant démontrent une expression réduite du facteur de croissance endothélial vasculaire (VEGF)-A et des éléments de production de la matrice extracellulaire. Une augmentation de l’expression de la métalloprotéinase matricielle (MMP)-13 est aussi observée. Dans les souris âgées ayant une délétion au PPARγ, y est aussi noté des phénotypes qui ressemblent à ceux de l’OA tel que la dégradation du cartilage et l'inflammation de la membrane synoviale, ainsi qu’une augmentation de l’expression de MMP-13 et des néoépitopes générés par les MMPs. Nos résultats démontrent que le PPARγ est nécessaire pour le développement et l’homéostasie du squelette. PPARγ est un régulateur essentiel pour la physiologie du cartilage durant les stades de croissance, de développement et de vieillissement. / Cartilage, a connective tissue composed of chondrocytes, provides an intermediate template on which bones are formed. Long bones develop through endochondral ossification, involving coordination between chondrocyte proliferation, differentiation and apoptosis, resulting in bone replacing cartilage. Disturbances in this balance results in skeletal abnormalities, and age-related defects including osteoarthritis (OA). The exact mechanisms that control chondrocyte function and behaviour during growth and development are unknown. Peroxisome proliferator-activated receptor (PPAR) gamma, a transcription factor involved in lipid homeostasis, has recently been suggested to be involved in bone homeostasis. However, PPARγ’s role in cartilage growth and development in vivo is unknown. Therefore, for the first time, this study examines PPARγ’s specific in vivo role in cartilage growth and development using cartilage-specific PPARγ knockout (KO) mice. Conditional KO mice were generated using LoxP/Cre system. Histomorphometric analyses of embryonic and adult mutant mice demonstrate reduced long bone growth, calcium deposition, bone density, vascularity, and delayed primary and secondary ossification. Mutant growth plates are disorganized with abnormal chondrocyte shape, proliferation and differentiation, reduced cellularity, loss of columnar organization, and shorter hypertrophic zones. Isolated mutant chondrocytes and cartilage explants show decreased vascular endothelial growth factor (VEGF)-A and extracellular matrix (ECM) production product expression, and increased matrix metalloproteinase (MMP)-13 expression. Aged mutant mice exhibit accelerated OA-like phenotypes, and enhanced cartilage degradation, synovial inflammation, MMP-13 and MMP-generated neoepitope expression. Our data demonstrate that PPARγ is required for normal skeletal development and homeostasis, and is a critical regulator of cartilage health and physiology in early growth and development and aging.
49

The role of PPARgamma in cartilage growth and development using cartilage-specific PPARgamma knockout mice

Monemdjou, Roxana 07 1900 (has links)
Le cartilage est un tissu conjonctif composé d’une seule sorte de cellule nommée chondrocytes. Ce tissu offre une fondation pour la formation des os. Les os longs se développent par l'ossification endochondral. Ce processus implique la coordination entre la prolifération, la différenciation et l'apoptose des chondrocytes, et résulte au remplacement du cartilage par l'os. Des anomalies au niveau du squelette et des défauts liés à l’âge tels que l’arthrose (OA) apparaissent lorsqu’il y a une perturbation dans l’équilibre du processus de développement. À ce jour, les mécanismes exacts contrôlant la fonction et le comportement des chondrocytes pendant la croissance et le développement du cartilage sont inconnus. Le récepteur activateur de la prolifération des peroxysomes (PPAR) gamma est un facteur de transcription impliqué dans l'homéostasie des lipides. Plus récemment, son implication a aussi été suggérée dans l'homéostasie osseuse. Cependant, le rôle de PPARγ in vivo dans la croissance et le développement du cartilage est inconnu. Donc, pour la première fois, cette étude examine le rôle spécifique de PPARγ in vivo dans la croissance et le développement du cartilage. Les souris utilisées pour l’étude avaient une délétion conditionnelle au cartilage du gène PPARγ. Ces dernières ont été générées en employant le système LoxP/Cre. Les analyses des souris ayant une délétion au PPARγ aux stades embryonnaire et adulte démontrent une réduction de la croissance des os longs, une diminution des dépôts de calcium dans l’os, de la densité osseuse et de la vascularisation, un délai dans l’ossification primaire et secondaire, une diminution cellulaire, une perte d’organisation colonnaire et une diminution des zones hypertrophiques, une désorganisation des plaques de croissance et des chondrocytes déformés. De plus, la prolifération et la différenciation des chondrocytes sont anormales. Les chondrocytes et les explants isolés du cartilage mutant démontrent une expression réduite du facteur de croissance endothélial vasculaire (VEGF)-A et des éléments de production de la matrice extracellulaire. Une augmentation de l’expression de la métalloprotéinase matricielle (MMP)-13 est aussi observée. Dans les souris âgées ayant une délétion au PPARγ, y est aussi noté des phénotypes qui ressemblent à ceux de l’OA tel que la dégradation du cartilage et l'inflammation de la membrane synoviale, ainsi qu’une augmentation de l’expression de MMP-13 et des néoépitopes générés par les MMPs. Nos résultats démontrent que le PPARγ est nécessaire pour le développement et l’homéostasie du squelette. PPARγ est un régulateur essentiel pour la physiologie du cartilage durant les stades de croissance, de développement et de vieillissement. / Cartilage, a connective tissue composed of chondrocytes, provides an intermediate template on which bones are formed. Long bones develop through endochondral ossification, involving coordination between chondrocyte proliferation, differentiation and apoptosis, resulting in bone replacing cartilage. Disturbances in this balance results in skeletal abnormalities, and age-related defects including osteoarthritis (OA). The exact mechanisms that control chondrocyte function and behaviour during growth and development are unknown. Peroxisome proliferator-activated receptor (PPAR) gamma, a transcription factor involved in lipid homeostasis, has recently been suggested to be involved in bone homeostasis. However, PPARγ’s role in cartilage growth and development in vivo is unknown. Therefore, for the first time, this study examines PPARγ’s specific in vivo role in cartilage growth and development using cartilage-specific PPARγ knockout (KO) mice. Conditional KO mice were generated using LoxP/Cre system. Histomorphometric analyses of embryonic and adult mutant mice demonstrate reduced long bone growth, calcium deposition, bone density, vascularity, and delayed primary and secondary ossification. Mutant growth plates are disorganized with abnormal chondrocyte shape, proliferation and differentiation, reduced cellularity, loss of columnar organization, and shorter hypertrophic zones. Isolated mutant chondrocytes and cartilage explants show decreased vascular endothelial growth factor (VEGF)-A and extracellular matrix (ECM) production product expression, and increased matrix metalloproteinase (MMP)-13 expression. Aged mutant mice exhibit accelerated OA-like phenotypes, and enhanced cartilage degradation, synovial inflammation, MMP-13 and MMP-generated neoepitope expression. Our data demonstrate that PPARγ is required for normal skeletal development and homeostasis, and is a critical regulator of cartilage health and physiology in early growth and development and aging.

Page generated in 0.1349 seconds