• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 14
  • 10
  • 8
  • 8
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 155
  • 155
  • 40
  • 27
  • 19
  • 18
  • 18
  • 18
  • 16
  • 14
  • 14
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Thermochemical Storage and Lithium Ion Capacitors Efficiency of Manganese-Graphene Framework

Hlongwa, Ntuthuko Wonderboy January 2018 (has links)
Philosophiae Doctor - PhD (Chemistry) / Lithium ion capacitors are new and promising class of energy storage devices formed from a combination of lithium-ion battery electrode materials with those of supercapacitors. They exhibit better electrochemical properties in terms of energy and power densities than the above mentioned storage systems. In this work, lithium manganese oxide spinel (LiMn2O4; LMO) and lithium manganese phosphate (LiMnPO4; LMP) as well as their respective nickel-doped graphenised derivatives (G-LMNO and G-LMNP) were synthesized and each cathode material used to fabricate lithium ion capacitors in an electrochemical assembly that utilised activated carbon (AC) as the negative electrode and lithium sulphate electrolyte in a two-electrode system. The synthetic protocol for the preparation of the materials followed a simple solvothermal route with subsequent calcination at 500 - 800 ?C. The morphological, structural and electrochemical properties of the as prepared materials were thoroughly investigated through various characterisation techniques involving High resolution scanning electron microscopy (HRSEM), High resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), Small-angle X-ray scattering (SAXS), Electrochemical impedance spectroscopy (EIS), Cyclic voltammetry (CV) and Galvanostatic charge/discharge.
122

Development of novel ionic liquid electrolytes for metal oxide-based micro-supercapacitors

Shamsudeen Seenath, Jensheer 04 1900 (has links)
Thèse en cotutelle (avec l'Université Toulouse 3 - Paul Sabatier) en Science des matériaux et Electrochimie / Avec le développement des systèmes électroniques embarqués se pose la question de la miniaturisation des dispositifs de stockage d’énergie. De nos jours, cette fonction est principalement assurée par des micro-batteries. Ces composants possèdent cependant une faible puissance disponible, une durée de vie limitée et un domaine de fonctionnement en température restreint. Les “micro-supercondensateurs” sur puce permettraient de s’affranchir de ces limitations, mais ils ne sont aujourd’hui qu’au stade de la recherche universitaire avec des densités d’énergie bien inférieures à celles des micro-batteries. L’énergie et la puissance stockées dans un supercondensateur sont proportionnelles au carré de la fenêtre de potentiel, qui dépend elle-même de la stabilité électrochimique de l’électrolyte utilisé. L’électrolyte joue ainsi un rôle prépondérant sur les propriétés des supercondensateurs (tension, gamme de température, courant de fuite, durée de vie…). Cette thèse vise à développer des liquides ioniques protiques et aprotiques dédiés aux micro-supercondensateurs pseudocapacitifs à base d'oxydes métalliques (RuO2, MnO2). Les électrolytes à base de liquides ioniques présentent des propriétés intéressantes, notamment une faible pression de vapeur saturante, une stabilité aux hautes températures, ainsi qu’une large fenêtre de potentiel. Ils contribuent ainsi à améliorer la densité d’énergie surfaciques, principal problème rencontré par les micro-supercondensateurs actuels. Les liquides ioniques étudiés ont été conçus sur la base de leurs structures et leurs propriétés physico-chimiques. Des caractérisations électrochimiques ont été réalisées avec des micro-supercondensateurs à base d’oxyde de ruthénium et d’oxyde de manganèse. De très bonnes performances ont été obtenus en utilisant des collecteurs de courant poreux à grande surface spécifique. Les électrolytes liquides constituant cependant un verrou technologique à la réalisation de micro-supercondensateurs fonctionnels compatible avec les procédés de microfabrication, des ionogels composés d’une matrice solide dans laquelle a été confinée le liquide ionique ont également été réalisés. / The rising growth of smart and autonomous microelectronic devices in the IoT (Internet of Things) era urges the development of advanced microscale energy sources with tailor-made features and customized energy/power requirements. Micro-supercapacitors (MSCs) emerged as potential energy storage devices complementing micro-batteries to power ubiquitous sensor networks needed to foster the development of IoT. However, the low cell voltage and low energy density remain major bottleneck that prevents their application at a large scale in real devices. To mitigate this issue, several studies have been devoted to the engineering of MSC electrode materials and structural architecting of current collectors to enhance the surface area and areal energy density by considering the limited available footprint area. This, however, has associated challenges such as a complex synthesis route, poor interfacial and mechanical stability of the electrode, and electrolyte compatibility issues, among others. Another key challenge to solve for reaching high energy density values in MSCs is the limited electrochemical stability window (ESW) of the electrolytes used as energy stored is directly related to the square of the cell voltage. The electrolytes play a major role in deciding the ESW and liquid-state electrolytes commonly used are troublesome for the microfabrication process due to leakage, evaporation, and safety issues. Therefore, it’s imperative to develop alternative electrolytes including solid-state electrolytes reconcilable to the target application of MSCs. This thesis aims at developing novel ionic-liquid (IL)-based electrolytes (both protic and aprotic) suitable for pseudocapacitive metal oxide (e.g., RuO2, MnO2)-based micro-supercapacitors (MSCs). IL-based electrolytes exhibit key properties including low vapor pressure, high temperature stability, low melting point, etc. with a wide ESW and help improve energy density performance, overcoming the major bottleneck faced by current MSCs. During this project, ILs are rationally designed based on their physicochemical properties. The detailed structure-property and electrochemical characterization studies were done using RuO2 and MnO2-based MSCs. We demonstrate state-of-the-art performance by developing high surface area porous current collectors with enhanced mass loading and solid-state devices using ionogel electrolytes, enabling their feasible integration with microelectronics to power connected IoT sensor networks.
123

Amino Functionalization Optimizes Potential Distribution: A Facile Pathway Towards High-Energy Carbon-Based Aqueous Supercapacitors

Yu, Minghao, Wang, Zifan, Zhang, Haozhe, Zhang, Panpan, Zhang, Tao, Lu, Xihong, Feng, Xinliang 16 April 2021 (has links)
Resolving the mismatch between the practical potential window (PPW) and the available capacitive potential window of supercapacitor electrodes provides a feasible way to expand the operating voltage of supercapacitors, which further boosts energy density. Here, our research unveils a unique approach to manually control the PPW of the corresponding carbon-based supercapacitors (CSCs) by rational functionalization with amino groups. The extra pair of electrons from amino N atoms naturally adsorbs cations in the electrolyte, which rationalizes the surface charge of the carbon electrode and adjusts the PPW. A remarkable voltage expansion is achieved for CSCs, from 1.4 V to its maximum limit, 1.8 V, correspondently resulting in an approximately 1-fold increase in the energy density. Importantly, such a simple strategy endows our CSCs with an outstanding maximum energy density of 7.7 mWh cm⁻³, which is not only among the best values reported for thin-film CSCs but also comparable to those reported for Li thin-film batteries. These encouraging results are believed to bring fundamental insights into the nature of potential control in energy storage devices.
124

Particle-in-Cell Simulations of the Acceleration of Electrons from the Interaction of a Relativistic Laser Reflecting from Solid Density Targets

Ngirmang, Gregory Kodeb 01 June 2018 (has links)
No description available.
125

High energy density and durable pouch-cell graphite-based dual ion battery using concentrated hybrid electrolytes

Sabaghi, Davood, Wang, Gang, Mikhailova, Daria, Morag, Ahiud, Ahmad, Li, Dongqi, Khosravi Haji Vand, Saman, Yu, Minghao, Feng, Xinliang, Shaygan Nia, Ali 23 May 2024 (has links)
Graphite-based dual-ion batteries (GDIBs) represent a promising battery concept for large-scale energy storage on account of low cost, high working voltage, and sustainability. The electrolyte concentration plays a critical role in determining the energy density and cycle life of GDIBs. However, the concentrated electrolytes show low Lithium ions (Li+) transport kinetics, reducing their intercalation and solid electrolyte interface (SEI) formation abilities. Moreover, the GDIBs in the high cut-off voltage suffer from electrolyte degradation, and corrosion of the current collector. Herein, we report a highly concentrated electrolyte formulation based on hybrid lithium hexafluorophosphate (LiPF6) and lithium bis(fluorosulfonyl)imide (LiFSI) salts with a super-wide electrochemical stability window (6 V) and the ability to form SEI and passivation layer on graphite anode and current collector, respectively. By regulating the concentrated LiFSI electrolyte with LiPF6 and solvent additive, the coulombic efficiency of the graphite cathode can be further improved to ∼98%. As a result, GDIB pouch cell exhibits a capacity of 21 mAh g−1 (cell level) at 50 mA g−1, and 98.2% capacity retention after 300 cycles. The resultant battery offers an energy density of 90.3 Wh kg−1, along with a high energy efficiency of 87% and average discharge voltage of 4.3 V.
126

Low energy dense diet and high-intensity exercise : impact on weight and waist circumference in abdominally obese women

Sweat, Whitney M. 17 November 2011 (has links)
Aging, obesity and increased waist circumference (WC) increases risk for metabolic syndrome (MetS). MetS is a cluster of symptoms (elevated WC, triglycerides, blood pressure, fasting glucose, and decreased high-density lipoprotein cholesterol [HDL-C]) increasing risk for chronic disease. Low-energy dense (LED) diets, emphasizing whole food eating patterns, have not been examined in combination with moderate (mod)/high-intensity physical activity (PA) or dietary protein levels to determine their impact on changes in body weight (BW) and WC in premenopausal, abdominally obese women. PURPOSE: To determine the effect of two 16-wk diet and PA interventions, differing in protein intake, on BW, WC, MetS risk factors, dietary patterns, energy density (ED), and min of Mod-Hi PA. METHODS: Healthy, abdominally obese (WC≥80cm) women (n=38; 34±10y) were randomly assigned to either a 15 or 25% (+18 g/d whey protein) en from protein diet. Individualized LED diets plans decreased energy intake (EI) by ~300kcal/d; PA 5 d/wk (30-60 min/d) consisted of supervised, high-intensity Zumba classes 3d/wk (≥65%HRmax; ≥6METs) and self-selected mod-intensity PA (≥3METs) 2d/wk. Servings of fruits/vegetables, whole grains, and low-fat/fat-free dairy (LFD), fiber, high calorie beverages (BEV), ED, and PA were monitored before (T1), during (T2) and after (T3) the intervention using repeated measures ANOVA. Bonferroni simultaneous testing procedure was used in analysis of multiple comparisons. RESULTS: At T1, groups did not differ in dietary patterns, PA, BW, WC, or MetS risk. Groups responded similarly to the interventions so data were combined, with BW and WC decreasing (p<0.0001) by -4.8±2.7kg and -7.1±3.6cm, respectively. Comparing T1 vs. T2, there were increases (p<0.0001) in fruits/vegetables, (Δ=+1.5 ser/d), whole grains (Δ=+1.0 ser/d), LFD (Δ=+0.5 ser/d), fiber (Δ=+5.7g/1000 kcal), and decreases in BEV (Δ=-165 kcal/d) and ED (Δ=-0.55 kcal/g). During the intervention high-intensity Zumba PA was 87min/wk; total min of all mod-intensity PA increased by 75 min/d (p<0.0001); VO2max improved from 29.3±4.7 (T1) to 34.4±5.3 (T3) mL/kg/min (p<0.0001). Triglycerides significantly decreased (-24±52 mg/dl; p=0.006), no other significant changes occurred in MetS risk factors. Exploratory analysis indicated that increases in fruits/vegetables and LFD, and decreases ED were associated with BW loss, while increases in whole grains, fiber, LFD, and min/wk of high-intensity PA (Zumba) were associated with WC reductions. CONCLUSION: For abdominally obese women, an intervention focused on LED foods and high-intensity PA significantly reduced BW and WC and improved dietary patterns regardless of protein intake. Helping clients identify a few key factors that positively promote reductions in BW and WC may improve weight loss success, while reducing MetS risk factors. / Graduation date: 2012
127

Etude théorique de la diffusion de l’oxygène dans des oxydes diélectriques / Theoretical study of oxygen diffusion in gate oxides

Lontsi Fomena, Mireille 11 December 2008 (has links)
La miniaturisation des composants CMOS (Complementary Metal Oxide Semiconductor) impose l’emploi de matériaux diélectriques de permittivité élevée. LaAlO3 et SrTiO3 sont aujourd’hui parmi les meilleurs candidats ; toutefois, la diffusion de l’oxygène dans ces matériaux conduit à la dégradation des propriétés électriques et de l’interface avec le silicium. Ce travail théorique a pour but d’étudier les facteurs gouvernant, à l’échelle de la liaison chimique, la diffusion de l’ion oxygène. L’approche choisie repose sur la théorie de la fonctionnelle de la densité (DFT), couplée à des méthodes d’analyse de la densité électronique, et sur le développement d’un outil original : les cartes de densité d’énergie. Les régions de la densité électronique contribuant à la barrière de diffusion ont ainsi pu être identifiées; une optimisation de ces matériaux à l’échelle de la liaison chimique peut alors être envisagée. / The miniaturization of CMOS (Complementary Metal Oxide Semiconductor) components requires the use of high dielectric permittivity materials as gate oxide. LaAlO3 and SrTiO3 are among the best candidates, but the oxygen diffusion in these materials leads to the degradation of both the electrical properties and the interface with silicon. In this context, the aim of this theoretical work is to study the factors governing the oxygen ion diffusion at the chemical bonding scale. This approach is based on Density Functional Theory (DFT), coupled with electron density analysis methods, and the pioneering development of energy density cards. The regions of the electron density contributing to the diffusion barrier have been identified allowing new routes of optimization of these materials across the chemical bonding.
128

Feasibility of Nuclear Plasma Interaction studies with the Activation Technique

Nogwanya, Thembalethu January 2018 (has links)
>Magister Scientiae - MSc / Electron-mediated nuclear plasma interactions (NPIs), such as Nuclear Excitation by Electron Capture (NEEC) or Transition (NEET), can have a signi cant impact on nuclear cross sections in High Energy Density Plasmas (HEDPs). HEDP environments are found in nuclear weapons tests, National Ignition Facility (NIF) shots and in the cosmos where nucleosynthesis takes place. This thesis explores the impact of NPIs on highly excited nuclei. This impact is understood to be more intense in highly-excited nuclei states in the quasi-contiuum which is populated by nuclear reactions prior to their decay by spontaneous -ray emission. Attempts thus far have failed in measuring the NEEC process [1, 2], while NEET process has been observed experimentally [3, 4]. Direct observation of NPIs is hindered by the lack of a clear signature of their effect in HEDP environments. Hence this should test a new signature [5] for NPIs for highly-excited nuclei by investigating isomeric to ground state feeding from the isomeric state. An experiment was performed using the reactions 197Au(13C, 12C)198Au and 197Au(13C, 12C2n)196Au at Lawrence Berkeley National Laboratory in inverse kinematics with an 197Au beam of 8.5 MeV/u energy. Several measurements were performed with different target configurations. The activated foils were counted at the low-background counting facility of Lawrence Livermore National Laboratory. From these data, the double isomeric to ground state ratio (DIGS) were extracted with the assistance of the decay equations that were included in the experiment. As the NPIs effects are rather small the lines for analysis had to be chosen carefully so that the extracted ratios would not contain significant errors. The measured DIGS ratios were then compared with the result of the theoretical DIGS ratios. The results showed that the calculated DIGS ratios deviated substantially from unity although this was with large uncertainties. Because of the large errors obtained, the DIGS ratios were found to be inconclusive as a signature for detecting the effects of NPIs such as angular momentum distribution changes in HEDP environmen
129

A FRAMEWORK FOR OPTIMIZING PROCESS PARAMETERS IN POWDER BED FUSION (PBF) PROCESS USING ARTIFICIAL NEURAL NETWORK (ANN)

Mallikharjun Marrey (7037645) 15 August 2019 (has links)
<p>Powder bed fusion (PBF) process is a metal additive manufacturing process, which can build parts with any complexity from a wide range of metallic materials. Research in the PBF process predominantly focuses on the impact of a few parameters on the ultimate properties of the printed part. The lack of a systematic approach to optimizing the process parameters for a better performance of given material results in a sub-optimal process limiting the potentialof the application. This process needs a comprehensive study of all the influential parameters and their impact on the mechanical and microstructural properties of a fabricated part. Furthermore, there is a need to develop a quantitative system for mapping the material properties and process parameters with the ultimate quality of the fabricated part to achieve improvement in the manufacturing cycle as well as the quality of the final part produced by the PBF process. To address the aforementioned challenges, this research proposes a framework to optimize the process for 316L stainless steel material. This framework characterizes the influence of process parameters on the microstructure and mechanical properties of the fabricated part using a series of experiments. These experiments study the significance of process parameters and their variance as well as study the microstructure and mechanical properties of fabricated parts by conducting tensile, impact, hardness, surface roughness, and densification tests, and ultimately obtain the optimum range of parameters. This would result in a more complete understanding of the correlation between process parameters and part quality. Furthermore, the data acquired from the experimentsare employed to develop an intelligent parameter suggestion multi-layer feedforward (FF) backpropagation (BP) artificial neural network (ANN). This network estimates the fabrication time and suggests the parameter setting accordingly to the user/manufacturers desired characteristics of the end-product. Further, research is in progress to evaluate the framework for assemblies and complex part designs and incorporate the results in the network for achieving process repeatability and consistency.</p><br>
130

Espalhamento de ondas eletromagnéticas por esferas e cilindros magnéticos: confinamento e transporte de ondas no limite de pequenas partículas e independência da energia armazenada com relação à forma do centro espalhador / Electromagnetic wave scattering by magnetic spheres and cylinders: waves confinement and transport in the small particle limit and independence of the stored energy with respect to the shape of the scatterer

Arruda, Tiago José 01 October 2010 (has links)
O espalhamento eletromagnético por uma esfera com propriedades ópticas e raio arbitrários, conhecido como espalhamento de Lorenz-Mie, ou por um cilindro circular infinito, pode ser resolvido analiticamente e é comumente tratado dentro da abordagem de espalhadores dielétricos. Na região óptica, tanto meio circundante quanto partícula espalhadora possuem o mesmo valor de permeabilidade magnética. A ausência do magnetismo nessa região do espectro torna o índice de refração relativo entre os meios interno e externo ao espalhador homogêneo equivalente ao respectivo índice de impedância óptica. Em regiões espectrais de micro-ondas ou radiofrequências, entretanto, materiais ferro- e ferrimagnéticos podem exibir valores absolutos de permeabilidade magnética extremamente elevados, reduzindo então a impedância óptica em comparação ao valor correspondente de índice de refração relativo. Uma característica marcante vinculada ao magnetismo no centro espalhador é que pequenas partículas comparadas com o comprimento de onda (parâmetros de tamanho na região de Rayleigh) podem apresentar grandes seções de choque de extinção a despeito de suas pequenas seções de choque geométricas. Isso torna possível, fisicamente, a presença de picos de ressonância morfológica na energia eletromagnética interna ao centro espalhador mesmo na região de parâmetros de tamanho inferiores à unidade. Em especial, mostramos que essa energia eletromagnética possui, no regime de fraca absorção, uma relação funcional simples com o comprimento de onda incidente e a seção de choque de absorção da partícula espalhadora, independentemente do formato geométrico da mesma. No espalhamento por uma coleção de partículas magnéticas, a velocidade de transporte de energia pode ser estimada a partir da energia eletromagnética média que é armazenada no interior de um centro espalhador isolado. Dessa maneira, a validade da relação universal que encontramos entre o fator de aumento da energia eletromagnética interna ao centro espalhador e sua correspondente seção de choque de absorção (no regime de baixa absorção óptica) implica na possibilidade de estimarmos de maneira simples a velocidade de transporte de energia em um meio desordenado. Um resultado decorrente dessa aproximação é que mesmo na região de Rayleigh a velocidade de transporte de energia em um meio magnético desordenado é drasticamente reduzida, levando, por conseguinte, à redução do coeficiente de difusividade dos fótons no meio. O estudo analítico e numérico da energia eletromagnética armazenada por uma esfera e por um cilindro magnéticos irradiados por ondas planas homogêneas são os temas em foco nesta dissertação de Mestrado. / Electromagnetic scattering by a sphere with arbitrary optical properties and radius, known as the Lorenz-Mie scattering, or by an infinite right circular cylinder can be solved analytically and is widely treated in the approach of dielectric scatterers. In the optical range, both embedding medium and scattering particle have the same magnetic permeability. The absence of magnetism in this spectral range leads to the equivalence between the relative refraction and impedance indices associated with the scatterers. However, in microwave or radio-frequency ranges, ferro- and ferrimagnetic materials can exhibit extremely huge values of magnetic permeability, which reduce the optical impedance in comparison to the corresponding value of relative refraction index. One striking feature associated with the magnetism in the scatterer is that particles smaller than the wavelength (Rayleigh size region) can present large extinction cross sections in despite of their small geometric cross sections. This becomes physically possible the presence of morphology-dependent resonances in the electromagnetic energy within the scatterer even in size parameters region smaller than unity. In particular, we show that this time-averaged electromagnetic energy has, in the weak absorption regime, a simple functional relation with the incident wavelength and the scatterer absorption cross section which does not depend on the shape of the scatterer. In the multiple scattering regime, the energy-transport velocity can be estimated from the time-averaged electromagnetic energy stored in a single scatterer. Thereby, the validity of the universal relation between the internal energy-enhancement factor and the absorption cross section respective to an arbitrary scattering center (in the weak absorption regime) implies that the energy-transport velocity in disordered media can be evaluated in a simple way. From this approximation, we obtain that even in the Rayleigh size region the energy-transport velocity in disordered magnetic media is dramatically reduced, which consequently leads to a reduction of the diffusion coefficient of the photons. The analytical and numerical studies of the time-averaged electromagnetic energy within magnetic isotropic spheres and cylinders irradiated by plane waves are our aim in this Master\'s degree dissertation.

Page generated in 0.047 seconds