• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 130
  • 12
  • 12
  • 7
  • 6
  • 6
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 200
  • 200
  • 62
  • 49
  • 47
  • 40
  • 36
  • 29
  • 28
  • 26
  • 26
  • 26
  • 25
  • 25
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Advanced control strategies for optimal operation of a combined solar and heat pump system

Ahmad, Muhammad Waseem January 2013 (has links)
The UK domestic sector accounts for more than a quarter of total energy use. This energy use can be reduced through more efficient building operations. The energy efficiency can be improved through better control of heating in houses, which account for a large portion of total energy consumption. The energy consumption can be lowered by using renewable energy systems, which will also help the UK government to meet its targets towards reduction in carbon emissions and generation of clean energy. Building control has gained considerable interest from researchers and much improved ways of control strategies for heating and hot water systems have been investigated. This intensified research is because heating systems represent a significant share of our primary energy consumption to meet thermal comfort and indoor air quality criteria. Advances in computing control and research in advanced control theory have made it possible to implement advanced controllers in building control applications. Heating control system is a difficult problem because of the non-linearities in the system and the wide range of operating conditions under which the system must function. A model of a two zone building was developed in this research to assess the performance of different control strategies. Two conventional (On-Off and proportional integral controllers) and one advanced control strategies (model predictive controller) were applied to a solar heating system combined with a heat pump. The building was modelled by using a lumped approach and different methods were deployed to obtain a suitable model for an air source heat pump. The control objectives were to reduce electricity costs by optimizing the operation of the heat pump, integrating the available solar energy, shifting electricity consumption to the cheaper night-time tariff and providing better thermal comfort to the occupants. Different climatic conditions were simulated to test the mentioned controllers. Both on-off and PI controllers were able to maintain the tank and room temperatures to the desired set-point temperatures however they did not make use of night-time electricity. PI controller and Model Predictive Controller (MPC) based on thermal comfort are developed in this thesis. Predicted mean vote (PMV) was used for controlling purposes and it was modelled by using room air and radiant temperatures as the varying parameters while assuming other parameters as constants. The MPC dealt well with the disturbances and occupancy patterns. Heat energy was also stored into the fabric by using lower night-time electricity tariffs. This research also investigated the issue of model mismatch and its effect on the prediction results of MPC. MPC performed well when there was no mismatch in the MPC model and simulation model but it struggled when there was a mismatch. A genetic algorithm (GA) known as a non-dominated sorting genetic algorithm (NSGA II) was used to solve two different objective functions, and the mixed objective from the application domain led to slightly superior results. Overall results showed that the MPC performed best by providing better thermal comfort, consuming less electric energy and making better use of cheap night-time electricity by load shifting and storing heat energy in the heating tank. The energy cost was reduced after using the model predictive controller.
72

Carbon capture and storage and the Australian climate policy framework

Goldthorpe, Ward Hillary January 2009 (has links)
Australia’s economy is heavily dependent on coal-based energy and greenhouse gas intensive natural resource extraction and processing industries. As part of an international climate change mitigation effort Australia will have to undergo a national transformation to a low emissions society by mid century. Federal and State Governments in Australia, like their counterparts in other major developed economies, have been persuaded that reliance on fossil fuels in stationary energy industries such as electricity generation and minerals processing will be able to continue with the deployment of a value chain of technologies fitted to these installations for capturing carbon dioxide, transporting it to a disposal site, and then injecting it into subsurface geological formations for permanent storage (carbon capture and storage, or CCS). Understanding the likely effectiveness of CCS for reducing greenhouse gas emissions from stationary energy industries is therefore critical to policy formulation for, and management of, Australia’s emissions mitigation effort and national transformation over the decades ahead. / This thesis aims to offer a clearer understanding of the practicalities, limitations and uncertainties surrounding future CCS use in Australia and of the contribution CCS can make to mitigating emissions from the Australian stationary energy sector in the period to 2050. It considers two central questions: Is CCS a realistic option for emissions mitigation in Australia? Are Australian climate policies formulated to facilitate CCS deployment and optimise its potential contribution? The criteria employed in this thesis for answering these questions are restricted to those having an ascertainable causal impact on the timing, pace and ultimate scale of CCS deployment within Australia. The methodology used for the research is grounded in critical approaches and integrated assessment within a holistic, trans-disciplinary paradigm. / This thesis finds that under Australia’s existing climate policy framework it is unrealistic to expect CCS can contribute more than 75 million tonnes of CO2 per annum to emissions mitigation by 2050. Australia does have sufficient potential geological storage resources to expect some environmentally safe CCS infrastructure could be engineered over time, but commencement of large scale build-out is not likely before 2025. When CCS will become a commercial mitigation option in Australia is unpredictable and dependent more on the political economy of climate change than on Australian research, development and demonstration activities. / The thesis also finds that the existing climate policy framework is increasing rather than decreasing the risks to timing and usefulness of CCS even to the level of 75 million tonnes of CO2 per annum by 2050. This thesis concludes that Australian Governments are not developing the institutional capability to oversee a holistic decarbonisation of the stationary energy sector. This capability is required not only to address the risks to CCS deployment but also to prevent market failures that foreclose an optimal contribution from all other potential mitigation technologies. The thesis proposes that an Australian national CCS company be created with responsibility for CCS integration, transport and storage services in order to develop Australian capability rather than that of international corporations.
73

On Swedish bioenergy strategies to reduce CO2 emissions and oil use

Joelsson, Jonas January 2011 (has links)
No description available.
74

Opportunities for CO2 Reductions and CO2-Lean Energy Systems in Pulp and Paper Mills

Möllersten, Kenneth January 2002 (has links)
The risk for climate change is a growing concern for theglobal society. According to what is known as the Kyoto Protocol,developed countries have committed themselves to reduce theirgreenhouse gas (GHG) emissions. The purpose of this thesis hasbeen to analyse opportunities for CO2 reductions in Swedish pulpand paper mills. The pulp and paper industry accounts forsignificant shares of the Swedish utilisationof both electricityand, in particular, biomass fuels. In this thesis, it has been agoal to focus not only on the technical potential of alternativesfor CO2 reductions in the energy systems of pulp and paper mills,but also on analysing the costeffectiveness of the studiedmeasures. Moreover, the analysis has covered questions concerningthe capacity and willingness among the actors involved with thepulp and paper mills’energy systems to realise CO2reduction potentials. A broad techno-economical evaluation of available technologiesfor increased power production as well as more efficient energyutilisation is carried out. Furthermore, a more indepth analysisof pulp mill-based biomass energy with CO2 removal and permanentsequestration (BECS) is presented. An evaluation is made of thepotential for pulp and paper production with a negative CO2balance through the implementation of BECS. In recent yearsoutside suppliers, mainly energy service companies (ESCOs), havebegun to operate energy facilities in some Swedish pulp and papermills. Based on interviews with managers from pulp and papercompanies and ESCOs, the main driving forces behind theincreasing co-operation as well as the opportunities and riskswith energy related co-operation are presented. Furthermore, the technical possibility of carbon-negativitythrough the implementation of BECS is discussed in relation tocarbon management on both corporate and global levels. The extentto which CO2-reducing measures in pulp and paper mills arerealised will have an impact on Sweden’s capacity to reachCO2 reduction targets. Whether or not technologies for CO2capture and sequestration are developed and implemented inSwedish pulp mills has a very large impact on the size ofSweden’s long-term CO2 reduction potential. Moreover, thedevelopment of business and competence focus in pulp and papercompanies and ESCOs suggests that cooperation will become ofincreasing importance for future sustainable industrial energymanagement. <b>Keywords:</b>CO2 reduction, pulp and paper industry, energysystem, biomass, CO2 capture and sequestration, black liquor,gasification, power production, outsourcing, sustainable energymanagement
75

Rational bioenergy utilisation in energy systems and impacts on CO2emissions

Wahlund, Bertil January 2003 (has links)
The increased concentration of greenhouse gases in theatmosphere, in particular CO2, is changing the Earth’s climate. Accordingto the Kyoto protocol, where the international community agreedon binding emission targets, developed countries are committedto reduce their greenhouse gas emissions. The increased use ofbiomass in energy systems is an important strategy to reduce CO2emissions. The purpose of this thesis has been toanalyse the opportunities for Sweden to further reduce CO2emissions in the energy system, by rationallyutilising woody biomass energy. The characteristics of currentcommercially operating biofuel-based CHP plants in Sweden aresurveyed and systematically presented. A consistent andtransparent comprehensive reference base for system comparisonsis given. Furthermore, the fuel effectiveness and contributionto CO2reduction is calculated. The governmentalsubsidies of the CHP plants’investment, expressed as costof specific CO2reduction, appears to be low. The competitiveness of biomass-fuelled energy production inrelation to fossil-based production with carbon capture isanalysed, showing that the biomass-fuelled systems provide acompetitive option, in terms of cost of electricity andefficiencies. The remaining Swedish woody biofuel potential ofat least 100 PJ/yr is principally available in regions with abiomass surplus. Transportation is therefore required to enableits utilisation in a further national and international market.Refining the biofuel feedstock to pellets, or even furtherrefining to motor fuels (DME, methanol or ethanol) or power,could facilitate this transport. Different options for fuelrefining are studied and compared. The entire fuel chain, fromfuel feedstock to end users, is considered and CO2emissions are quantified. Substituting fuelpellets for coal appears to be the most costeffectivealternative and shows the largest CO2reduction per energy unit biofuel. Motor fuelsappear more costly and give about half the CO2reduction. Transportation of the upgraded biofuelpellets is highly feasible from CO2emissions point of view and does not constitute ahindrance for further utilisation, i.e. the pellets can betransported over long distances efficiently with only limitedemissions of CO2. Bioenergy utilisation has additional features forenvironmental improvement, apart from the CO2aspect. Waste heat from biofuel-based CHP can becost-effectively used in conjunction with sewage treatment. Theincoming sewage water to the nitrification process can bepreheated with the waste heat, and thereby substantiallyenhance the nitrification and the reduction of ammoniumnitrogen during the winter season. <b>Keywords:</b>CO2reduction, energy system, biofuel, CHP, refining,fuel pellets, ethanol, methanol, DME, fuel substitution, sewagewater, nitrification.
76

ECC-D4 Electostatic Oil Cleaner Design for Heavy-Duty Gas Turbine Applications

Gorur, Murat January 2010 (has links)
The turbine technology improvements from 1980 onwards have considerably increased mechanical and thermal stresses on turbine oils which, cause oil oxidation and thereby turbine oil degradation (Livingstone et al., 2007; Sasaki &amp; Uchiyama, 2002). If the oil degradation problem is ignored, this might result in serious turbine system erratic trips and start-up operational problems (Overgaag et al., 2009). Oil oxidation by-products, in other words, sludge and varnish contaminants, lead stated turbine operation-tribological problems. Hence, sludge and varnish presence in turbine oil become a major reason for declining turbine reliability and availability. In the power generation industry, heavy-duty gas turbines as well as steam turbines have been lubricated with mineral based turbine oils for many decades (Okazaki &amp; Badal, 2005). First, generally Group I oils (mineral base oils produced by solvent extraction, dewaxing) were used. Nevertheless, this group of oils has lower oxidation resistance. Therefore, modern gas turbines demand oils which have better oil oxidation resistance, and lower sludge and varnish contaminants tendency (Hannon, 2009). Today, there are many turbine lubricants available on the market. Besides Group I oils, more and more Group II oils (mineral base oils produced by hydro cracking and hydro treating) are selected in service, and having increased oil oxidation resistance. However field inspections demonstrate that Group II oils also experience sludge and varnish problems as well as Group I oils. Primary reason for these phenomena is the antioxidant additive packages that are used in Group II oils (Overgaag et al., 2009). In any case with recent oil formulations, oil degradation products still exist in current turbine oils, and will continue to do so in natural process. These sludge and varnish contaminants are less than 1 micron in size. Thus, they can pass turbine oil system standard mechanical filters without obstruction. With regard to keep the turbine systems in best operational conditions, external turbine oil cleaning practices became crucial to remove these less than 1 micron size oil degradation products from turbine oils. Current effective method for removing the sludge and varnish is to use electrostatic oil cleaners (Moehle &amp; Gatto et al., 2007). Since the majority of turbine user and operator population have been shifted to use Group II based oils to counter the increased sludge and varnish problems, traditional oil cleaners became insufficient to remove sludge and varnish from Group II. (Due to Group II oils have different oil characteristics such as oil oxidation stability and solvency capability). With this awareness, thesis project is looking for ways to introduce and develop an Advanced Electrostatic Oil Cleaner to increase the availability and reliability figures of heavy-duty gas turbines against the rising amount of oil degradation products in modern formulated turbine oils. ECC (Electrostatic Cooled Cleaner) is an electrostatic oil cleaner device to clean and cool mineral based turbine oils for heavy-duty gas turbine applications by removing the sludge and varnish - oil contaminants from turbine oils. The basic principle of the ECC is based on the electrostatic force produced by parallel positioned electrodes which are charged with a high D.C. voltage. Oil contaminants- sludge and varnish have polar nature. Therefore, they are attracted by electrostatic forces whose intensity is proportional to the voltage applied. With the oil flowing in parallel to these electrodes, the polar particles in the oil (which is only neutral /no polar) are caught by filter media positioned between these electrodes. Small investments on advanced oil cleaner result in big savings on turbine system performance. Increased turbine availability and reliability predominantly reduce maintenance costs and risks besides, and thus maximizing revenue by extending heavy-duty gas turbine operational life. An introduced prototype of the ECC-D4 model was tested using two Group II and one Group I oils. The amounts of 200 liter (each) test oils were circulated approximately 300 times through the ECC-D4. In each 3 oil cleaning test sessions, it is proved that the oil insolubles content decreased approximately 40% in tested turbine oils within about 240 ECC-D4 operating hours. With taken base of heavy-duty gas turbine characteristics such as 400 MW power production capacity, annually 8000 operating hours, and 15000 liter oil reservoir volume; it is estimated that the ECC-D4 can extend the oil service-life from 24000 to 48000 operating hours (which is approximately the oil service end-life). In addition to that, assuming the ECC-D4 investment cost as 30k€, about 15k€ savings per year through the new turbine oil and component replacement costs, besides turbine operation profit losses. Moreover, the ECC-D4 returns on investment with a rate of 39 % for defined heavy-duty gas turbine. In general perspective of ECC-D4, it makes heavy-duty gas turbine infrastructure innovative, fully integrated and committed to fulfilling the need for clean, efficient, reliable power production practices in an environmental manner.
77

Opportunities for CO2 Reductions and CO2-Lean Energy Systems in Pulp and Paper Mills

Möllersten, Kenneth January 2002 (has links)
<p>The risk for climate change is a growing concern for theglobal society. According to what is known as the Kyoto Protocol,developed countries have committed themselves to reduce theirgreenhouse gas (GHG) emissions. The purpose of this thesis hasbeen to analyse opportunities for CO2 reductions in Swedish pulpand paper mills. The pulp and paper industry accounts forsignificant shares of the Swedish utilisationof both electricityand, in particular, biomass fuels. In this thesis, it has been agoal to focus not only on the technical potential of alternativesfor CO2 reductions in the energy systems of pulp and paper mills,but also on analysing the costeffectiveness of the studiedmeasures. Moreover, the analysis has covered questions concerningthe capacity and willingness among the actors involved with thepulp and paper mills’energy systems to realise CO2reduction potentials.</p><p>A broad techno-economical evaluation of available technologiesfor increased power production as well as more efficient energyutilisation is carried out. Furthermore, a more indepth analysisof pulp mill-based biomass energy with CO2 removal and permanentsequestration (BECS) is presented. An evaluation is made of thepotential for pulp and paper production with a negative CO2balance through the implementation of BECS. In recent yearsoutside suppliers, mainly energy service companies (ESCOs), havebegun to operate energy facilities in some Swedish pulp and papermills. Based on interviews with managers from pulp and papercompanies and ESCOs, the main driving forces behind theincreasing co-operation as well as the opportunities and riskswith energy related co-operation are presented.</p><p>Furthermore, the technical possibility of carbon-negativitythrough the implementation of BECS is discussed in relation tocarbon management on both corporate and global levels. The extentto which CO2-reducing measures in pulp and paper mills arerealised will have an impact on Sweden’s capacity to reachCO2 reduction targets. Whether or not technologies for CO2capture and sequestration are developed and implemented inSwedish pulp mills has a very large impact on the size ofSweden’s long-term CO2 reduction potential. Moreover, thedevelopment of business and competence focus in pulp and papercompanies and ESCOs suggests that cooperation will become ofincreasing importance for future sustainable industrial energymanagement.</p><p><b>Keywords:</b>CO2 reduction, pulp and paper industry, energysystem, biomass, CO2 capture and sequestration, black liquor,gasification, power production, outsourcing, sustainable energymanagement</p>
78

Rational bioenergy utilisation in energy systems and impacts on CO2emissions

Wahlund, Bertil January 2003 (has links)
<p>The increased concentration of greenhouse gases in theatmosphere, in particular CO<sub>2</sub>, is changing the Earth’s climate. Accordingto the Kyoto protocol, where the international community agreedon binding emission targets, developed countries are committedto reduce their greenhouse gas emissions. The increased use ofbiomass in energy systems is an important strategy to reduce CO<sub>2</sub>emissions. The purpose of this thesis has been toanalyse the opportunities for Sweden to further reduce CO<sub>2</sub>emissions in the energy system, by rationallyutilising woody biomass energy. The characteristics of currentcommercially operating biofuel-based CHP plants in Sweden aresurveyed and systematically presented. A consistent andtransparent comprehensive reference base for system comparisonsis given. Furthermore, the fuel effectiveness and contributionto CO<sub>2</sub>reduction is calculated. The governmentalsubsidies of the CHP plants’investment, expressed as costof specific CO<sub>2</sub>reduction, appears to be low.</p><p>The competitiveness of biomass-fuelled energy production inrelation to fossil-based production with carbon capture isanalysed, showing that the biomass-fuelled systems provide acompetitive option, in terms of cost of electricity andefficiencies. The remaining Swedish woody biofuel potential ofat least 100 PJ/yr is principally available in regions with abiomass surplus. Transportation is therefore required to enableits utilisation in a further national and international market.Refining the biofuel feedstock to pellets, or even furtherrefining to motor fuels (DME, methanol or ethanol) or power,could facilitate this transport. Different options for fuelrefining are studied and compared. The entire fuel chain, fromfuel feedstock to end users, is considered and CO<sub>2</sub>emissions are quantified. Substituting fuelpellets for coal appears to be the most costeffectivealternative and shows the largest CO<sub>2</sub>reduction per energy unit biofuel. Motor fuelsappear more costly and give about half the CO<sub>2</sub>reduction. Transportation of the upgraded biofuelpellets is highly feasible from CO<sub>2</sub>emissions point of view and does not constitute ahindrance for further utilisation, i.e. the pellets can betransported over long distances efficiently with only limitedemissions of CO<sub>2</sub>.</p><p>Bioenergy utilisation has additional features forenvironmental improvement, apart from the CO<sub>2</sub>aspect. Waste heat from biofuel-based CHP can becost-effectively used in conjunction with sewage treatment. Theincoming sewage water to the nitrification process can bepreheated with the waste heat, and thereby substantiallyenhance the nitrification and the reduction of ammoniumnitrogen during the winter season.</p><p><b>Keywords:</b>CO<sub>2</sub>reduction, energy system, biofuel, CHP, refining,fuel pellets, ethanol, methanol, DME, fuel substitution, sewagewater, nitrification.</p>
79

Biomass-fuelled PEM FuelCell systems for small andmedium-sized enterprises

Guan, Tingting January 2015 (has links)
Biomass-fuelled proton exchange membrane fuel cells (PEMFCs) offer asolution for replacing fossil fuel for hydrogen production. Through using thebiomass-derived hydrogen as fuel, PEMFCs may become an efficient andsustainable energy system for small and medium-sized enterprises. The aim ofthis thesis is to evaluate the performance and potential applications of biomassfuelledPEMFC systems which are designed to convert biomass to electricity andheat. Biomass-fuelled PEMFC systems are simulated by Aspen plus based ondata collected from experiments and literature.The impact of the quality of the hydrogen-rich gas, anode stoichiometry, CH4content in the biogas and CH4 conversion rate on the performance of the PEMFCis investigated. Also, pinch technology is used to optimize the heat exchangernetwork to improve the power generation and thermal efficiency.For liquid and solid biomass, anaerobic digestion (AD) and gasification (GF),respectively, are relatively viable and developed conversion technologies. ForAD-PEMFC, a steam reformer is also needed to convert biogas to hydrogen-richgas. For 100 kWe generation, the GF-PEMFC system yields a good technicalperformance with 20 % electrical efficiency and 57 % thermal efficiency,whereas the AD-PEMFC system only has 9 % electrical efficiency and 13 %thermal efficiency. This low efficiency is due to the low efficiency of theanaerobic digester (AD) and the high internal heat consumption of the AD andthe steam reformer (SR). For the environmental aspects, the GF-PEMFC systemhas a high CO2 emissions offset factor and the AD-PEMFC system has anefficient land-use.The applications of the biomass-fuelled PEMFC systems are investigated on adairy farm and an olive oil plant. For the dairy farm, manure is used as feedstockto generate biogas through anaerobic digestion. A PEMFC qualified for 40 %electrical efficiency may generate 360 MWh electricity and 680 MWh heat peryear to make a dairy farm with 300 milked cows self-sufficient in a sustainableway. A PEMFC-CHP system designed for an olive oil plant generating annual 50000 m3 solid olive mill waste (SOMW) and 9 000 m3 olive mill waste water(OMW) is simulated based on experimental data from the Biogas2PEM-FCproject1. After the optimization of the heat exchanger network, the PEMFC-CHP  system can generate 194 kW electricity which corresponds to 62 % of the totalelectricity demand of the olive oil plant.The economic performance of the PEMFC and biogas-fuelled PEMFC areassessed roughly including capital, operation &amp; maintenance (O&amp;M) costs of thebiogas plant and the PEMFC-CHP, the cost of heat and electricity, and the valueof the digestate as fertilizer. / <p>QC 20151109</p>
80

A Rational Exergy Management Model to Curb CO2 Emissions in the Exergy-Aware Built Environments of the Future

Kilkis, Siir January 2011 (has links)
This thesis puts forth the means of a strategic approach to address a persistent problem in the energy system and in this way, to transition the built environment to a future state that is more exergy-aware to curb CO2 emissions. Such a vision is made possible by the six-fold contributions of the research work: I) An analytical model is developed, which for the first time, formulates the CO2 emissions that are compounded in the energy system as a function of the systematic failures to match the supply and demand of exergy. This model is namely the Rational Exergy Management Model or REMM. II) REMM is then applied to analyze the pathways in which it is possible to lead the built environment into addressing structural overshoots in its exergy supply to curb CO2 emissions. The cases that embody these pathways are also analyzed over a base case, including cases for sustainable heating and cooling. III) New tools are designed to augment decision-making and exemplify a paradigm shift in the more rational usage of exergy to curb CO2 emissions. These include a scenario-based analysis tool, new options for CO2 wedges, and a multi-fold solution space for CO2 mitigation strategies based on REMM. IV) The concept of a net-zero exergy building (NZEXB) is developed and related to REMM strategies as the building block of an exergy-aware energy system. The target of a NZEXB is further supported by key design principles, which address shortcomings in state-of-the-art net-zero design. V) A premier building that deployed the key design principles to integrate building technology in an innovative, exergy-aware design and received LEED Platinum is analyzed on the basis of the NZEXB target. The results validate that this building boosts net self-sufficiency and curbs compound CO2 emissions, which are then presented in a proposed scheme to benchmark and/or label future NZEXBs. VI) Based on the scalability of the best-practices of the NZEXB ready building, the means to realize a smarter energy system that has exergy-aware relations in each aspect of the value chain to curb CO2 emissions are discussed. This includes a target for such a network at the community level, namely a net-zero exergy community (NZEXC). As a whole, the results of the thesis indicate that the strategic approach as provided by REMM and the NZEXB target of the research work has the potential to steer the speed and direction of societal action to curb CO2 emissions. The thesis concludes with a roadmap that represents a cyclical series of actions that may be scaled-up at various levels of the built environment in a transition to be in better balance with the Planet. / QC 20111014

Page generated in 0.0616 seconds