• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 50
  • 18
  • 18
  • 16
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Cohesive zone modeling for predicting interfacial delamination in microelectronic packaging

Krieger, William E. R. 22 May 2014 (has links)
Multi-layered electronic packages increase in complexity with demands for functionality. Interfacial delamination remains a prominent failure mechanism due to mismatch of coefficient of thermal expansion (CTE). Numerous studies have investigated interfacial cracking in microelectronic packages using fracture mechanics, which requires knowledge of starter crack locations and crack propagation paths. Cohesive zone theory has been identified as an alternative method for modeling crack propagation and delamination without the need for a pre-existing crack. In a cohesive zone approach, traction forces between surfaces are related to the crack tip opening displacement and are governed by a traction-separation law. Unlike traditional fracture mechanics approaches, cohesive zone analyses can predict starter crack locations and directions or simulate complex geometries with more than one type of interface. In a cohesive zone model, cohesive zone elements are placed along material interfaces. Parameters that define cohesive zone behavior must be experimentally determined to be able to predict delamination propagation in a microelectronic package. The objective of this work is to study delamination propagation in a copper/mold compound interface through cohesive zone modeling. Mold compound and copper samples are fabricated, and such samples are used in experiments such as four-point bend test and double cantilever beam test to obtain the cohesive zone model parameters for a range of mode mixity. The developed cohesive zone elements are then placed in a small-outline integrated circuit package model at the interface between an epoxy mold compound and a copper lead frame. The package is simulated to go through thermal profiles associated with the fabrication of the package, and the potential locations for delamination are determined. Design guidelines are developed to reduce mold compound/copper lead frame interfacial delamination.
32

Mixed-mode partition theories for one-dimensional fracture

Harvey, Christopher M. January 2012 (has links)
Many practical cases of fracture can be considered as one-dimensional, that is, propagating in one dimension and characterised by opening (mode I) and shearing (mode II) action only with no tearing (mode III) action. A double cantilever beam (DCB) represents the most fundamental one-dimensional fracture problem. There has however been considerable confusion in calculating its mixed-mode energy release rate (ERR) partition. In this work, new and completely analytical mixed-mode partition theories are developed for one-dimensional fractures in isotropic homogeneous and laminated composite DCBs, based on linear elastic fracture mechanics (LEFM) and using the Euler and Timoshenko beam theories. They are extended to isotropic homogeneous and laminated composite straight beam structures and isotropic homogeneous plates based on the Kirchhoff-Love and Mindlin-Reissner plate theories. They are also extended to non-rigid elastic interfaces for isotropic homogeneous DCBs. A new approach is used, based on orthogonal pure fracture modes. Two sets of orthogonal pairs of pure modes are found. They are distinct from each other in the present Euler beam and Kirchhoff-Love plate partition theories and coincide on the first set in the present Timoshenko beam and Mindlin-Reissner plate partition theories. After the two sets of pure modes are shown to be unique and orthogonal, they are used to partition mixed modes. Interaction is found between the mode I and mode II modes of the first set in the present Euler beam and Kirchhoff-Love plate partition theories. This alters the ERR partition but does not affect the total ERR. There is no interaction in the present Timoshenko beam or Mindlin-Reissner plate partition theories. The theories distinguish between local and global ERR partitions. Local pureness is defined with respect to the crack tip. Global pureness is defined with respect to the entire region mechanically affected by the crack. It is shown that the global ERR partition using any of the present partition theories or two-dimensional elasticity is given by the present Euler beam or Kirchhoff-Love plate partition theories. The present partition theories are extensively validated using the finite element method (FEM). The present beam and plate partition theories are in excellent agreement with results from the corresponding FEM simulations. Approximate 'averaged partition rules' are also established, based on the average of the two present beam or plate partition theories. They give close approximations to the partitions from two-dimensional elasticity. The propagation of mixed-mode interlaminar fractures in laminated composite beams is investigated using experimental results from the literature and various partition theories. The present Euler beam partition theory offers the best and most simple explanation for all the experimental observations. It is in excellent agreement with the linear failure locus and is significantly closer than other partition theories. It is concluded that its excellent performance is either due to the failure of materials generally being based on global partitions or due to the through-thickness shear effect being negligibly small for the specimens tested. The present partition theories provide an excellent tool for studying interfacial fracture and delamination. They are readily applicable to a wide-range of engineering structures and will be a valuable analytical tool for many practical applications.
33

Analysis of Bimetallic Adhesion and Interfacial Toughness of Kinetic Metallization Coatings

Guraydin, Alec D 01 May 2013 (has links)
Due to their ability to confer enhanced surface properties without compromising the properties of the substrate, coatings have become ubiquitous in heavy industrial applications for corrosion, wear, and thermal protection, among others. Kinetic Metallization (KM), a solid-state impact consolidation and coating process, is well-suited for depositing industrial coatings due to its versatility, low substrate heat input, and low cost. The ability of KM coatings to adhere to the substrate is determined by the quality of the interface. The purpose of this study is to develop a model to predict the interfacial quality of KM coatings using known coating and substrate properties. Of the various contributions to adhesion of KM coatings, research suggests that the thermodynamic Work of Adhesion (WAD) is the most fundamental. It is useful to define interfacial quality in terms of the critical strain energy release rate (GC) at which coating delamination occurs. Studies show that GC for a given interface is related to WAD. This study attempts to develop a theoretical model for calculating WAD and understand the relationship between GC and WAD. For a bimetallic interface between two transition metals, WAD can be theoretically calculated using known electronic and physical properties of each metal: the molar volume, V, the surface energy, γ, and the enthalpy of alloy formation, ΔHinterface; ΔHinterface is a function of the molar volume, V, the work function, φ, and the electron density at the boundary of the Wigner-Seitz cell, nWS.WAD for Ni-Cu and Ni-Ti interfaces were 3.51 J/m2 and 4.55 J/m2, respectively. A modified Four-point bend testing technique was used to experimentally measure GC for Ni-Cu and Ni-Ti specimens produced by KM. These tests yielded mean G­C values of 50.92 J/m2 and 132.68 J/m2 for Ni-Cu and Ni-Ti specimens, respectively. Plastic deformation and surface roughness are likely the main reasons for the large discrepancy between GC and WAD. At the 95% confidence level, the mean GC of the Ni-Ti interface is significantly higher than that of the Ni-Cu interface. Further testing is recommended to better understand the relationship between WAD and GC.
34

Three Dimensional Mixed Mode Fracture Analysis Of Functionally Graded Materials

Kosker, Sadik 01 September 2007 (has links) (PDF)
The main objective of this study is to model and analyze a three dimensional inclined semi-elliptic surface crack in a Functionally Graded Material (FGM) coating bonded to a homogeneous substrate with a bond coat. The parametric analyses on FGMs are based upon zirconia-yttria (ZrO2-8wt%-Y2O3) FGM coating bonded to a substrate made of a nickel-based superalloy. It is assumed that there is a nickel-chromium&amp / #8211 / aluminum&amp / #8211 / zirconium (NiCrAlY) bond coat between the FGM coating and substrate. Metal-rich, linear variation, ceramic-rich and homogeneous ceramic FGM coating types are considered in the analyses. The inclined semi-elliptic surface crack problem in the FGM coating-bond coat-substrate system is analyzed under transient thermal loading. This problem is modeled and analyzed by utilizing three dimensional finite elements. Strain singularity around the crack front is simulated using collapsed 20 &amp / #8211 / node quarter &amp / #8211 / point brick elements. Three &amp / #8211 / dimensional displacement correlation technique is utilized to extract the mixed mode stress intensity factors around the crack front for different inclination angles of the semi-elliptic surface crack. The energy release rates around the crack front are also calculated by using the evaluated mixed mode stress intensity factors. The results obtained in this study are the peak values of mixed mode stress intensity factors and energy release rates around the crack front for various inclination angles of the semi-elliptic surface crack embedded in the FGM coating of the composite structure subjected to transient thermal loading.
35

Etude de la rupture dynamique de tuyaux polymères utilisés pour le transport du gaz sous moyenne pression / Study of the dynamic fracture of polymer gas pipes

Kopp, Jean-Benoit 24 September 2013 (has links)
Le transport de l’hydrogène à l’utilisateur final est prévu à l’horizon 2020. Il présente les mêmes problèmes que les gaz de ville classiques du point de vue de la rupture dynamique des tuyaux mais le problème se complique encore car une couche barrière est nécessaire de sorte que les petites molécules H2 ne s’échappent pas. Les modes de rupture et leurs origines dans des tuyaux polymères multi couches sont très mal cernés, voire quasiment inconnus. L’objectif de la thèse est donc d’étudier la problématique de tuyaux polymères, à moyen terme multi couches et armés de fibres, ainsi que la rupture dynamique des matériaux composant ces tuyaux. Pour cela,une première partie est consacrée à la conception et à l’optimisation d’un système de chargement de tubes et une seconde à la détermination de la quantité totale de surface créée au passage de la fissure. Afin que la quantité totale de surface de rupture ne dépende pas de l’outil de mesure, il convient de modéliser la rugosité de surface. Une étude statistique, utilisant les outils développés par B.B. Mandelbrot pour les géométries fractales, permettra de savoir dans quelles mesures un modèle auto-affine est convenable. / The transport of hydrogen to the end user is expected in 2020. It presents the same problems as conventional city gas in terms of the dynamic fracture of pipes but the problem is further complicated because of a barrier layer which is necessary to ensure that small H2 molecules do not escape. The failure modes and their origins in polymer multilayer pipes are very poorly understood and almost unknown. The aim of the Ph.D thesis is to study the problematic of polymer gas pipes, multilayer and composite, as well as the dynamic fracture of materials of these pipes. For this, the first part is devoted to the design and optimization of an experimental system of loading pipes. The second part consists to determine post-mortem the total amountof created surface after rapid crack propagation. To prevent the dependence of the amount of fracture surface with the measurement tool, the surface roughness should be modelled. A statistical study of the fracture surface 2 roughness, using the tools developed by B.B. Mandelbrot for fractal geometries, will allow to know when a self-affine model is suitable.
36

Adhesive modelling in multi-material structures : Evaluating the strength and fatigue life of adhesive joints / Modellering av lim i multimaterialstrukturer : Utvärdering av styrka och livslängd i limfogar

Narayanaswamy, Nitin January 2020 (has links)
Advancements in material science and manufacturing techniques are enabling the use of lightweight metal alloys and polymer composites in several combinations and shapes for producing more efficient and lightweight structures for automotive applications without compromising strength, stiffness and/or durability. When evaluating the strength of the structure, the joints are of importance. For multi-material structures adhesives are often the best type of joints. However, traditional finite element methods using stress criteria cannot accurately predict the failure of these adhesive joints under static loading. In this thesis work a strength and fatigue model, formulated using energy release rate theory, is implemented in a post processing tool. Given a finite element model of an adhesive joint and a list of boundary elements and nodes this tool calculates the energy release rates in mode I and mode II, and if the fracture toughness of the adhesive is known, a prescribed mixed-mode failure index is calculated. To evaluate its predictions joint strength results are correlated to experiments. Specimens with combined shear and normal load forms the underlying experimental setup with change in strain rate and adhesive thickness as varying parameters. Methods for implementing the model for a car body structure with multiple adhesive joints is investigated, the tool proves to be scalable, however, the required finite element setup at the adhesive boundaries may not be present in a car body model and thus further work needs to carried out to accommodate irregularities like non-matching mesh in the car body finite element model. This model may be used for assessing the strength and durability of a car body structure comprising different materials joined together using adhesives.
37

Durability of Polyimide Adhesives and Their Bonded Joints for High Temperature Applications

Parvatareddy, Hari 15 December 1997 (has links)
The objective of this study was to evaluate and develop an understanding of durability of an adhesive bonded system, for application in a future high speed civil transport (HSCT) aircraft structure. The system under study was comprised of Ti-6Al-4V metal adherends and a thermosetting polyimide adhesive, designated as FM-5, supplied by Cytec Engineered Materials, Inc. An approach based on fracture mechanics was employed to assess Ti-6Al-4V/FM-5 bond durability. Initially, wedge tests were utilized to find a durable surface pretreatment for the titanium adherends. Based on an extensive screening study, chromic acid anodization (CAA) was chosen as the standard pretreament for this research project. Double cantilever beam specimens (DCB) were then made and aged at 150° C, 177° C, and 204° C in three different environments; ambient atmospheric air (14.7 psia), and reduced air pressures of 2 psi air (13.8 KPa) and 0.2 psi air (1.38 KPa). Joints were aged for up to 18 months (including several intermediate aging times) in the above environments. The strain energy release rate (G) of the adhesive joints was monitored as a function of exposure time in the different environments. A 40% drop in fracture toughness was noted over the 18 month period, with the greatest degradation observed in samples aged at 204° C in ambient atmospheric air pressure. The loss in adhesive bond performance with time was attibutable to a combination of physical and chemical aging phenomena in the FM-5 resin, and possible degradation of the metal-adhesive interface(s). Several mechanical and material tests, performed on the bonded joints and neat FM-5 resin specimens, confirmed the above statement. It was also noted that physical aging could be "erased" by thermal rejuvenation, partially restoring the toughness of the FM-5 adhesive material. The FM-5 adhesive material displayed good chemical resistance towards organic solvents and other aircraft fluids such as jet fuel and hydraulic fluid. The results from the FM-5 adhesive and its bonded joints were compared and contrasted with VT Ultem and REGULUS polyimide adhesives. The FM-5 adhesive showed the best performance among the three adhesive systems. The effect of mode-mixity on the fracture toughness of the Ti-6Al-4V/FM-5 adhesive bonded system was also evaluated. DCB tests in conjunction with end-notched flexure (ENF) and mixed-mode flexure (MMF) tests, were used to fracture the bonded joints under pure mode I, pure mode II, and a combination of mode I and II loadings. The results showed that the mode I fracture toughness was twice as large as the mode II toughness. This was a rather surprising find, in sharp contrast to what several researchers have observed in the past. Our current understanding is that the crack path selection during the failure process plays a significant role in explaining this anomalous behavior. Finally, failure envelopes were generated for the titanium/FM-5 bonded system, both prior to and following thermal aging. These envelopes could serve as useful tools for engineers designing with Ti-6Al-4V/FM-5 bonds. / Ph. D.
38

Lifetime Prediction and Durability of Elastomeric Seals for Fuel Cell Applications

Singh, Hitendra Kumar 09 June 2009 (has links)
Polymer electrolyte membrane (PEM) fuel cell (FC) stacks require elastomeric gaskets for each cell to keep the reactant gases within their respective regions[1]. If any gasket degrades or fails, the reactant gases can leak or mix with each other directly during operation or standby, affecting the overall operation and performance of the FC. The elastomeric gaskets used as FC seals are exposed to a range of environmental conditions, and concurrently, subjected to mechanical compression between the bipolar plates forming the cell. The combination of mechanical stress and environmental exposure may result in degradation of the seal material[2] over a period of time. In order to address the durability and make reliability predictions, the long-term stability of the gaskets in FC assemblies is critical. The aim of this study is to investigate the performance of elastomeric seals in a simulated FC environment in the presence of mechanical stresses. The overall scope of the study includes mechanical and viscoelastic properties characterization, and lifetime durability predictions based on an accelerated characterization approach. With the help of finite element analysis software, ABAQUS, a fixture was designed to perform strain-based accelerated characterization of seal material in air, deionized (DI) water, 50v/50v ethylene glycol/water solution, and 0.1M sulfuric acid solution. Dogbone samples were strained to different levels in the custom fixture and submerged in liquid solutions at 90°C and in air at 90°C and 120°C. It was observed that mechanical properties such as tensile strength, strain to break, 100% modulus, crosslink density, and tensile set degrade due to aging and the extent of change (increase or decrease) depends significantly on the strain level on the specimen. Trouser tear tests were conducted on reinforced specimens in air and deionized water (DI) to evaluate the tear resistance of an elastomeric seal material intended for proton exchange membrane fuel cells. Plots relating the crack growth rate with tearing energy were obtained at various temperatures and provided significant insight into the rate and temperature dependence of the tearing strength of the seal material. Stick-slip crack propagation was observed at all temperatures and loading rates, although the behavior was suppressed significantly at low loading rates and high temperatures. Crack growth rate versus tearing energy data at different temperatures was shifted to construct a master curve and an estimate on the threshold value of tear energy was obtained which may be helpful in designing components where material tear is of concern. Strain energy release rate (SERR) value, calculated using the J-integral approach for a pre-existing crack in ABAQUS, was used to estimate the crack growth rate in a given seal cross-section to predict lifetime. In order to assess the viscoelastic behavior and to investigate the long term stress relaxation behavior of the seal material, compression stress relaxation (CSR) tests were performed on molded seals, called as SMORS, over a range of environmental conditions using a custom-designed fixture. The effect of temperature and environment was evident on material property changes and presented in terms of momentary properties and stress relaxation behavior. Various mechanisms involved in material degradation, chain scission and crosslinking, were suggested and insights were gained into how cure state and level of antidegradants in a material dictate the material behavior during the first phase of environmental exposure leading to change in material properties. Ring samples made of silicone were also tested using the fixture to obtain insight additional into material degradation due to aging. Results presented from testing on SMORS showed a lot more variation in data as compared to neat silicone rings due to the complexity involved in making SMORS. For understanding the deformation behavior of an elastomeric seal and its sealing performance, finite element characterization of seal cross-section was carried out on O-ring and SMORS cross-section. The effect of a seal's layout on distribution and magnitude of contact stresses and contact width was investigated for the O-ring and the information obtained thereby helped to analyze a complex assembly such as SMORS, where several interfaces and boundary conditions are involved. Stress/strain profiles were generated to visualize their concentration and distribution in the seal cross-section. Frictionless and rough interfacial conditions between seal material and platens were assumed and it was found that its effect on contact width and peak contact pressure was insignificant. Results obtained from FEA on SMORS were validated through comparison with contact mechanics approach and experimental data and it was found that Lindley's equation correlates well with experimental data whereas ABAQUS overestimates the load values at a given compression. Lindley's approach may be used to develop contact pressure profiles that may help estimate peak contact pressure at a given time so leaking can be avoided. / Ph. D.
39

Optimum design for sustainable 'green' overlays : controlling flexural failure

Lin, Y. January 2014 (has links)
The target of the ‘Green Overlays’ research was a cost effective, minimal disruption, sustainable and environmentally friendly alternative to the wholesale demolition, removal and complete reconstruction of the existing structural concrete pavement. The important problem of flexural resistance for strengthening concrete pavements with structural overlays has been scrutinised. A new mix design method for steel fibre reinforced, roller compacted, polymer modified, bonded concrete overlay has been proposed. The mixes developed were characterized of high flexural strength and high bond strength with the old concrete substrate. ‘Placeability’ and ‘compactability’ of the mix were two dominant issues during laboratory investigation. An innovative approach for establishing the relationship between Stress and Crack Face Opening Displacement for steel fibre reinforced concrete beams under flexure was developed. In addition, a new and simple method for calculating the interfacial Strain Energy Release Rate of both, a two-dimensional specimen and a three-dimensional model of the overlay pavement system were developed. This method can be readily and easily used by practicing engineers. Finally, a new test specimen and its loading configuration for measuring interfacial fracture toughness for concrete overlay pavements were established. The interfacial fracture toughness of a composite concrete beam, consisted of steel fibre-reinforced roller compacted polymer modified concrete bonded on conventional concrete and undergoing flexure, was assessed. In summary, this thesis presents four key findings: A new mix design method for steel fibre-reinforced roller compacted polymer modified concrete bonded on conventional concrete. A new method for establishing the fibre bridging law by an inverse analysis approach. A new, simplified method for calculating strain energy release rate at the interface of a composite beam. A new, innovative technique for calculating strain energy release rate at the interface of an overlaid pavement. The thesis contains a plethora of graphs, data-tables, examples and formulae, suitable for future researchers.
40

Réactivité et propriétés mécaniques des interfaces entre un alliage Al-Si et un renfort Fe ou Ti / Reactivity and mechanical properties of interfaces between Al-Si alloy and Fe or Ti reinforcement

Zhe, Miao 18 May 2011 (has links)
L’objectif de ce travail est d’établir des relations entre chimie d’interface et propriétés mécaniques dans les assemblages bimétalliques. Il met en évidence que les mécanismes qui contrôlent le développement d’une interface entre alliage Al-Si et renfort ferreux ou titane ont une influence majeure sur les propriétés mécaniques de cette interface. La caractérisation mécanique des interfaces est réalisée par un test de flexion 4 points sur des lames bimétallique élaborées par aluminiage au trempé sur lesquelles un raidisseur est rapporté par collage ou surmoulage. L’évolution de la chimie de la zone de réaction interfaciale est provoquée par un traitement thermique à 535°C à différents temps. La caractérisation des zones de réaction ainsi que des chemins de fissuration est réalisée par diffraction des rayons X et microsonde électronique. Pour les interfaces Fe/A-S7G03 brutes d’élaboration, avant traitement thermique, l’analyse des essais mécaniques conduit à l’obtention d’une valeur du taux de restitution d’énergie de 23 J/m2 qui correspond à la propagation d’une fissure dans la phase η−Al5Fe2(Si). En ce qui concerne les interfaces Ti/A-S7G03, leur force n’a pas permis la propagation d’une fissure dans les conditions de l’essai. A la suite d’un traitement thermique à 535°C, les interfaces Fe/A-S7G03 sont fragilisées par le mécanisme de croissance de la couche de réaction interfaciale qui conduit à l’apparition de porosités Kirkendall en son sein. A l’inverse, dans le cas des interfaces Ti/A-S7G03, aucun affaiblissement de l’interface n’est associé au traitement thermique en raison d’un mécanisme de croissance différent. / The objective of this work is to establish the relationships between interface chemistry and mechanical properties in bimetallic assemblies. It proves that the mechanisms which control the development of an interface between Al-Si alloy and titanium or ferrous reinforcement have a major influence on the mechanical properties of this interface. The mechanical characterization of these interfaces is performed by a 4-point bending test on the bimetallic plates elaborated by hot dip aluminizing on which a stiffener is joined by bonding or overmolding. The chemistry evolution of the interfacial reaction zone is induced by a heat treatment at 535 °C at different reaction times. The characterization of reaction zones and the crack paths is performed by X-ray diffraction and electron probe microanalysis. Before heat treatment, the analysis of mechanical tests performed on Fe/A-S7G03 interfaces leads to a value for the energy release rate of 23 J/m2 which corresponds to a crack propagation in the η- Al5Fe2 (Si) phase. As regards the Ti/A-S7G03 interfaces, their strength did not allow a crack propagation under the test conditions. After a heat treatment at 535°C, the Fe/A-S7G03 interfaces are weakened by the growth mechanism of interfacial reaction layer which leads to the appearance of Kirkendall voids within it. Conversely, in the case of Ti/A-S7G03 interfaces, the heat treatment is not associated with any weakening of the interfacial zone because of a different growth mechanism.

Page generated in 0.0605 seconds