• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 14
  • 11
  • 9
  • 7
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 104
  • 104
  • 68
  • 23
  • 19
  • 18
  • 15
  • 15
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

A Methodology to Sequentially Identify Cost Effective Energy Efficiency Measures: Application to Net Zero School Buildings

January 2016 (has links)
abstract: Schools all around the country are improving the performance of their buildings by adopting high performance design principles. Higher levels of energy efficiency can pave the way for K-12 Schools to achieve net zero energy (NZE) conditions, a state where the energy generated by on-site renewable sources are sufficient to meet the cumulative annual energy demands of the facility. A key capability for the proliferation of Net Zero Energy Buildings (NZEB) is the need for a design methodology that identifies the optimum mix of energy efficient design features to be incorporated into the building. The design methodology should take into account the interaction effects of various energy efficiency measures as well as their associated costs so that life cycle cost can be minimized for the entire life span of the building. This research aims at developing such a methodology for generating cost effective net zero energy solutions for school buildings. The Department of Energy (DOE) prototype primary school, meant to serve as the starting baseline, was modeled in the building energy simulation software eQUEST and made compliant with the requirement of ASHRAE 90.1-2007. Commonly used efficiency measures, for which credible initial cost and maintenance data were available, were selected as the parametric design set. An initial sensitivity analysis was conducted by using the Morris Method to rank the efficiency measures in terms of their importance and interaction strengths. A sequential search technique was adopted to search the solution space and identify combinations that lie near the Pareto-optimal front; this allowed various minimum cost design solutions to be identified corresponding to different energy savings levels. Based on the results of this study, it was found that the cost optimal combination of measures over the 30 year analysis span resulted in an annual energy cost reduction of 47%, while net zero site energy conditions were achieved by the addition of a 435 kW photovoltaic generation system that covered 73% of the roof area. The simple payback period for the additional technology required to achieve NZE conditions was calculated to be 26.3 years and carried a 37.4% premium over the initial building construction cost. The study identifies future work in how to automate this computationally conservative search technique so that it can provide practical feedback to the building designer during all stages of the design process. / Dissertation/Thesis / Masters Thesis Built Environment 2016
72

Avaliação técnica e financeira da geração fotovoltaica integrada à fachada de edifícios de escritórios corporativos na cidade de São Paulo / Technical and financial evaluation of Building-Integrated Photovoltaics (BIPV) in corporate buildings in the city of São Paulo

Arthur Henrique Cursino dos Santos 17 November 2015 (has links)
As edificações comerciais, públicas e residenciais foram responsáveis em 2014 por 50% do consumo de eletricidade no país. Considerando os últimos dez anos, enquanto o consumo médio dos diferentes setores da economia cresceu 3,5% ao ano, o consumo do setor comercial cresceu 5,4%. Os edifícios de escritórios corporativos representam grandes consumidores de energia, chegando a valores superiores aos 200 kWh/m2.ano. A geração distribuída é uma solução que vem sendo estudada no país, primeiramente pela aprovação da Resolução Técnica 482:2012 da ANEEL, que regulamenta a geração de eletricidade na baixa tensão e depois pela aprovação da Portaria 381:2015 que dispõe sobre a geração de eletricidade na média tensão. Apesar do crescimento da geração por fontes fotovoltaicas no mundo, no Brasil essa geração ainda é mínima frente às fontes hídricas e térmicas. Nos edifícios de escritórios corporativos a instalação de painéis fotovoltaicos na cobertura é bastante limitada, devido à disputa de espaço com outros serviços, como as áreas técnicas e heliponto. Nesse contexto, as fachadas aparecem como oportunidade para geração de eletricidade, através da tecnologia fotovoltaica integrada na arquitetura (BIPV). Nesse estudo foi avaliada a viabilidade técnica e financeira da geração integrada à arquitetura dos edifícios de escritórios corporativos da cidade de São Paulo a partir do uso de vidros fotovoltaicos. Os resultados indicam que existe um potencial de redução de 15% no consumo de eletricidade anual, considerando tanto a geração de eletricidade, quanto a redução do consumo do sistema de ar condicionado, que tem sua carga térmica reduzida com o uso dos vidros fotovoltaicos. A tecnologia já é viável financeiramente no mercado brasileiro quando associada ao vidro refletivo, apresentando um tempo de retorno simples de 2,9 anos, uma TIR de 34,2% e um VPL de 1.779.257,53, para um edifício em torre com 28.010 m2 de área condicionada e 21 andares. / Commercial, public and residential buildings accounted in 2014 for 50% of electricity consumption in Brazil. Considering the last ten years, while the average consumption of the different sectors of the economy increased by 3.5% per year, the consumption of the commercial sector grew 5.4%. Corporate buildings are major energy consumers, reaching values in the range of 200 kWh/m2.year. Distributed generation is a solution that has been studied in the country, primarily with the approval of the Technical Resolution 482:2012, which regulates the generation of electricity at low voltage and then with the approval of the General Ordinance 381:2015 which regulates the generation of electricity at medium voltage. Despite the growth in generation from photovoltaic sources in the world, in Brazil this generation is still minimal when compared to other sources, like hydro and thermal plants. In commercial buildings, the space to install photovoltaic panels on the roof is quite limited. In this context the facades appear as an opportunity to generate electricity through photovoltaic technology integrated in the architecture (BIPV). In this study we evaluated the technical and financial feasibility of the integrated generation to the architecture of corporate buildings in the city of Sao Paulo. The results indicate a 15% reduction potential in annual electricity consumption, considering both the electricity generation and the reduction of the consumption by the air conditioning system, which has a reduced thermal load when photovoltaic glass is used. The BIPV technology is already feasible in the Brazilian market when coupled with reflective glass, showing a simple payback of 2.9 years, an IRR of 34.2% and a NPV of 1,779,257.53, for a building with 28,010 m2 and 21 floors.
73

Systemlösningar för ventilation på en förskola : Energi- samt ekonomiutvärdering för CAV- och VAV-ventilation för olika luftbehandlingsaggregat

Rundblad, Mattias, Walid, Nasim January 2017 (has links)
Energieffektiviseringar behövs för att klara klimatmålen. Syftet med detta arbete har därför varit att undersöka ventilationen i förskolebyggnaden Rymden i Eskilstuna kommun. Fokus i arbetet har legat på att göra en analys på energibesparingar där variabelt luftflöde, VAV-system och konstant luftflöde, CAV-system jämförs i tre olika scenarier. Metodiken för att lösa arbetets frågeställningar har varit genom informationsinsamling, beräkningsprogram, intervju samt platsbesök. Informationsinsamling har varit i form av vetenskapliga tidskrifter samt arbeten som behandlar det aktuella problemområdet. Olika programvaror har använts, dessa är MagiCAD, IDA ICE, Sektionsdata 4.21 samt Microsoft Excel. För ökad förståelse för den aktuella byggnaden har platsbesök gjorts på förskolebyggnaden samt en intervju med den projektöransvarige för ventilationen i förskolan. Resultatet visar att den mest energieffektiva systemlösningen är en roterande värmeväxlare med VAV-styrning i kombination med en korsströmsvärmeväxlare för köksavdelningen. VAV-styrning med en sådan systemlösning har en total årlig energianvändning på 20 684 kWh, medan CAV-systemet med samma systemlösning använder 30 900 kWh. Ekonomisk analys visar däremot att CAV-systemet med samma systemlösning är mest lönsam. Den totala livscykelkostnaden, LCC ligger på 2 386 857 kr för CAV-systemet vid en kalkyltid på 30 år, i jämförelse med 2 420 117 kr för VAV-systemet. För att VAV-systemet skall vara lönsam, visar känslighetsanalysen att kalkylräntan måste sjunka från 5 % till 2,56 % eller energiprisutvecklingen öka med 2,44 % årligen eller en sänkning av den årliga underhållskostnaden för VAV-styrning med 2 164 kr. Övrig känslighetsanalys visar att vid nederbörd då personer stannar inomhus är det fördel för VAV-systemet, då skillnaden i total LCC-kostnad sjunker med 1 758 kr. Vid 74 % av personnärvaro minskar LCC-skillnaden mellan systemen från 39 240 kr till 26 371 kr, alltså utgör detta även en fördel för VAV-systemet. Slutsatsen som dras för förskolebyggnaden Framtiden är att större energibesparingar kan göras med ett VAV-system, men ett CAV-system är bättre ur en ekonomisk synpunkt. Känslighetsanalysen visar dock att små förändringar behövs för att VAV-systemet skall bli ekonomiskt lönsamt. Andra faktorer som påverkar valet mellan VAV- och CAV-system är exempelvis en minskning av personnärvaron relativt till det dimensionerade. En sådan minskning utgör en fördel för VAV-systemet. Detta på grund av att med ett CAV-system överventileras byggnaden. Även högre specifik fläkteffekt har en stor betydelse i valet, då mer energiåtgång till fläktarna leder till större energibesparing för VAV-system. En högre temperaturverkningsgrad för luftbehandlingsaggregat medför däremot en fördel för CAV-system. / This thesis work has been done in collaboration with Sweco Systems in Eskilstuna, Sweden. The purpose with this work is to investigate the ventilation in a preschool in Eskilstuna. The focus of the work is to analyze the potential energy savings of using a variable air volume system instead of a constant air volume system. An analysis is also made to investigate the economical profitability of three different scenarios. The method used to solve the problem formulation has been through gathering information, in form of scientific journals in the current problem area. Information has also been gathered through an interview and a site visit. Various software has been used in this thesis work for calculations, such as MagiCAD, IDA ICE, Sektionsdata 4.21 and Microsoft Excel. The result shows that the most energy efficient solution is a rotary heat exchanger with variable air volume control in combination with a cross-flow heat exchanger for the kitchen section. However, the most profitable solution from an economical point of view is the same system, but with constant air volume control. Sensitivity analysis shows that for a profitable variable air volume system, either the interest rate has to be lowered from 5 % to 2,56 %, the energy price needs to increase by 2,44 % yearly. Or maintenance cost for the variable air volume system needs to be lowered by 2 164 kr. The conclusion of this thesis work is that energy savings can be done with a variable air volume system. However from an economical point of view, the constant air volume is better than variable air volume for the investigated preschool. The sensitivity analysis shows that small changes are needed to make a variable air volume system profitable. The choice between the systems are influenced by certain factors. A decrease of the attendance than the dimensioned are an advantage for variable air volume systems. This is due to the fact that a constant air volume system ventilates more than needed. A higher specific fan power number are also of great importance in the choice, as more energy consumption by the fans leads to greater energy savings for variable air volume systems.
74

NANDRAD 1.4 building simulation model

Paepcke, Anne 01 December 2017 (has links) (PDF)
NANDRAD is a dynamic building energy simulation program. It calulates heating/cooling requirements and electric power consumption with respect to realistic climatic conditions and dynamic room usage. The model includes one-dimensional spatially resolved heat transport through multi-layered walls and thermal storage of solid components (room furniture/building walls). Consequently, massive constructions forms in the European area are very well represented. Further, NANDRAD calculates geometrical long radiation heat exchange inside the room. Heating systems may be modeled with a high level of geometrical detail, i.e. surface heating systems as part of the wall constructions and radiant heaters inside the room. NANDRAD can be applied for passive building simulation, energy optimization and thermal comfort analysis with respect to a very detailed building representation. In this terms, the model supports the simulation of a large number of zones and walls without need for subgrouping or other model reduction strategies.
75

Energetická simulace vlivu zemního výměníku tepla na provoz rekuperační jednotky teplovzdušného vytápění / Energy simulation of ground heat exchanger influence to operation of warm-air heating recuperation unit

Kolbábek, Antonín January 2009 (has links)
The thesis deals with energy simulation of a heat recovery system in coupling with a ground heat exchanger (GHE) in a low-energy family house with warm-air heating and ventilation. The effect of GHE on operation and effectiveness of a heat recovery unit was assessed from the results of the simulation. Next, energy and economic benefits of the heat recovery with and without GHE and consequent savings were evaluated as well. The profitability of the investment was assessed using comparison with the investment costs. Recommendations for the operation of the system were suggested.
76

Náhrada klasického zemního výměníku tepla solankovým u rodinného domu s teplovzdušným vytápěcím systémem / Substitution of a classic ground heat exchanger by a brine one in a family house with warm-air heating system

Sokola, Robert January 2010 (has links)
The thesis deals with an energy simulation of a ground heat exchanger (GHE) in classical and brine performance, which is used as an accessory of warm air heating system recovery in a low-energy family house. On basis of simulation results, the benefits of both heat exchangers were assessed. Furthermore, the energy and economics savings of heat recovery coupled with GHE were evaluated. Comparing the investment costs, the profitability of each investment were assessed and recommendations for the operation, implementation and appropriateness were outlined.
77

Budovy pro vzdělávání - energie a vnitřní prostředí / Buildings for education - energy and indoor environment

Čišecký, Ladislav January 2017 (has links)
Diploma thesis deals with evaluation of indoor environment of a school complex in atypical Himalayan alpine environment which is totally dependent on energy originating from renewable sources. Structural design of buildings allows maximum utilization of solar energy which is the only one actually available source of energy in this area. The buildings are de-scribed in detail, as well as measurement conducted in buildings during the last year. The out-comes of measurements are compared with desired values. The thesis is also focused on math-ematical simulations by using BSim software. The output of a building energy simulations is an energy use prediction and design of appropriate measures to improve the current situation.
78

Life Cycle Analysis and Life Cycle Cost Assessmentof a Single-family house Energy Renovation : Case study Växjö, Sweden

Abou Ghadir, Mohammed, Aghaei, Zahra January 2022 (has links)
Humans are increasingly influencing the climate and the temperature of the Earth by burning fossilfuels, destroying forests, and raising livestock. This adds massive amounts of greenhouse gases(GHG) to those already present in the atmosphere, amplifying the greenhouse effect andcontributing to global warming. The building sector accounts for a significant amount ofgreenhouse gas emissions. Decarbonizing the building industry can result in significant emissionreductions in the future years. Sweden's energy and climate goals have been updated, and some ofthem include reducing GHG emissions in the building sector, increasing energy efficiency, andmaking electricity production 100 percent renewable. In Sweden, energy renovations in singlefamily houses (SFHs) have the potential to reduce GHG emissions and improve energy efficiency,but the rate of energy renovations remains low because of financial, social, and behavioral barriers.This thesis aims to use LCA and LCC methodologies to assess energy renovations on SFH inVäxjö by combining various combinations of energy efficiency measures (EEMs) to reduce energyuse. The energy performance and eight different renovation scenarios using different EEMs havebeen evaluated for the selected single-family building. To evaluate building renovation measures,we developed a method based on life cycle assessment (LCA) and life cycle cost (LCC) thatincorporates building information modeling (BIM). Five different renovation measures werecombined in eight scenarios in this research, including different thicknesses of thermal insulationfor walls and roofs, triple-glazed windows, and doors with different U-values, air-source heatpumps, mechanical ventilation with heat recovery, and solar photovoltaic. The present cost valuesof renovation measures over 50 years for LCC calculation were calculated. The global warmingpotential (GWP) of each renovation measure was estimated over 50 years using One-click LCA.According to the findings of this thesis project, scenarios 1 and 8 had the lowest and highestreductions in primary energy number, respectively. Scenarios 5, 6, 7, and 8 are the most costeffective in comparison to other scenarios. All scenarios resulted in a reduction in GWP impactfrom an LCA perspective in which scenario 7 resulted in the highest reduction in GWP impact.
79

Simulation and Optimization of Desiccant-Based Wheel integrated HVAC Systems

Yu-Wei Hung (11181858) 27 July 2021 (has links)
Energy recovery ventilation (ERV) systems are designed to decrease the energy consumed by building HVAC systems. ERV’s scavenge sensible and latent energy from the exhaust air leaving a building or space and recycle this energy content to pre-condition the entering outdoor air. A few studies found in the open literature are dedicated to developing detailed numerical models to predict or simulate the performance of energy recovery wheels and desiccant wheels. However, the models are often computationally intensive, requiring a lot of time to perform parametric studies. For example, if the physical characteristics of a study target change (e.g., wheel diameter or depth) or if the system runs at different operating conditions (e.g., wheel rotation speed or airflow rate), the model parameters need to be recalculated. Hence, developing a mapping method with better computational efficiency, which will enable the opportunity to conduct extensive parametric or optimal design studies for different wheels is the goal of this research. In this work, finite difference method (FDM) numerical models of energy recovery wheels and desiccant wheels are established and validated with laboratory test results. The FDM models are then used to provide data for the development of performance mapping methods for an energy wheel or a desiccant wheel. After validating these new mapping approaches, they are employed using independent data sets from different laboratories and other sources available in the literature to identify their universality. One significant characteristic of the proposed mapping methods that makes the contribution unique is that once the models are trained, they can be used to predict performance for other wheels with different physical geometries or different operating conditions if the desiccant material is identical. The methods provide a computationally efficient performance prediction tool; therefore, they are ideal to integrate with transient building energy simulation software to conduct performance evaluations or optimizations of energy recovery/ desiccant wheel integrated HVAC systems.
80

RISK-INFORMED MULTI-CRITERIA DECISION FRAMEWORK FOR RESILIENCE AND SUSTAINABILITY ASSESSMENT OF BUILDING STRUCTURES

Asadi, Esmaeel 28 January 2020 (has links)
No description available.

Page generated in 0.0734 seconds