• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Flexibility Options in Energy Systems: The influence of Wind - PV ratios and sector coupling on optimal combinations of flexible technologies in a European electricity system

Zöphel, Christoph 01 March 2022 (has links)
Within the present work, the main objective is to identify interactions between flexibility demand and flexibility supply. Therefore, three research fields regarding the future transformation of the European energy system are addressed. First, an expansion of intermittent renewable energy sources (iRES) is discussed taking the potentials of wind and PV technologies into account. The analysis is based on fundamental considerations of generation characteristics as well as available potentials across 17 countries in central-western Europe. To emphasis the differences in electricity generation between wind and PV, an iRES expansion model is developed coping for geographically highly resolved weather data as well as for limitations of iRES potentials due to land-use restrictions and for energy-policy constraints. Three scenarios with varying Wind-PV ratio in total iRES electricity generation are evaluated. Second, the options to provide flexibility to balance the flexibility demand are introduced and mathematically implemented in ELTRAMOD. Therefore, the model was adjusted to represent multiple flexible technologies for upward, downward and shifting flexibility provision to cover the residual load. In a system perspective and a greenfield approach, the linear electricity market model enables the analysis of cost-optimal combinations of flexibility options against the background of scenarios with different flexibility demands. In addition, the third research field addresses the emerging developments of sector coupling by including selected Power-to-X technologies. A second scenario dimension analyses the role of energy storages in the energy end-use sectors for a more flexible sector coupling. The results underline the importance of the Wind-PV ratios in electricity generation when assessing flexibility demand and flexibility supply in model-based energy system analysis. Due to the higher seasonality of PV, the residual load parameter indicate higher iRES integration challenges in terms of flexible capacity requirements. Particularly the provision of spatial and temporal balancing flexibility is significantly influenced by a higher wind or a higher PV share in the iRES mix. With sector coupling, the value of temporal shifting is increasing. Hourly storages are not only highly sensitive to the Wind-PV ratio, but in addition strongly impacted by sector coupling. In both dimensions, a higher PV share is increasing the value for short-term shifting. Furthermore, sector coupling increases the need for additional electricity generation. Thereby, for peak-load capacity provision gas-fuelled power plant are optimal in the present work increasing the total emissions especially with higher PV shares. The sensitivity analysis shows the value of additional iRES capacities as well as of storage cost reductions to further reduce emissions.
12

Demand Side Management in Deutschland zur Systemintegration erneuerbarer Energien

Ladwig, Theresa 10 July 2018 (has links)
Durch den Ausbau an Wind- und PV-Anlagen in Deutschland wird der Flexibilitätsbedarf im Stromsystem steigen. Der Flexibilitätsbedarf kann zum einen durch verschiedene Technologien, z.B. Speicher oder Netze, und zum anderen durch die Stromnachfrage bereitgestellt werden. Eine gezielte Steuerung der Stromnachfrage wird als Demand Side Management (DSM) bezeichnet. Der zunehmend wetterabhängigen und fluktuierenden Stromerzeugung in Deutschland steht jedoch eine bis heute weitgehend unelastische Nachfrage gegenüber. In der Literatur sind verschiedene Arbeiten zu finden, die das Potential zur Lastabschaltung und verschiebung in Deutschland untersuchen. Hierbei liegt der Fokus auf absoluten Werten. Saisonale oder tageszeitliche Unterschiede bleiben dabei häufig unberücksichtigt. Die vorliegende Dissertation greift an dieser Stelle an und untersucht das Potential ausgewählter DSM-Anwendungen in stündlicher Auflösung. Die Ergebnisse zeigen, dass das verfügbare Potential starken saisonalen und tageszeitlichen Schwankungen unterliegt. Dementsprechend wird das DSM-Potential überschätzt, wenn nur absolute Werte betrachtet werden. Darüber hinaus zeigt die Autorin, welche Entwicklungen in den nächsten Jahren hinsichtlich der Verfügbarkeit des DSM-Potentials zu erwarten sind. Basierend auf der Potentialermittlung wird in der Dissertation die Rolle von DSM in einem EE-geprägten Stromsystem modellbasiert untersucht. Hierfür wird das lineare Optimierungsmodell ELTRAMOD, das den deutschen und europäischen Strommarkt abbildet, weiterentwickelt. Anhand verschiedener Szenarien wird zum einen der Beitrag von DSM zur Systemintegration von erneuerbaren Energien in Deutschland und zum anderen die Wechselwirkungen mit anderen Flexibilitätsoptionen (z.B. Speicher) untersucht. Die Ergebnisse zeigen, dass die DSM-Kategorien Lastabschaltung und verschiebung nur kurzzeitig auftretende Schwankungen der Einspeisung aus erneuerbaren Energien ausgleichen können. Zum Ausgleich großer Überschussmengen aus erneuerbaren Energien sind hingegen Power-to-X-Technologien, z.B. Power-to-Heat, besser geeignet.
13

Evaluating the impact on the distribution network due to electric vehicles : A case study done for Hammarby Sjöstad / Påverkan på distributionsnätet från elbilar : En fallstudie gjord på Hammarby Sjöstad

Karlsson, Robert January 2020 (has links)
When the low voltage electric grid is dimensioned electric loads are predicted by analyzing the area by certain factors such as geographical data, customer type, heating method etc. So far, the charging of Plugin Electric Vehicles (PEVs) is not considered as one of these factors. Approximately 30% of the distribution grid in Sweden is projected to need reinforcements due to the increased loads from PEVs during winters if the charging isn’t controlled. In addition to this Stockholm face the problem of capacity shortage from the transmission grid, limiting the flow of electricity into the city. This research is therefore conducted to analyze the impact that the increase of PEVs will have on the distribution grid in the future. This thesis simulates the electric grid for three substations located in Hammarby Sjöstad by using power flow analysis and electric grid data from 2016. To approach this problem a method to disaggregate the total power consumption per substation into power consumption responding to each building was developed. In addition to this the number of PEVs in the future was projected. Nine different scenarios were used to compare different outcomes for the future, namely the years of 2025 and 2040. In order to simulate the worst possible case for the electric grid all the PEVs were assumed to be charged at the same time, directly when arriving home on the Sunday when the power demand peaks in 2016. The results indicate that PEVs can have a considerable impact on the components of the low voltage distribution network and controlled charging should be implemented. By examining the impact on the simulated electric grid from the different scenarios the limit of PEV penetration is found. In the area of Hammarby this limit seems to be around 30 % of the total cars if there is no controlled charging. Without any controlled charging the peak power demand increases by 30% with a 30% share of PEVs, which is projected to happen in 2025. In 2040 when share of PEVs is projected to be about 95% the peak power is instead increased by more than 100% which shows the impact that PEVs can exert on the electric grid. Utilizing a simple method of controlled charging where the PEVs are instead charged during the night when the power demand is low, the peak power is not increased at all. This also results in the small cost benefit for PEV owners since the electricity is cheaper during the night and controlled charging can therefore save about 15% of the electricity charging cost. However, the main savings are for the grid owners since the need to reinforce the grid is heavily reduced. In addition to this the power losses are reduced heavily from about 14% down to 5% in the electric grid that is simulated. / När dimensioneringen av distributionsnätet utförs analyseras området genom att räkna med elektriska laster som till exempel kan bero på geografiska data, typ av konsument, uppvärmningsmetod etcetera. Än så länge har laddningen av elbilar (PEVs) inte varit en av dessa faktorer trots den förväntade tillväxten av elbilar. Ungefär 30% av Sveriges distributionsnät förväntas behöva förstärkningar på grund av den ökade elkonsumtionen från elbilar under vintrarna om laddningen inte kontrolleras. Utöver detta står Stockholm inför problemet med effektbrist från elöverföringsnätet. Denna uppsats genomförs således för att analysera påverkan från elbilar på fördelningsnätet i framtiden. Denna masteruppsats simulerar det elektriska nätet för tre nätstationer i Hammarby Sjöstad genom en analys av effektflödet. En metod för att disaggregera elkonsumtionen per nätstation ned till elkonsumtionen per byggnad utvecklades och antalet elbilar i framtiden uppskattades. För att utvärdera elbilars påverkan skapades nio olika scenarion för framtiden genom att undersöka hur det kommer att se ut år 2025 och år 2040. Genom att anta att laddningen av alla elbilar i området sker samtidigt, samma tid som den maximala förbrukningen av el sker under en söndag 2016, analyseras det värsta möjliga scenario för det elektriska nätet. Resultaten visar att elbilar kan ha enorm påverkan på de maximala lasterna för ett lågspänningsnät och därför kommer kontroll av laddningen behövas. Genom att undersöka elnätets påverkan i de olika scenariona uppskattades gränsen för hur många elbilar det modellerade elnätet klarar av. I Hammarby Sjöstad ligger denna gräns på ungefär 30% elbilar. Utan kontrollerad laddning ökar maxlasten med 30% år 2025 då antalet elbilar förväntas vara 30% av alla bilar i Hammarby Sjöstad. År 2040 då antalet elbilar uppnår ungefär 95 % av alla bilar ökar maxlasterna med mer än 100% vilket visar den enorma påverkan elbilar kan ha på elnätet. Genom att använda en simpel modell av kontrollerad laddning som består av att flytta laddningen från eftermiddagen till natten, då förbrukningen av elektricitet är låg, ökar inte maxlasten för dygnet alls jämfört med scenariot utan elbilar. Detta resulterar också i besparingen av elektricitetskostnad för elbilsägaren med cirka 15% eftersom elektriciteten ofta är billigare under natten jämfört med kvällens elpriser. Detta är dock små summor jämfört med besparingar elnätsägarna kan göra då elnätet inte behöver förstärkas lika mycket som skulle behövas utan kontroll av laddningen. Utöver detta så sänks även förlusterna av elektricitet i det simulerade nätet från 14% ned till 5% genom att utnyttja denna modell av kontrollerad laddning.
14

Optimisation of charging strategies and energy storage operation for a solar driven charging station

Gong, Jindan January 2019 (has links)
The Swedish energy sector is undergoing transformational changes. Along with a rapid growth of renewables and a shift towards electromobility, the transformation is expected to bring challenges to the power system in terms of grid instability and capacity deficiency. Integrating distributed renewable electricity production into the electric vehicle (EV) charging infrastructure is a promising solution to overcome those challenges. The feasibility of implementing such a charging infrastructure system in northern Sweden is however uncertain, as the solar resources are scarce in the long winter period. This study aims to maximise the value of a solar powered EV charging station, placed in a workplace environment in Umeå. An integrated system model of the charging station is developed, comprising separate models of a solar PV system, a battery energy storage system (BESS), the workplace EV fleet and the building Växthuset, onto which the charging station will be installed. Three scenarios are developed to study the charging station’s system performance under different EV charging strategies and BESS dispatch strategies. Two additional scenarios are developed to study the potential grid services that the charging station can provide in the winter period. A techno-economic assessment is performed on each scenario’s simulation results, to measure their effect on the charging station’s value. It involves analysing the charging station’s profitability and how well the BESS is utilised by the end of a ten-year project period. The charging station’s grid impact is further assessed by its self-consumption of solar power, peak power demand and the grid energy exchange. The assessed charging station values indicate that the overall grid impact was reduced with dynamic EV charging strategies and that the BESS capacity utilisation was strongly influenced by its dispatch strategy. The charging station further implied a net capital loss under the explored scenarios, even while the dynamic charging strategies brought by a slightly increased economic value. Moreover, the studied winter scenarios showed a great potential for the charging station to provide ancillary services to the local distribution grid while maintaining an efficient BESS capacity utilisation. The winter period’s peak power demand was significantly reduced by optimising the BESS operation to shift peaks in the building’s load profile, and peaks caused by the additional EV charging demand and the EV heaters, to off-peak hours. On this basis, future research is recommended for improved simulations of the charging station operation and to study additional value-added features that the solar driven charging station can bring. / Sveriges energisystem genomgår en omfattande omställning. Förändringar i form av en ökad andel förnybar elproduktion och elektrifieringen av transportsektorn förväntas medföra stora utmaningar för elsystemets nätstabilitet och överföringskapacitet. Att integrera in distribuerad, förnybar elproduktion som en del av laddinfrastrukturen för elfordon ställer sig som en lovande lösning för att möta de väntande utmaningarna. Möjligheterna att tillämpa en sådan lösning i norra Sverige är däremot mindre självklara, då solresurserna är knappa under vintertid. Det här examensarbetet syftar till att maximera nyttan av en soldriven laddstation för elbilar, placerad på ett arbetsplatsområde i Umeå. En integrerad energisystemmodell av laddstationen har skapats, bestående av systemmodeller av solpaneler, ett batterienergilager, arbetsplatsens elbilsflotta samt byggnaden Växthuset, som laddstationen ska anslutas till. Tre scenarier har utformats för att undersöka hur laddstationens prestanda förändras beroende på olika laddstrategier för elbilarna och batterienergilagrets styrning. Ytterligare två scenarier har utvecklats för att utforska möjliga nättjänster som laddstationen kan bistå med under vintertid. Laddstationens värde har vidare bedömts utifrån systemets prestanda i de olika scenarierna. Bedömningen grundar sig på laddstationens lönsamhet och hur välutnyttjat batterienergilagret är efter en kalkylperiod på 10 år, samt på specifika påverkansfaktorer på elnätet. Faktorerna omfattar konsumtionen av egenproducerad el, toppeffektuttaget och nätöverföringarna orsakade av laddstationen. Från värderingen av laddstationen framgår det att de dynamiska laddstrategierna ledde till en, överlag, minskad påverkan på elnätet samt att styrningen av batterienergilagret hade stor inverkan på dess utnyttjandegrad. Laddstationens nettonuvärde förblev negativt i de tre scenarierna, även om de dynamiska laddstrategierna, ökade dess ekonomiska värde till en viss del. Vidare tyder simuleringen av vinterscenarierna på att det finns en stor potential för laddstationen att erbjuda tjänster för lokalnätet och samtidigt nyttiggöra sig av batterienergilagret. Växthusets toppeffektuttag reducerades märkbart genom att optimera batteristyrningen till att flytta effekttoppar orsakade av Växthusets ellastkurva eller elbilarnas laddning och uppvärmning, till de timmar där lasten var lägre. Med detta i bakgrund föreslås vidare studier som fokuserar på den integrerade energisystemmodellen för att förbättra simuleringarna, samt att undersöka möjligheterna till att erbjuda fler nättjänster, som ökar laddstationens mervärde.
15

Heat atlas of Gotland : A GIS-based support tool for modelling the heat sector.

Segerström, Hugo January 2023 (has links)
With sharp climate goals to be climate neutral by 2045, Sweden needs to rapidly change the present energy system. The Swedish government has assigned Gotland as a pilot area for the energy transition, due to its geographical constrains as an island, and because of the major structural changes planned for Gotland’s energy supply and industrial establishment. These changes create the opportunity to build a more flexible, efficient, and robust energy system. To support the transition, IVL Swedish Environmental Research institute has initiated the GOT Heat project. This thesis contributes to the GOT Heat project by developing a GIS model that represent the heat sector of Gotland. The model has been developed in parallel with a TIMES model. The purpose of the GIS model is to be used as a heat atlas and to support the TIMES model of Gotland’s energy system by spatial visualization and knowledge. The GIS model was successfully developed and utilized to enhance the representation of Gotland’s energy system within the TIMES model. Data from Boverket, Lantmäteriet, Energimyndigheten and companies has been collected, processed for the development of the GIS model. The incorporation of spatial knowledge and visualization of the heat sector through the GIS model is expected to improve the overall outcomes of the TIMES model. The heat atlas also proved to be a valuable support tool, enabling the visualization of excess heat potentials within the heat sector. This visualization provides insights into potential opportunities for industrial and sector coupling, which would lead to more efficient utilization of excess heat.

Page generated in 0.1107 seconds