• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • 1
  • Tagged with
  • 21
  • 21
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optimization of Heat Sinks with Flow Bypass Using Entropy Generation Minimization

Hossain, Md Rakib January 2006 (has links)
Forced air cooling of electronic packages is enhanced through the use of extended surfaces or heat sinks that reduce boundary resistance allowing heat generating devices to operate at lower temperatures, thereby improving reliability. Unfortunately, the clearance zones or bypass regions surrounding the heat sink, channel some of the cooling air mass away from the heat sink, making it difficult to accurately estimate thermal performance. The design of an "optimized" heat sink requires a complete knowledge of all thermal resistances between the heat source and the ambient air, therefore, it is imperative that the boundary resistance is properly characterized, since it is typically the controlling resistance in the path. Existing models are difficult to incorporate into optimization routines because they do not provide a means of predicting flow bypass based on information at hand, such as heat sink geometry or approach velocity. <br /><br /> A procedure is presented that allows the simultaneous optimization of heat sink design parameters based on a minimization of the entropy generation associated with thermal resistance and fluid pressure drop. All relevant design parameters such as geometric parameters of a heat sink, source and bypass configurations, heat dissipation, material properties and flow conditions can be simultaneously optimized to characterize a heat sink that minimizes entropy generation and in turn results in a minimum operating temperature of an electronic component. <br /><br /> An analytical model for predicting air flow and pressure drop across the heat sink is developed by applying conservation of mass and momentum over the bypass regions and in the flow channels established between the fins of the heat sink. The model is applicable for the entire laminar flow range and any type of bypass (side, top or side and top both) or fully shrouded configurations. During the development of the model, the flow was assumed to be steady, laminar, developing flow. The model is also correlated to a simple equation within 8% confidence level for an easy implementation into the entropy generation minimization procedure. The influence of all the resistances to heat transfer associated with a heat sink are studied, and an order of magnitude analysis is carried out to include only the influential resistances in the thermal resistance model. Spreading and material resistances due to the geometry of the base plate, conduction and convection resistances associated with the fins of the heat sink and convection resistance of the wetted surfaces of the base plate are considered for the development of a thermal resistance model. The thermal resistance and pressure drop model are shown to be in good agreement with the experimental data over a wide range of flow conditions, heat sink geometries, bypass configurations and power levels, typical of many applications found in microelectronics and related fields. Data published in the open literature are also used to show the flexibility of the models to simulate a variety of applications. <br /><br /> The proposed thermal resistance and pressure drop model are successfully used in the entropy generation minimization procedure to design a heat sink with bypass for optimum dimensions and performance. A sensitivity analysis is also carried out to check the influence of bypass configurations, power levels, heat sink materials and the coverage ratio on the optimum dimensions and performance of a heat sink and it is found that any change in these parameters results in a change in the optimized heat sink dimensions and flow conditions associated with the application for optimal heat sink performance.
12

Modeling of Fluid Flow and Heat Transfer for Optimization of Pin-Fin Heat Sinks

Khan, Waqar January 2004 (has links)
In this study, an entropy generation minimization procedure is employed to optimize the overall performance (thermal and hydrodynamic) of isolated fin geometries and pin-fin heat sinks. This allows the combined effects of thermal resistance and pressure drop to be assessed simultaneously as the heat sink interacts with the surrounding flow field. New general expressions for the entropy generation rate are developed using mass, energy, and entropy balances over an appropriate control volume. The formulation for the dimensionless entropy generation rate is obtained in terms of fin geometry, longitudinal and transverse pitches, pin-fin aspect ratio, thermal conductivity, arrangement of pin-fins, Reynolds and Prandtl numbers. It is shown that the entropy generation rate depends on two main performance parameters, i. e. , thermal resistance and the pressure drop, which in turn depend on the average heat transfer and friction coefficients. These coefficients can be taken from fluid flow and heat transfer models. An extensive literature survey reveals that no comprehensive analytical model for any one of them exists that can be used for a wide range of Reynolds number, Prandtl number, longitudinal and transverse pitches, and thermal conductivity. This study is one of the first attempts to develop analytical models for the fluid flow and heat transfer from single pins (circular and elliptical) with and without blockage as well as pin-fin arrays (in-line and staggered). These models can be used for the entire laminar flow range, longitudinal and transverse pitches, any material (from plastic composites to copper), and any fluid having Prandtl numbers (&ge;0. 71). In developing these models, it is assumed that the flow is steady, laminar, and fully developed. Furthermore, the heat sink is fully shrouded and the thermophysical properties are taken to be temperature independent. Using an energy balance over the same control volume, the average heat transfer coefficient for the heat sink is also developed, which is a function of the heat sink material, fluid properties, fin geometry, pin-fin arrangement, and longitudinal and transverse pitches. The hydrodynamic and thermal analyses of both in-line and staggered pin-fin heat sinks are performed using parametric variation of each design variable including pin diameter, pin height, approach velocity, number of pin-fins, and thermal conductivity of the material. The present analytical results for single pins (circular and elliptical) and pin-fin-arrays are in good agreement with the existing experimental/numerical data obtained by other investigators. It is shown that the present models of heat transfer and pressure drop can be applied for a wide range of Reynolds and Prandtl numbers, longitudinal and transverse pitches, aspect ratios, and thermal conductivity. Furthermore, selected numerical simulations for a single circular cylinder and in-line pin-fin heat sink are also carried out to validate the present analytical models. Results of present numerical simulations are also found to be in good agreement.
13

Implementing and Testing Self-Timed Rings on a FPGA as Entropy Sources / Implementation och Testning av Self-Timed Rings på en FPGA som Entropikällor

Einar, Marcus January 2015 (has links)
Random number generators are basic building blocks of modern cryptographic systems. Usually pseudo random number generators, carefully constructed deter- ministic algorithms that generate seemingly random numbers, are used. These are built upon foundations of thorough mathematical analysis and have been subjected to stringent testing to make sure that they can produce pseudo random sequences at a high bit-rate with good statistical properties. A pseudo random number generator must be initiated with a starting value. Since they are deterministic, the same starting value used twice on the same pseudo random number generator will produce the same seemingly random sequence. Therefore it is of utmost importance that the starting value contains enough en- tropy so that the output cannot be predicted or reproduced in an attack. To gen- erate a high entropy starting value, a true random number generator that uses sampling of some physical non-deterministic phenomenon to generate entropy, can be used. These are generally slower than their pseudo random counterparts but in turn need not generate the same amount of random values. In field programmable gate arrays (FPGA), generating random numbers is not trivial since they are built upon digital logic. A popular technique to generate entropy within a FPGA is to sample jittery clock signals. A quite recent technique proposed to create a robust clock signals, that contains such jitter, is to use self- timed ring oscillators. These are structures in which several events can propagate freely at an evenly spaced phase distribution. In this thesis self-timed rings of six different lengths is implemented on a spe- cific FPGA hardware. The different implementations are tested with the TestU01 test suite. The results show that two of the implementations have a good oscilla- tory behaviour that is well suited for use as random number generators. Others exhibit unexpected behaviours that are not suited to be used in a random num- ber generator. Two of the implemented random generators passed all tests in the TestU01 batteries Alphabit and BlockAlphabit. One of the generators was deemed not fit for use in a random number generator after failing all of the tests. The last three were not subjected to any tests since they did not behave as ex- pected.
14

Entropy Minimisation and Structural Design for Industrial Heat Exchanger Optimisation

Koorts, Johannes Marthinus January 2015 (has links)
In this dissertation, entropy generation minimisation techniques are used to numerically investigate the minimum entropy generation due to heat transfer and fluid friction in a number of different heat exchangers. Twenty-seven different industrial-types of heat exchangers with power ratings ranging between 100 and 800 kW were analyzed. This was done due to their large energy consumption and inefficiencies associated with their operation. Through numerical optimisation it was possible to conclude that the main variables that affected entropy generation were the steam inlet temperature, followed by the tube-side diameter for the given sample set. The main mechanism contributing to entropy generation was the effect of fluid friction, although this was only the case at smaller tube diameters. By using the principles of entropy generation minimization the entropy generated of each heat exchanger could be reduced by between 2% and 64%. By using the principles of the entropy generation minimisation technique, the optimal diameter could be determined that yielded results within 1% of the global minimum entropy generation. / Dissertation (MEng)--University of Pretoria, 2015. / Mechanical and Aeronautical Engineering / MEng / Unrestricted
15

Análise do desempenho de trocadores de calor de fluxo cruzado por simulação numérica / Analysis of performance of cross-flow heat exchangers by numerical simulation

Perussi, Ronaldo 20 December 2010 (has links)
O modelo originalmente proposto por Navarro e Cabezas-Gómez (2005) para determinação da Efetividade térmica de trocadores de calor de fluxo cruzado, é avaliado e ampliado. Esta ampliação é extensiva para três casos particulares. No primeiro, o número de unidades de transferência (NUT) é determinado em função da efetividade térmica (E) e da razão entre as capacidades térmicas (C*). No segundo, cartas do fator de correção F para o método da média logarítmica da diferença de temperaturas (MLDT) são desenvolvidas a partir de uma associação entre os métodos E-NUT e MLDT realizada por Kays e London (1998). Os resultados obtidos são validados a partir da comparação com valores provenientes de relações analíticas de configurações conhecidas. Por último, uma análise global de trocadores de calor de fluxo cruzado com geometrias complexas é realizada através dos métodos E-NUT, MLDT, Eficiência, análise de geração de entropia e o princípio da uniformidade da diferença do campo de temperaturas. Os valores obtidos mostraram boa precisão para todas as configurações testadas, demonstrando que o presente trabalho permite analisar o desempenho de diferentes configurações de trocadores de calor de fluxo cruzado usando diversos métodos de análise. / The pattern originally proposed by Navarro and Cabezas-Gómez (2005) for cross-flow heat exchangers thermal effectiveness resolution, is analysed and extended. This extension is available in three particular cases. In the first one, the number of tranfer units (NTU) is defined in funtion of thermal effectiveness (E) and heat capacity rate ratio (C*). In the second one, charts for correction factor F for logarithm mean temperature difference (LMTD) approach are developed from a relation between E-NTU and LMTD approaches by Kays and London (1998). The obtained results are authenticated from a comparison with data from analytical expressions of traditional arrangements. For the last one, a whole analysis of crossflow heat exchangers with complex flow arrangements is realized by E-NTU, LMTD, Efficiency, analysis of entropy generation and the uniformity principle of the temperature difference field. The obtained values showed a good precision for every settings simulated, demonstrating that the present research is able to make an analysis of cross-flow heat exchangers performance in different settings using several approaches.
16

Análise do desempenho de trocadores de calor de fluxo cruzado por simulação numérica / Analysis of performance of cross-flow heat exchangers by numerical simulation

Ronaldo Perussi 20 December 2010 (has links)
O modelo originalmente proposto por Navarro e Cabezas-Gómez (2005) para determinação da Efetividade térmica de trocadores de calor de fluxo cruzado, é avaliado e ampliado. Esta ampliação é extensiva para três casos particulares. No primeiro, o número de unidades de transferência (NUT) é determinado em função da efetividade térmica (E) e da razão entre as capacidades térmicas (C*). No segundo, cartas do fator de correção F para o método da média logarítmica da diferença de temperaturas (MLDT) são desenvolvidas a partir de uma associação entre os métodos E-NUT e MLDT realizada por Kays e London (1998). Os resultados obtidos são validados a partir da comparação com valores provenientes de relações analíticas de configurações conhecidas. Por último, uma análise global de trocadores de calor de fluxo cruzado com geometrias complexas é realizada através dos métodos E-NUT, MLDT, Eficiência, análise de geração de entropia e o princípio da uniformidade da diferença do campo de temperaturas. Os valores obtidos mostraram boa precisão para todas as configurações testadas, demonstrando que o presente trabalho permite analisar o desempenho de diferentes configurações de trocadores de calor de fluxo cruzado usando diversos métodos de análise. / The pattern originally proposed by Navarro and Cabezas-Gómez (2005) for cross-flow heat exchangers thermal effectiveness resolution, is analysed and extended. This extension is available in three particular cases. In the first one, the number of tranfer units (NTU) is defined in funtion of thermal effectiveness (E) and heat capacity rate ratio (C*). In the second one, charts for correction factor F for logarithm mean temperature difference (LMTD) approach are developed from a relation between E-NTU and LMTD approaches by Kays and London (1998). The obtained results are authenticated from a comparison with data from analytical expressions of traditional arrangements. For the last one, a whole analysis of crossflow heat exchangers with complex flow arrangements is realized by E-NTU, LMTD, Efficiency, analysis of entropy generation and the uniformity principle of the temperature difference field. The obtained values showed a good precision for every settings simulated, demonstrating that the present research is able to make an analysis of cross-flow heat exchangers performance in different settings using several approaches.
17

Thermodynamic optimization of sustainable energy system : application to the optimal design of heat exchangers for geothermal power systems

Yekoladio, Peni Junior 08 July 2013 (has links)
The present work addresses the thermodynamic optimization of small binary-cycle geothermal power plants. The optimization process and entropy generation minimization analysis were performed to minimize the overall exergy loss of the power plant, and the irreversibilities associated with heat transfer and fluid friction caused by the system components. The effect of the geothermal resource temperature to impact on the cycle power output was studied, and it was found that the maximum cycle power output increases exponentially with the geothermal resource temperature. In addition, an optimal turbine inlet temperature was determined, and observed to increase almost linearly with the increase in the geothermal heat source. Furthermore, a coaxial geothermal heat exchanger was modeled and sized for minimum pumping power and maximum extracted heat energy. The geofluid circulation flow rate was also optimized, subject to a nearly linear increase in geothermal gradient. In both limits of the fully turbulent and laminar fully-developed flows, a nearly identical diameter ratio of the coaxial pipes was determined irrespective of the flow regime, whereas the optimal geofluid mass flow rate increased exponentially with the Reynolds number. SeveORCs were observed to yield maximum cycle power output. The addition of an IHE and/or an Oral organic Rankine Cycles were also considered as part of the study. The basic types of the FOH improved significantly the effectiveness of the conversion of the available geothermal energy into useful work, and increased the thermal efficiency of the geothermal power plant. Therefore, the regenerative ORCs were preferred for high-grade geothermal heat. In addition, a performance analysis of several organic fluids was conducted under saturation temperature and subcritical pressure operating conditions of the turbine. Organic fluids with higher boiling point temperature, such as n-pentane, were recommended for the basic type of ORCs, whereas those with lower vapour specific heat capacity, such as butane, were more suitable for the regenerative ORCs. / Dissertation (MEng)--University of Pretoria, 2013. / Mechanical and Aeronautical Engineering / unrestricted
18

Analysis and Optimisation of a Receiver Tube for Direct Steam Generation in a Solar Parabolic Trough Collector

Nolte, Henriette C. January 2014 (has links)
This study focused on a numerical second law analysis and optimisation of a receiver tube op- erating in a parabolic trough solar collector for small-scale application. The receiver functioned in a Rankine cycle. The focus was on entropy generation minimisation in the receiver due to the high quality exergy losses in this component. Water functioned as the working uid and was heated from ambient conditions (liquid) to a superheated state (vapour), consequently, the receiver tube was subject to both single phase as well as two-phase ow. Entropy generation in the receiver tube was mainly due to nite temperature di erences as well as uid friction. The contribution of each of these components was investigated. Geometrical as well as operating conditions were investigated to obtain good guidelines for receiver tube and plant design. An operating pressure in the range of 1 MPa (Tsat = 180 C) to 10 MPa (Tsat = 311 C) was considered. Furthermore a mass ow range of 0:15 kg=s to 0:4 kg=s was investigated. Results showed that beyond a diameter of 20 mm, the main contributor to the entropy generation was the nite temperature di erences for most conditions. Generally, operating pressures below 3 MPa showed bad performance since the uid friction component was too large for small operating pressures. This phenomenon was due to long two-phase lengths and high pressure drops in this region. The nite temperature di erence component increased linearly when the tube diameter was increased (due to the increase in exposed area) if the focused heat ux was kept constant. However, the uid friction component increased quadratically when the diameter was reduced. In general when the concentration ratio was increased, the entropy generation was decreased. This was due to more focused heat on each section of the receiver pipe and, in general, resulted in shorter receiver lengths. Unfortunately, there is a limit to the highest concentration ratio that can be achieved and in this study, it was assumed to be 45 for two-dimensional trough technology. A Simulated Annealing (SA) optimisation algorithm was implemented to obtain certain optimum parameters. The optimisation showed that increasing the diameter could result in a decrease in entropy generation, provided that the concentration ratio is kept constant. However, beyond a certain point gains in minimising the entropy generation became negligible. Optimal operating pressure would generally increase if the mass ow rate was increased. Finally, it was seen that the highest operating pressure under consideration (10 MPa) showed the best performance when considering the minimisation of entropy in conjunction with the maximisation of the thermodynamic work output. / Dissertation (MEng)--University of Pretoria, 2014. / tm2015 / Mechanical and Aeronautical Engineering / MEng / Unrestricted
19

Interfacial Solid-Liquid Diffuseness and Instability by the Maximum Entropy Production Rate (MEPR) Postulate

Bensah, Yaw D. 10 September 2015 (has links)
No description available.
20

Implementación de células calefactoras alimentadas por microondas para mejora energética y eliminación de combustibles fósiles en procesos de calentamiento de fluidos alimentarios

Alcañiz Cosín, Diego 19 February 2021 (has links)
[ES] Los tratamientos térmicos tienen un gran peso en la industria agroalimentaria, siendo el origen de hasta el 80% de las emisiones de CO2 generadas por este sector en algunas regiones. Por esta razón, existe un gran interés en nuevas tecnologías aplicadas a procesos térmicos que puedan alimentarse por electricidad, ya que puede provenir de fuentes de energía renovable y, por tanto, ser neutras en emisiones. En este contexto, la empresa Microbiotech S.L. ha desarrollado la tecnología de Célula Básica de Transferencia de Energía (CBTE), la cual consiste en conducir energía de microondas por un cable coaxial, de forma muy eficiente, hasta el material a calentar, y este tiene las dimensiones óptimas para absorber toda la energía y calentarse de forma homogénea. Este material es un tipo de cerámica, modificada para que absorba la energía de microondas, incrementando su temperatura rápidamente, pero manteniendo la liberación de calor lenta típica de materiales cerámicos. El objetivo de la tesis fue incrementar el estado de desarrollo de esta tecnología en su aplicación para calentar fluidos, caracterizarla más en profundidad y verificar su viabilidad para pasteurización de alimentos líquidos, independientemente de su capacidad para absorber microondas. El primer paso de la investigación se centró en hallar el material más adecuado para esta tecnología, con la premisa de elevar rápido su temperatura, y liberar el calor absorbido lentamente. Se escogió una formulación cerámica con un 50% de SiC como susceptor. Se validó su aplicación como calefactor de aire ofreciendo un 40% de ahorro en comparación con los convencionales. A continuación, tras tres ciclos de ensayo y error, se construyó un prototipo de calentador de fluidos por tecnología CBTE capaz de alcanzar temperaturas de pasteurización, funcionar de forma prolongada y ofreciendo una eficiencia energética del 45%. En tercer lugar, por medio de simulación multifísica, se simularon diversas variables del prototipo. En las simulaciones se encontró un problema de sobrecalentamiento porque, debido al patrón de circulación del fluido, parte de este permanecía más tiempo en contacto con la placa, lo cual se solucionó mediante láminas metálicas que guiaban el paso del fluido. Por último, se analizó la entropía generada por el sistema, examinando la influencia de distintos parámetros, concluyendo que la principal variable afecta al fluido a calentar. En conclusión, se ha conseguido obtener un prototipo de tecnología CBTE para calentar fluidos a temperaturas de pasteurización, se conocen los pasos para mejorarlo en futuras iteraciones gracias a las simulaciones multifísicas, y se conoce la influencia de las distintas variables en la generación de entropía. / [CA] Els tractaments tèrmics tenen una gran importancia en la indústria agroalimentària, sent l'origen de fins al 80% de les emissions de CO2 generades per aquest sector en algunes regions. Per aquesta raó, hi ha un gran interès en noves tecnologies aplicades a processos tèrmics que puguin alimentar-se per electricitat, ja que pot provenir de fonts d'energia renovable i per tant, ser neutres en emissions. En aquest context, l'empresa Microbiotech S.L. ha desenvolupat la tecnologia de Cèl·lula Bàsica de Transferència d'Energia (CBTE), la qual consisteix en conduir energia de microones per un cable coaxial, de forma molt eficient, fins el material a escalfar. Aquest material és un tipus de ceràmica, modificada perquè absorbeixi l'energia de microones, incrementant la seua temperatura ràpidament, però mantenint l'alliberament de calor lenta típica de materials ceràmics. L'objectiu de la tesi va ser incrementar l'estat de desenvolupament d'aquesta tecnologia en la seua aplicació per escalfar fluids, i caracteritzar-la més en profunditat. El primer pas de la investigació es va centrar en trobar el material més adequat per a aquesta tecnologia, amb la premissa d'elevar ràpid la seua temperatura, i alliberar la calor absorbida lentament. Es va escollir una formulació ceràmica amb un 50% de SiC com susceptor. Es va validar la seua aplicació com calefactor d'aire oferint un 40% d'estalvi en comparació amb els convencionals. A continuació, després de tres cicles d'assaig i error, es va construir un prototip d'escalfador de fluids per tecnologia CBTE capaç d'assolir temperatures de pasteurització, funcionar de forma prolongada i oferint una eficiència energètica del 45%. En tercer lloc, per mitjà de simulació multifísica, es van simular diverses variables del prototip. En les simulacions es va trobar un problema de sobreescalfament perquè, a causa del patró de circulació del fluid, part d'aquest romania més temps en contacte amb la placa, la qual cosa es va solucionar mitjançant làmines metàl·liques que guiaven el pas del fluid. Finalment, es va analitzar l'entropia generada pel sistema, examinant la influència de diferents paràmetres, concloent que la principal variable es el fluid a escalfar. En conclusió, s'ha aconseguit obtenir un prototip de tecnologia CBTE per escalfar fluids, es coneixen els passos per millorar-lo en futures iteracions gràcies a les simulacions multifísicas, i es coneix la influència de les diferents variables en la generació d'entropia. / [EN] Thermal treatments have a great impact in the agri-food industry, being the origin of up to 80% of the CO2 emissions generated by this sector in some regions. For this reason, there is great interest in new technologies applied to thermal processes that can be powered by electricity, since it can come from renewable energy sources and therefore be neutral in emissions. In this context, the company Microbiotech S.L. has developed the Basic Cell of Energy Transference (BCET) technology, which consists of conducting microwave energy through a coaxial cable, very efficiently, to the material to be heated. This material is a ceramic, modified to absorb microwave energy, increasing its temperature rapidly, but maintaining the slow release of heat typical of ceramic materials. The objective of the thesis was to increase the state of development of this technology in its application to heat fluids, and to characterize it more in depth. The first step of the research focused on finding the most suitable material for this technology, with the premise of rapidly raising its temperature, and releasing the absorbed heat slowly. A ceramic formulation with 50% SiC was chosen as a susceptor. Its application as an air heater was validated, offering 40% savings compared to conventional ones. Then, after three cycles of trial and error, a prototype fluid heater was built using CBTE technology capable of reaching pasteurization temperatures, operating for a long time and offering an energy efficiency of 45%. Third, by means of multiphysics simulation, various variables of the prototype were simulated. In the simulations, an overheating problem was found because, due to the flow pattern of the fluid, part of it remained in contact with the plate for longer, which was solved by means of metal sheets that guided the passage of the fluid. Finally, the entropy generated by the system was analysed, examining the influence of different parameters, concluding that the main variable is the fluid to be heated. In conclusion, it has been possible to obtain a prototype of BCET technology to heat fluids, the steps to improve it in future iterations thanks to multiphysics simulations are known, and the influence of the different variables in the generation of entropy has been analysed. / Alcañiz Cosín, D. (2021). Implementación de células calefactoras alimentadas por microondas para mejora energética y eliminación de combustibles fósiles en procesos de calentamiento de fluidos alimentarios [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/163249 / TESIS

Page generated in 0.098 seconds