• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 11
  • 11
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The influence of discouragement, anxiety and anger on pain: An examination of the role of endogenous opioids

Ash_Frew@yahoo.com.au, Ashley Kim Frew January 2005 (has links)
Animal research suggests that exposure to inescapable stressors can lead to an endogenous opioid-mediated form of pain inhibition, known as stress-induced analgesia (SIA). Similar results have been found with humans, although the literature is much less extensive and at times contradictory where uncontrollable stressors have led to an increase, rather than a decrease in pain. More recently, there has been some suggestion that emotions play an important role in pain modulation, and that particular negative moods are associated with opioid-mediated hypoalgesia. This research aimed to clarify the psychological (cognitive and affective) factors underlying endogenous opioid-mediated pain inhibition in humans. The purpose of Study 1 was to examine the effects of stressor controllability and predictability on pain intensity (PI) and unpleasantness (UP) ratings during a cold pressor task (CPT) in 56 male and female subjects. The stressor involved a timed mental arithmetic task during which three moderately noxious electrical shocks were delivered. Although subjects were informed that shock delivery was contingent on math performance, the shock schedule was preset and identical across conditions. Perceived control over the shocks was manipulated between subjects by altering the difficulty of the math task. Shock predictability was manipulated by changing the colour of the computer screen to warn of an impending shock. Subjects were randomly allocated to four experimental conditions (controllable-predictable, controllable-unpredictable, uncontrollable-predictable, and uncontrollable-unpredictable shocks). Visual analogue ratings of ‘perceived self-efficacy’ (to avoid the shocks) and mood (anxiety, confusion, discouragement, anger, sluggishness, liveliness) were completed before, during and after the math task. Significantly greater discouragement and lower self-efficacy was reported in ‘uncontrollable’ conditions indicating that ‘controllability’ was manipulated effectively. Results indicated that a perceived lack of control over shocks during the math task led to significantly greater decreases in PI, but not UP, ratings during the last stages of a 4-minute fixed interval CPT after the math task. Shock predictability failed to influence subjective pain ratings alone; however, unpredictability interacted with lack of control to initially increase pain, followed by analgesia. Stress-induced increases in negative affect (anxiety, discouragement, anger) were associated with decreases in cold pressor PI, but with increased shock PI and UP during the math task. It was concluded that lack of control over an aversive event and negative affect led to SIA during a prolonged pain stimulus, whereas shock predictability had little influence on pain. In Study 2, 70 male and female subjects received either an opioid antagonist (naltrexone) or a placebo before the math task (using a double-blind, counterbalanced design), in order to determine the role of endogenous opioids in SIA. Subjects were randomly assigned to one of three experimental conditions to investigate whether the shocks themselves may have contributed to analgesia observed after the math task: (1) easy task-few shocks, (2) hard task-few shocks, (3) hard task-many shocks. Increases in systolic blood pressure (SBP), diastolic blood pressure (DBP), anxiety, anger and discouragement indicated that negative affect and sympathetic arousal were induced during the math task. Endogenous opioids inhibited the rise in anger, but not discouragement or anxiety, during the math task. There was some evidence that perceived lack of control over shocks, and not the shocks themselves, led to opioid-mediated decreases in cold pressor UP after the math task. In correlational analyses, discouraged subjects under opioid blockade reported more cold pressor UP after the math task than their placebo counterparts. However, this effect was not strong enough to reach statistical significance in regression analyses. Anxiety, anger, discouragement and lack of control over shocks increased shock PI and UP during the math task. A growing body of research with normotensive subjects has linked increased cardiovascular activity with insensitivity to pain, but the role of endogenous opioids remains contentious. In addition to the investigations outlined above, Study 2 aimed to examine the contribution of endogenous opioids in the cardiovascular-pain relationship. However, there was no evidence of an interaction between pain and cardiovascular activity in this study. Study 3 was carried out to investigate opioid involvement in the effects of an uncontrollable stressor and stress-induced negative mood on cold pressor PI, UP and pain tolerance, and onset/thresholds of the nociceptive flexion reflex (RIII). Forty-three male and female subjects were administered either naltrexone or a placebo using a double-blind, counterbalanced design before completing a timed mental arithmetic stressor (identical to the ‘hard task-many shocks’ condition in Study 2). Increases in physiological (SBP, DBP) and affective measures (anxiety, anger and discouragement) indicated that the math task induced a marked state of stress. Negative affect increased shock PI and UP during the task, whereas self-efficacious subjects taking the placebo experienced less shock pain. However, uncontrollable stress led to an opioid-antagonised increase in cold pressor UP. Stressor controllability had a similar, but marginal, effect on cold pressor PI, but not pain tolerance. Tolerance of cold pressor pain was not associated with subjective PI and UP ratings, but was positively associated with endurance to non-painful, but unpleasant tasks (Valsalva Manoeuvre, Letter-Symbol Matching Task), indicating that pain tolerance was measuring the ability to tolerate discomfort, in addition to pain. Results of hierarchical multiple regressions demonstrated that increases in discouragement were positively related to increases in cold pressor UP after the math task, for naltrexone recipients only. These findings suggest that discouragement inhibits the UP of a prolonged pain stimulus via opioid mechanisms. RIII latencies and thresholds were not affected by the math task or by opioid blockade; however, these null effects may be due to methodological limitations. Unlike Study 2, higher blood pressure was associated with shock and cold pressor pain inhibition in normotensive subjects, and this relationship appeared to be mediated by opioids. The strong association between chronic pain and depression has led to speculation that the endogenous opioid system and pain modulatory mechanisms may be impaired in depression. At the time that this research was carried out, no studies had examined whether this was the case. In Study 4, the effect of a cognitive stressor (math task used in Study 3) on foot cold pressor PI, UP and pain tolerance and the nociceptive, or R2 component, of the blink reflex was investigated in 61 participants with or without major depression (as met by DSM-IV diagnostic criteria and confirmed by psychometric testing). Naltrexone or placebo was administered to subjects an hour before the math task using a double-blind, counterbalanced design. Increases in physiological (SBP, DBP) and affective measures (anxiety, anger and discouragement) confirmed that the math task induced the targeted emotional state. An opioid-mediated reduction in anxiety occurred mid-way through the math task. Opioid-mediated decreases in foot cold pressor PI and UP were observed in depressed and non-depressed subjects after the math task. R2 onset to 10 mA was facilitated after the task regardless of opioid blockade, suggesting that endogenous opioids are not involved in the modulation of the BR. Increased anxiety and discouragement led to opioid-mediated inhibition of shock PI and UP during the task and, to a lesser extent, foot cold pressor PI and UP after the math task. Anger increased shock pain without being influenced by opioid blockade. Pain tolerance was not influenced by depression, opioid blockade or mood. These findings failed to support the idea that SIA is impaired in major depression, suggesting instead that uncontrollable aversive events and negative mood (anxiety, discouragement) lead to opioid activation and insensitivity to acute pain. Multiple regression analyses revealed that the inverse relationship between resting blood pressure and foot cold pressor PI and UP was opioid-mediated in controls only, suggesting that opioid dysregulation in depression might influence regulatory functions other than SIA. In Study 4, opioid involvement in hetero-segmental pain inhibitory phenomena termed diffuse noxious inhibitory controls (DNIC) was examined separately, before psychological stress. Specifically, the effect of a heterotopic noxious conditioning stimulus (CS i.e., hand CPT) on R2 onset latency was compared before and after drug absorption (before the math task). An inhibitory effect of the first CS was detected at each electrical stimulus intensity consistent with a DNIC effect. However, this effect was not detected during the second CS, suggesting that some other process masked the DNIC effect. In summary, the findings indicate that uncontrollable aversive events and negative emotion (primarily discouragement) activates endogenous opioids and inhibits pain in human subjects, whether depressed or not. Notably, opioids inhibited the affective component of pain perception, or pain UP, more consistently than PI, suggesting that the antinociceptive function of opioids may be secondary to an important emotional-modulatory role. Endogenous opioids also appeared to mediate the cardiovascular-pain relationship in normotensive non-depressed subjects, suggesting an important stress-regulatory role for these peptides. Opioid-mediated masking of this relationship in major depression suggests that functioning of the endogenous opioid system may be impaired in baroreceptor-mediated analgesia. This finding provides preliminary support for the notion that opioid antinociceptive system dysfunction may contribute to cardiovascular disease in depression.
2

Reversal of Neuropathic Pain with Exercise is Mediated by Endogenous Opioids

Stagg, Nicola Jane January 2007 (has links)
Exercise is often prescribed for patients with chronic pain, but there is little objective evidence supporting this recommendation. Therefore, we tested the effect of moderate aerobic exercise on the sensory hypersensitivity produced in an animal model of neuropathic pain. Male rats that underwent unilateral ligation of the L5 and L6 spinal nerves (SNL) were divided into exercise-trained or sedentary groups. Exercise training was performed using a treadmill, beginning 7 days after surgery, and continued 5 days a week for 5 weeks. Animals were exercised 30 min/day, at a speed of 14-16 m/min. Sensory testing was performed 23 hours after exercise training. Typical thermal and tactile hypersensitivity developed within 1 week after surgery. Treadmill training reversed thermal and tactile hypersensitivity in injured animals within 4 weeks, but had no effect on sham-operated or non-operated animals. One week after the cessation of exercise training, tactile hypersensitivity returned.The effects of exercise training on SNL-induced sensory hypersensitivity were reversed by the opioid receptor antagonist naloxone. Naloxone or naloxone methiodide reversed the effects of exercise when administered intracerebroventricularly (i.c.v.). Immunohistochemistry revealed increased immunostaining for B-endorphin and met-enkephalin in the periaquaductal grey (PAG) and rostral ventromedial medulla (RVM) regions of exercise-trained animals compared to sedentary animals. An ELISA immunoassay revealed a 31% increase in PAG B-endorphin content in exercise-trained SNL animals. More BDNF was also present in the brain's of exercise-trained animals compared to sedentary, specifically in the ventromedial hypothalamus, hippocampus, and outer rim of the PAG. Administering a BDNF sequestering agent reversed B-endorphin increases in the PAG of exercise-trained animals. Exercise-trained SNL animals treated with 25 ug BDNF sequestering agent (i.c.v.) had lower tactile thresholds compared to the exercise-trained vehicle group.These results support the recommendation of moderate aerobic exercise for patients suffering from neuropathic pain, and suggest that exercise-induced pain reversal results from the upregulation of endogenous opioids in the brainstem. Additionally, increased BDNF with exercise training may play a role in exercise-induced reversal of neuropathic pain by increasing the expression of endogenous opioids, but this needs to be verified further.
3

Efeitos do enriquecimento ambiental na neuropatia periférica induzida em ratos. / Effects of environmental enrichment on peripheral neuropathy induced in rats.

Vieira, Louise Faggionato Kimura 10 May 2018 (has links)
O enriquecimento ambiental (EA) é capaz de alterar a percepção a estímulos nociceptivos, bem como de aumentar a resposta analgésica induzida por opioides. Considerando que a dor neuropática é um grave problema de saúde pública e o tratamento para esta condição ainda é insatisfatório e acarreta efeitos adversos severos, os objetivos deste trabalho foram avaliar a interferência do bem-estar animal na sensibilidade dolorosa de ratos frente a diferentes estímulos nociceptivos e investigar possíveis mecanismos envolvidos neste efeito. Os animais foram submetidos à avaliação da ansiedade e da sensibilidade dolorosa, em modelo de neuropática, frente a estímulos nociceptivos mecânicos e térmicos. Foi verificado que um protocolo de EA elaborado e iniciado desde o nascimento foi capaz de reverter totalmente a dor neuropática de animais submetidos à constrição crônica do nervo isquiático (CCI). Este efeito foi completamente abolido quando os animais enriquecidos foram tratados com naloxona, um antagonista opioide não seletivo. Análises de Western Blot não mostraram diferenças na expressão de receptores opioides em regiões relacionadas ao processamento e controle da dor, porém os níveis circulantes de beta-endorfina e met-encefalina aumentaram na presença de dor crônica nos animais enriquecidos. Os níveis séricos de corticosterona também se apresentaram aumentados nos animais com EA, independentemente da neuropatia, mas o tratamento com mifepristona, um antagonista de receptores de glicocorticoides, não alterou a analgesia dos animais operados. Ainda, o EA também reduziu a imunorreatividade para serotonina na medula espinal de animais com CCI. Além do efeito analgésico, o EA também reduziu o marcador de lesão neuronal ATF-3 no gânglio da raiz dorsal e, no local da constrição, reduziu a degeneração neuronal característica do modelo, induzindo ainda, a presença predominantemente de macrófagos do tipo M2. Este trabalho reforça a importância do bem-estar na prevenção do desenvolvimento da dor neuropática e mostra uma abordagem não farmacológica que pode aumentar a resiliência de animais contra estímulos nocivos. / Environmental enrichment (EE) is capable of altering the perception of nociceptive stimuli, as well as increasing the analgesic response induced by opioids. Considering that neuropathic pain is a serious public health problem and the treatment for this condition is still unsatisfactory and induces severe side effects, the aims of this study were to evaluate the interference of animal welfare in the sensitivity to different nociceptive stimuli and to investigate possible mechanisms involved in this effect. Animals were submitted to the evaluation of anxiety and pain sensitivity in a model of neuropathic pain, against mechanical and thermal nociceptive stimuli. It was seen that an elaborated EE starting from birth was able to totally reverse the neuropathic pain of animals submitted to chronic constriction injury of the sciatic nerve (CCI). This effect was completely abolished when enriched animals were treated with naloxone, a nonselective opioid antagonist. Western blot analysis did not show differences in opioid receptor expression in regions related to pain processing and control, however, circulating levels of beta-endorphin and met-enkephalin were increased in the presence of chronic pain in enriched animals. Serum corticosterone levels were also increased in animals with EE regardless of neuropathy, but treatment with mifepristone, a nonselective glucocorticoid receptor antagonist, did not alter the analgesia of operated animals. Moreover, EE reduced serotonin immunoreactivity in the spinal cord of CCI animals. In addition to analgesic effect, EE also reduced the neuronal injury marker ATF-3 at the dorsal root ganglia and, at the site of constriction, decreased the neuronal degeneration characteristic of the model, inducing the presence of M2 macrophages subtype predominantly. This work reinforces the importance of well-being in preventing the development of neuropathic pain and shows a non-pharmacological approach that may increase animal resilience against noxious stimuli.
4

Think your pain away : The neurochemistry of placebo analgesia

Alteryd, Olivia January 2019 (has links)
Placebo treatments are inert but are known to alleviate symptoms across numerous clinical conditions. One of the most studied placebo effects is placebo analgesia, which is a placebo effect limited to pain relief. This thesis aims to introduce the current state of research regarding the neuroscience of placebo analgesia and specifically to present research findings regarding the neurotransmission. Studies have demonstrated that placebo analgesia can be elicited through two separate processes interacting with each other; manipulation of expectations and through conditioning. These processes seem to affect neurotransmission in different ways. Many brain areas have been found to be correlated to placebo analgesia. Besides the pain-processing brain areas, studies point to that the prefrontal cortex can have a vital role in the placebo analgesic effect. Known neurotransmitters that have shown to be involved in placebo analgesia are endogenous opioids, cholecystokinin (CCK), and endocannabinoids. Studies point to that endogenous opioids are involved in the placebo analgesic effect when elicited by expectation or conditioned by an opioid drug. CCK act on placebo analgesia by affecting the release of endogenous opioids and endocannabinoids seem to be involved in placebo analgesia while it occurs due to conditioning with non-opioid drugs. Getting a better understanding of placebo analgesia and find ways to apply this knowledge in the clinical context could powerfully develop the whole medical society.
5

The Impact of Neonatal Inflammatory Insult on Adult Somatosensory Processing: The Role of the Descending Nociceptive Circuit

LaPrairie, Jamie L 29 October 2008 (has links)
The neonatal period represents a critical window of increased neurodevelopmental plasticity in the immature nervous system. Unlike other sensory modalities, which require appropriate stimulation for proper development, maturation of nociceptive circuitry in neonates typically occurs in the absence of noxious stimulation. Premature infants, however, are routinely exposed to multiple invasive medical procedures during neonatal intensive care treatment, which are largely performed in the absence of anesthetics or analgesics. To date, it is largely unknown how exposure to early noxious insult during this time of increased plasticity alters the development of the CNS and influences future nociceptive responses. As previous studies examining the impact of neonatal inflammatory insult on adult nociceptive responses have been conducted primarily in males, the potential adverse effects in females are unknown. Furthermore, the biological mechanisms underlying neonatal insult-induced deficits in nociceptive processing have yet to be elucidated. Therefore, this dissertation addressed the following questions: (1) Does neonatal inflammatory insult differentially alter male and female baseline somatosensory thresholds and response to re-inflammation in adulthood?; (2) Are neonatal inflammation-induced deficits in nociceptive responsiveness mediated by a potentiation in endogenous opioid tone?; and (3) Does pre-emptive morphine analgesia attenuate the behavioral consequences of neonatal inflammatory insult? Collectively, these studies will provide valuable information about the long-term consequences of neonatal noxious stimulation in males and females, which may lead to improved understanding and prevention of the lasting effects of repeated invasive interventions in premature infants in the NICU.
6

Association Tests of the Opioid Receptor System and Alcohol-Related Traits

Bennett, Ryan 01 December 2009 (has links)
The opioid receptors and their endogenous ligands have long been implicated in a variety of traits including addiction, impulsive behaviors and substance dependence. Using phenotypic measurements collected from the IASPSAD, data from a latent class analysis and data from a SNP array and additional genotyping assays, association and regression tests were performed to determine the effects of common SNPs encoded in the genes of the opioid receptors and ligands on various traits relating to alcohol dependence. Although only one SNP can be reported as significant for substance dependence within alcoholics, there were a few results approaching significance that may offer some insight into variation within alcoholism.
7

A Single Neonatal Injury Induces Life-Long Adaptations In Stress And Pain Responsiveness

Victoria, Nicole C 27 August 2013 (has links)
Approximately 1 in 6 infants are born prematurely each year. Typically, these infants spend 25 days in the Neonatal Intensive Care Unit (NICU) where they experience 10-18 painful and inflammatory procedures each day. Remarkably, pre-emptive analgesics and/or anesthesia are administered less than 30% of the time. Unalleviated pain during the perinatal period is associated with permanent decreases in pain sensitivity, blunted cortisol responses and high rates of neuropsychiatric disorders. To date, the mechanism(s) by which these long-term changes in stress and pain behavior occur, and whether such alterations can be prevented by appropriate analgesia at the time of injury, remains unclear. We have previously reported in rats that inflammation experienced on the day of birth permanently upregulates central opioid tone, resulting in a significant reduction in adult pain sensitivity. However, the impact on early life pain on anxiety- and stress-related behavior and HPA axis regulation is not known. Therefore the goal of this dissertation was to determine the long-term impact of a single neonatal inflammatory pain experience on adult anxiety- and stress-related responses. Neuroanatomical changes in stress-associated neurocircuits were also examined. As the endogenous pain control system and HPA axis are in a state of exaggerated developmental plasticity early in postnatal life, and these systems work in concert to respond to noxious or aversive stimuli, this dissertation research aimed to answer the following questions: (1) Does neonatal injury produce deficits in adult stress-related behavior and alter stress-related neuroanatomy through an opioid-dependent mechanism? (2) Does neonatal injury alter receptor systems regulating the activation and termination of the stress response in adulthood? (3) Are stress- and pain-related neurotransmitters altered within the first week following early life pain? (4) Is early activation of the pain system necessary for the long-term changes in anxiety- and stress-related behavior? Together these studies demonstrate the degree, severity and preventability of the long-term deficits in stress responding associated with a single painful experience early in life. The goal of this research is to promote change in the treatment of infant pain in the NICU to reduce long-term sensory and mental health complications associated with prematurity.
8

A Single Neonatal Injury Induces Life-Long Adaptations In Stress And Pain Responsiveness

Victoria, Nicole C 27 August 2013 (has links)
Approximately 1 in 6 infants are born prematurely each year. Typically, these infants spend 25 days in the Neonatal Intensive Care Unit (NICU) where they experience 10-18 painful and inflammatory procedures each day. Remarkably, pre-emptive analgesics and/or anesthesia are administered less than 30% of the time. Unalleviated pain during the perinatal period is associated with permanent decreases in pain sensitivity, blunted cortisol responses and high rates of neuropsychiatric disorders. To date, the mechanism(s) by which these long-term changes in stress and pain behavior occur, and whether such alterations can be prevented by appropriate analgesia at the time of injury, remains unclear. We have previously reported in rats that inflammation experienced on the day of birth permanently upregulates central opioid tone, resulting in a significant reduction in adult pain sensitivity. However, the impact on early life pain on anxiety- and stress-related behavior and HPA axis regulation is not known. Therefore the goal of this dissertation was to determine the long-term impact of a single neonatal inflammatory pain experience on adult anxiety- and stress-related responses. Neuroanatomical changes in stress-associated neurocircuits were also examined. As the endogenous pain control system and HPA axis are in a state of exaggerated developmental plasticity early in postnatal life, and these systems work in concert to respond to noxious or aversive stimuli, this dissertation research aimed to answer the following questions: (1) Does neonatal injury produce deficits in adult stress-related behavior and alter stress-related neuroanatomy through an opioid-dependent mechanism? (2) Does neonatal injury alter receptor systems regulating the activation and termination of the stress response in adulthood? (3) Are stress- and pain-related neurotransmitters altered within the first week following early life pain? (4) Is early activation of the pain system necessary for the long-term changes in anxiety- and stress-related behavior? Together these studies demonstrate the degree, severity and preventability of the long-term deficits in stress responding associated with a single painful experience early in life. The goal of this research is to promote change in the treatment of infant pain in the NICU to reduce long-term sensory and mental health complications associated with prematurity.
9

Envolvimento de receptores opióides e serotoninérgicos nos processos antinociceptivos induzidos por substância doce / Involvement of opioid and serotonergic receptors in antinociceptives process induced by sweet substance

Rebouças, Elce Cristina Côrtes 05 April 2004 (has links)
Bases: A antinocicepção induzida por substâncias doces tem sido largamente estudada. Contudo, a investigação dos neurotransmissores envolvidos nesse processo antinociceptivo ainda carece de mais estudos, pois é de extrema importância entender o envolvimento desses neurotransmissores no sistema neural que controla este tipo de antinocicepção. Objetivo: O objetivo deste estudo é clarificar o envolvimento dos sistemas opióide e serotoninérgico na antinocicepção induzida por substância doce. Método: O presente trabalho foi realizado em modelo animal (Rattus norvegicus, Rodentia, Muridae), objetivando investigar se a ingestão crônica de solução de sacarose é seguida de antinocicepção. A latência de retirada de cauda após a aplicação de estímulo nocivo térmico foi medida antes e após esse tratamento no teste de retirada de cauda (provavelmente um reflexo espinal). Não houve diferenças estatisticamente significantes entre os valores de linha basal dos diferentes grupos e foi calculado um índice de analgesia da latência de retirada de cauda antes e depois do tratamento. O envolvimento de opióides endógenos e de serotonina neste processo antinociceptivo foi pesquisado com fármacos antagonistas específicos e não-específicos dos receptores opióides e serotoninérgicos. Resultados: O efeito analgésico da ingestão de sacarose depende da concentração da solução de sacarose e do tempo de duração do consumo da mesma. Naltrexona e metisergida diminuíram a antinocicepção induzida por substâncias doce (após 14 dias de ingestão da sacarose). Estes efeitos foram corroborados pela administração periférica de naloxonazina e cetanserina. Conclusões: Os resultados sugerem o envolvimento de opióides endógenos e serotonina no processo antinociceptivo atualmente estudado. Tudo apontando para a participação de receptores opióides µ1 e serotoninérgicos 5-HT2 na regulação central da antinocicepção induzida por substâncias doces. / Rationale: Sweet substance-induced antinociception has been widely studied, and the investigation of the neurotransmitters involved in the antinociceptive process is an important way for understanding the involvement of neural system controlling this kind of antinociception. Objective: The aim of this study is to investigate the involvement of opioid and serotonergic system in the sweet substance-induces antinociception. Methods: the present work was made in animal model (Rattus norvegicus, Rodentia, Muridae); with the aim of investigating if the chronic intake of sweet substance, such as sucrose, is followed by antinociception. Their tail withdrawal latencies in the tail-flick test (probably a spinal reflex) were measured before and immediately after this treatment. As there was not statistic significant differences between baseline values of different groups, an analgesia index was calculated from the withdrawal latencies before and after treatment. The involvement of endogenous opioid and serotonin in the antinociceptive process was investigated with specific and non-specific pharmacological antagonism on opioid and serotonergic receptors. Results: The analgesic effect of sucrose intake depends on the concentration of sucrose solution and on the time during which the solution is consumed. Naltrexone and methysergide decreased the sweet substance-induced antinociception (post 14 days of sucrose intake). These effects were corroborated by peripheral administration of naloxonazina and ketanserin. Conclusions: The present results suggest the involvement of endogenous opioids and serotonin in the antinociceptive process presently studied. µ1-opioid and 5-HT2 serotonergic receptors may be involved in the central regulation of the sweet substance-produced antinociception.
10

Early Environment, Adolescent Alcohol Drinking and Neurobiological Responses to Drugs

Palm, Sara January 2014 (has links)
Genes and environment interact to determine an individual’s vulnerability or resilience to several psychiatric disorders, including alcohol use disorder (AUD). Alcohol use is often initiated during adolescence and early onset drinking is associated with increased risk for later AUD. Childhood and adolescence are periods of extensive brain maturation, which makes young individuals more susceptible to environmental influence. However, little is known about early environmental influence on reward pathways and behaviors involved in the development of AUD. Changes in the endogenous opioid and dopamine systems, as well as individual differences in risk behaviors are all believed to play important roles in the increased vulnerability seen after adverse early life events and early onset drinking. The overall aim of the thesis was therefore to investigate the influence of early environmental factors on adolescent alcohol intake, endogenous opioids, dopamine dynamics and alcohol-induced effects in rats to increase our knowledge of neurobiological factors underlying vulnerability to AUD. Furthermore, individual behavioral differences and their correlation to basal and drug-induced neurobiological responses in rats were also investigated. Animal models of different early environments, e.g. maternal separation and social vs. single housing, and adolescent alcohol consumption have been used to study effects on behavior, endogenous opioid peptides and dopamine dynamics. The results identified the amygdala and dorsal striatum as interesting brain regions in which endogenous opioids and dopamine, respectively, are impacted by early environmental factors. The amygdala and the dorsal striatum are both hypothesized to be involved in the shift from initial drug use to compulsive use and changes in these areas may be underlying environmentally increased vulnerability to AUD. Furthermore, behavioral phenotypes in relation to individual neurobiological responses were identified. High risk-taking behavior was associated with a more pronounced response to amphetamine, but the inherent dopamine response was instead associated with risk-assessment behavior. In conclusion, several brain regions of interest for future research were identified. Furthermore, the results contribute to increased understanding of factors involved in the development of vulnerability for AUD in adolescents and young adults.

Page generated in 0.0637 seconds