Spelling suggestions: "subject:"entropy 1generation"" "subject:"entropy 4egeneration""
1 |
Measurement and Modeling of Entropy Generation in MicrochannelsSaffaripour, Meghdad January 2008 (has links)
Entropy based design is a novel design method that incorporates the second law of thermodynamics with computational and experimental techniques to achieve the upper limits of performance and quality in engineering technologies. As the emerging technologies are pressing towards the theoretical limits of efficiency, the concept of entropy and entropy based design will have an increasing role of performance.
Measuring entropy generation is a valuable diagnostic tool from which the areas with high destruction rates of available energy may be determined and re-designed.
In this work, a general model is developed, based on previous analytical expressions for pressure drop and heat transfer, for predicting entropy generation in a microchannel. The model includes the effects due to developing and fully developed flow, entrance and exit geometries, cross-sectional shapes, aspect ratio, and different thermal boundary conditions. An experimental technique is presented that enables the measurement of the spatial istribution of entropy generation in a microchannel. The experimental method is a combination of Micro Particle Image velocimetry to measure the spatial distribution of velocity and Micro Laser Induced Fluorescence to determine the
temperature data. This method provides certain advantages over conventional anemometry techniques. This method, offers the whole-field non-intrusive, and instantaneous measurement of entropy generation in the device; while, previous techniques are limited to single point, averaged measurements.
|
2 |
Measurement and Modeling of Entropy Generation in MicrochannelsSaffaripour, Meghdad January 2008 (has links)
Entropy based design is a novel design method that incorporates the second law of thermodynamics with computational and experimental techniques to achieve the upper limits of performance and quality in engineering technologies. As the emerging technologies are pressing towards the theoretical limits of efficiency, the concept of entropy and entropy based design will have an increasing role of performance.
Measuring entropy generation is a valuable diagnostic tool from which the areas with high destruction rates of available energy may be determined and re-designed.
In this work, a general model is developed, based on previous analytical expressions for pressure drop and heat transfer, for predicting entropy generation in a microchannel. The model includes the effects due to developing and fully developed flow, entrance and exit geometries, cross-sectional shapes, aspect ratio, and different thermal boundary conditions. An experimental technique is presented that enables the measurement of the spatial istribution of entropy generation in a microchannel. The experimental method is a combination of Micro Particle Image velocimetry to measure the spatial distribution of velocity and Micro Laser Induced Fluorescence to determine the
temperature data. This method provides certain advantages over conventional anemometry techniques. This method, offers the whole-field non-intrusive, and instantaneous measurement of entropy generation in the device; while, previous techniques are limited to single point, averaged measurements.
|
3 |
EFFECT OF ADDING A REGENERATOR TO KORNHAUSER MIT TWO-SPACE TEST RIGGIDUGU, PRAVEEN 05 June 2008 (has links)
No description available.
|
4 |
Aspectos da transmissão e processamento de informação em canto de anuros / Features of Transmition and processing of information in anuran vocalizationRodrigues, Vitor Hugo 04 March 2009 (has links)
Os sistemas biológicos interagem com o ambiente em que vivem de muitas formas, e uma das principais formas na qual essa interação se dá é pela transmissão de mensagens, de diversas maneiras. A transmissão de mensagens por vias sonoras, em animais, é uma questão muito abordada em muitos estudos por ser uma importante via de comunicação utilizada por diversos tipos de sistemas biológicos. Este trabalho tem como objetivo verificar, pelo viés da Teoria da Informação de Shannon, se através da organização das séries temporais referentes à comunicação é possível observar a diminuição de geração de entropia no sistema nervoso referente ao processamento dos sinais sonoros de comunicação. Para tanto, utilizou-se, como sistemas-modelo, três espécies de anuros, Scinax perpusillus e Hypsiboas faber e Hypsiboas pardalis. Ferramentas de análise não-lineares, como a Entropia Aproximada Volumétrica, Análise de Potência Espectral e Plot de Poincaré, foram utilizados para caracterizar a variabilidade tanto do sinal emitido por um único animal quanto dos sinais trocados entre indivíduos da mesma espécie. Foi verificado que as séries temporais analisadas são altamente variáveis, com os intervalos entre vocalizações sendo descritos por distribuições de Lévy. As séries temporais relativas à interação entre indivíduos da mesma espécie apresentam uma alta variabilidade, porém menor que as individuais. Devido ao controle neural exercido na vocalização em anuros, é possível que a variabilidade apresentada pelas séries otimize o processo de emissão sonora, diminuindo a sobreposição de vocalizações entre indivíduos. A diminuição da variabilidade da interação entre indivíduos pode ser um indicativo da diminuição da geração de entropia no processo de comunicação destes animais. / Biological systems interact with their environment in many forms. The way these interactions occur can be assigned, ultimately, as the transmission of messages. Transmission of messages by sound waves, in animals, is a well studied subject because they are an important way of communication used by many groups. The objective of the present work is to verify whether the central nervous system presents entropy generation minimization in processing communicating sound signals. The approach employed is derived from Shannons Information Theory. The temporal organization of the time intervals between successive vocalizations was the subject of analysis. Recordings of three anuran species, Scinax perpusillus, Hypsiboas faber and Hypsiboas pardalis were used. Non-linear analyses were performed by tools as Volumetric Approximated Entropy, Power Spectrum Analysis and Poincaré Plot in order to address the variability of the signals emitted by a single animal, as well as the signals exchanged among individuals of the same species. The time-series data analyzed present highly variability and can be adequately described by Lévys distributions. The time-series data of the interactions among individuals also present high variability, however such a variability is not as high as the variability of single individuals. The results suggest that the neural system works in a way that reduces the probability of vocalizations overlapping. The reduction in variability of the interactions among individuals is, perhaps, linked to a minimization of entropy generation in the communication process of these animals.
|
5 |
Modelagem da minimização do processamento na comunicação / Minimization of information processing in communication events - a modelNatali, Jose Eduardo Soubhia 02 December 2009 (has links)
A comunicação entre indivíduos da mesma espécie está presente em todos os táxons conhecidos. Tendo por foco organismos que possuem sistemas nervosos, dado que uma capacidade limitada para processar todos os sinais vindos do ambiente, é interessante supor que, ao longo da evolução, exista uma tendência à minimização do processamento associado com a comunicação de modo a liberar atenção para outros eventos. Como tal minimização pode ser associada a uma diminuição da energia gasta com o processo, podemos levantar a hipótese de que existe, também, uma tendência à minimização de geração de entropia σ, já que esta está diretamente associada com a potência dissipada durante potenciais de ação. O objetivo do presente estudo é testar a hipótese descrita acima. Para tanto, consideramos os organismos envolvidos na comunicação como osciladores descritos por equações diferenciais, e comunicação foi definida pelo acoplamento de tais osciladores. Em um modelo inicial, a freqüência e a fase foram as variáveis de estado, enquanto que, num segundo modelo, foram acrescentadas mais duas variáveis associadas à volição de emitir sinais. A geração de entropia é dada pelo produto do fluxo (i.e., freqüência) pela diferença de potencial (parâmetro de forçamento do oscilador). O cálculo de σ foi realizado para os dois modelos, comparando as situações de osciladores de parâmetros idênticos com aquelas de parâmetros diferentes. Para ambos os modelos, os resultados obtidos indicam que osciladores idênticos minimizam a geração de entropia em relação a sistemas de osciladores com diferentes parâmetros. Tratando, então, os sistemas de osciladores idênticos, analisamos as regiões dos valores de parâmetros que permitem uma maior minimização de σ. Isto ocorre, no modelo inicial, quando o parâmetro de acoplamento de freqüência tende a zero ou ao infinito. Já no modelo final, é minimizada quando os parâmetros associados com a referência interna dos osciladores são bem maiores que as constantes de acoplamento de freqüência. Podemos concluir que a melhor estratégia, em termos evolutivos, para minimizar a geração de entropia numa troca continuada de sinais é manter uma alta semelhança (intraespecífica) entre os animais que se comunicam num dado ambiente. / Communication between individuals of the same species is present in all known taxa. Focusing in organisms that have nervous system, since there is a limited capacity to process all the environmental input, it is interesting to assume an evolutionary trend to minimize the information processing associated with communication in order to redirect attention to other events. As such a minimization may be associated with a reduction in the amount of energy spent in the process, we may put forward the hypothesis that there is, also, a trend to minimize entropy generation (σ), since this is directly associated with power dissipation during action potentials. The objective of this study is to test the above described hypothesis. To this end, we considered the organisms involved in the communication as oscillators described by differential equations, and communication was defined as the coupling between oscillators. In an initial model, the frequency and the phase were the state variables, whereas in a second model we added two more variables associated with the volition to emit signals. Entropy generation is calculated through the product of the flux (i.e., frequency) by a potential difference (a forcing parameter). Computations of σ were performed for both models, and we compared the conditions of identical with those of non-identical parameters of the oscillators. In both models, the results obtained indicate that identical oscillators are those that minimize entropy generation in relation to systems of non-identical oscillators. Within the context of systems of identical oscillators, we analyzed the regions of the parameters that allow for a further minimization of σ. In the first model, such a minimization occurs when the parameter of frequency coupling tends either to zero or to infinite. In the second model, σ attains minimal values when the parameters associated with internal references of the oscillators are significantly higher than those associated with frequency coupling. We are lead to the conclusion that the best strategy, in evolutionary terms, to minimize the entropy generation in a long-lasting exchange of signals is to keep a high similarity (intra-specific) between the animals that communicate in a given environment.
|
6 |
Modelagem da minimização do processamento na comunicação / Minimization of information processing in communication events - a modelJose Eduardo Soubhia Natali 02 December 2009 (has links)
A comunicação entre indivíduos da mesma espécie está presente em todos os táxons conhecidos. Tendo por foco organismos que possuem sistemas nervosos, dado que uma capacidade limitada para processar todos os sinais vindos do ambiente, é interessante supor que, ao longo da evolução, exista uma tendência à minimização do processamento associado com a comunicação de modo a liberar atenção para outros eventos. Como tal minimização pode ser associada a uma diminuição da energia gasta com o processo, podemos levantar a hipótese de que existe, também, uma tendência à minimização de geração de entropia σ, já que esta está diretamente associada com a potência dissipada durante potenciais de ação. O objetivo do presente estudo é testar a hipótese descrita acima. Para tanto, consideramos os organismos envolvidos na comunicação como osciladores descritos por equações diferenciais, e comunicação foi definida pelo acoplamento de tais osciladores. Em um modelo inicial, a freqüência e a fase foram as variáveis de estado, enquanto que, num segundo modelo, foram acrescentadas mais duas variáveis associadas à volição de emitir sinais. A geração de entropia é dada pelo produto do fluxo (i.e., freqüência) pela diferença de potencial (parâmetro de forçamento do oscilador). O cálculo de σ foi realizado para os dois modelos, comparando as situações de osciladores de parâmetros idênticos com aquelas de parâmetros diferentes. Para ambos os modelos, os resultados obtidos indicam que osciladores idênticos minimizam a geração de entropia em relação a sistemas de osciladores com diferentes parâmetros. Tratando, então, os sistemas de osciladores idênticos, analisamos as regiões dos valores de parâmetros que permitem uma maior minimização de σ. Isto ocorre, no modelo inicial, quando o parâmetro de acoplamento de freqüência tende a zero ou ao infinito. Já no modelo final, é minimizada quando os parâmetros associados com a referência interna dos osciladores são bem maiores que as constantes de acoplamento de freqüência. Podemos concluir que a melhor estratégia, em termos evolutivos, para minimizar a geração de entropia numa troca continuada de sinais é manter uma alta semelhança (intraespecífica) entre os animais que se comunicam num dado ambiente. / Communication between individuals of the same species is present in all known taxa. Focusing in organisms that have nervous system, since there is a limited capacity to process all the environmental input, it is interesting to assume an evolutionary trend to minimize the information processing associated with communication in order to redirect attention to other events. As such a minimization may be associated with a reduction in the amount of energy spent in the process, we may put forward the hypothesis that there is, also, a trend to minimize entropy generation (σ), since this is directly associated with power dissipation during action potentials. The objective of this study is to test the above described hypothesis. To this end, we considered the organisms involved in the communication as oscillators described by differential equations, and communication was defined as the coupling between oscillators. In an initial model, the frequency and the phase were the state variables, whereas in a second model we added two more variables associated with the volition to emit signals. Entropy generation is calculated through the product of the flux (i.e., frequency) by a potential difference (a forcing parameter). Computations of σ were performed for both models, and we compared the conditions of identical with those of non-identical parameters of the oscillators. In both models, the results obtained indicate that identical oscillators are those that minimize entropy generation in relation to systems of non-identical oscillators. Within the context of systems of identical oscillators, we analyzed the regions of the parameters that allow for a further minimization of σ. In the first model, such a minimization occurs when the parameter of frequency coupling tends either to zero or to infinite. In the second model, σ attains minimal values when the parameters associated with internal references of the oscillators are significantly higher than those associated with frequency coupling. We are lead to the conclusion that the best strategy, in evolutionary terms, to minimize the entropy generation in a long-lasting exchange of signals is to keep a high similarity (intra-specific) between the animals that communicate in a given environment.
|
7 |
Aspectos da transmissão e processamento de informação em canto de anuros / Features of Transmition and processing of information in anuran vocalizationVitor Hugo Rodrigues 04 March 2009 (has links)
Os sistemas biológicos interagem com o ambiente em que vivem de muitas formas, e uma das principais formas na qual essa interação se dá é pela transmissão de mensagens, de diversas maneiras. A transmissão de mensagens por vias sonoras, em animais, é uma questão muito abordada em muitos estudos por ser uma importante via de comunicação utilizada por diversos tipos de sistemas biológicos. Este trabalho tem como objetivo verificar, pelo viés da Teoria da Informação de Shannon, se através da organização das séries temporais referentes à comunicação é possível observar a diminuição de geração de entropia no sistema nervoso referente ao processamento dos sinais sonoros de comunicação. Para tanto, utilizou-se, como sistemas-modelo, três espécies de anuros, Scinax perpusillus e Hypsiboas faber e Hypsiboas pardalis. Ferramentas de análise não-lineares, como a Entropia Aproximada Volumétrica, Análise de Potência Espectral e Plot de Poincaré, foram utilizados para caracterizar a variabilidade tanto do sinal emitido por um único animal quanto dos sinais trocados entre indivíduos da mesma espécie. Foi verificado que as séries temporais analisadas são altamente variáveis, com os intervalos entre vocalizações sendo descritos por distribuições de Lévy. As séries temporais relativas à interação entre indivíduos da mesma espécie apresentam uma alta variabilidade, porém menor que as individuais. Devido ao controle neural exercido na vocalização em anuros, é possível que a variabilidade apresentada pelas séries otimize o processo de emissão sonora, diminuindo a sobreposição de vocalizações entre indivíduos. A diminuição da variabilidade da interação entre indivíduos pode ser um indicativo da diminuição da geração de entropia no processo de comunicação destes animais. / Biological systems interact with their environment in many forms. The way these interactions occur can be assigned, ultimately, as the transmission of messages. Transmission of messages by sound waves, in animals, is a well studied subject because they are an important way of communication used by many groups. The objective of the present work is to verify whether the central nervous system presents entropy generation minimization in processing communicating sound signals. The approach employed is derived from Shannons Information Theory. The temporal organization of the time intervals between successive vocalizations was the subject of analysis. Recordings of three anuran species, Scinax perpusillus, Hypsiboas faber and Hypsiboas pardalis were used. Non-linear analyses were performed by tools as Volumetric Approximated Entropy, Power Spectrum Analysis and Poincaré Plot in order to address the variability of the signals emitted by a single animal, as well as the signals exchanged among individuals of the same species. The time-series data analyzed present highly variability and can be adequately described by Lévys distributions. The time-series data of the interactions among individuals also present high variability, however such a variability is not as high as the variability of single individuals. The results suggest that the neural system works in a way that reduces the probability of vocalizations overlapping. The reduction in variability of the interactions among individuals is, perhaps, linked to a minimization of entropy generation in the communication process of these animals.
|
8 |
Entropy generation in a constant internal energy-volume combustion processKnizley, Alta Alyce 06 August 2011 (has links)
This thesis examines the effects of product composition, reactant temperature, reactant pressure, fuel-air equivalence ratio, diluent addition, and fuel composition on entropy generation in a constant internal energy/constant volume combustion process. Equilibrium product composition is shown to produce less combustion-generated entropy than frozen product composition. Using methane as the fuel, it is found that increasing reactant temperature by 100 K decreases entropy generation by 6 to 9 percent, while reactant pressure has little effect on entropy generation. Total entropy generation is increased with excess air and increased diluent addition. For the three fuels considered in this analysis (CH4, C2H5OH, C8H18), iso-octane uniformly exhibits the highest entropy generation, indicating the strong effect of fuel type and structure on combustiongenerated entropy.
|
9 |
Optimization of Heat Sinks with Flow Bypass Using Entropy Generation MinimizationHossain, Md Rakib January 2006 (has links)
Forced air cooling of electronic packages is enhanced through the use of extended surfaces or heat sinks that reduce boundary resistance allowing heat generating devices to operate at lower temperatures, thereby improving reliability. Unfortunately, the clearance zones or bypass regions surrounding the heat sink, channel some of the cooling air mass away from the heat sink, making it difficult to accurately estimate thermal performance. The design of an "optimized" heat sink requires a complete knowledge of all thermal resistances between the heat source and the ambient air, therefore, it is imperative that the boundary resistance is properly characterized, since it is typically the controlling resistance in the path. Existing models are difficult to incorporate into optimization routines because they do not provide a means of predicting flow bypass based on information at hand, such as heat sink geometry or approach velocity. <br /><br /> A procedure is presented that allows the simultaneous optimization of heat sink design parameters based on a minimization of the entropy generation associated with thermal resistance and fluid pressure drop. All relevant design parameters such as geometric parameters of a heat sink, source and bypass configurations, heat dissipation, material properties and flow conditions can be simultaneously optimized to characterize a heat sink that minimizes entropy generation and in turn results in a minimum operating temperature of an electronic component. <br /><br /> An analytical model for predicting air flow and pressure drop across the heat sink is developed by applying conservation of mass and momentum over the bypass regions and in the flow channels established between the fins of the heat sink. The model is applicable for the entire laminar flow range and any type of bypass (side, top or side and top both) or fully shrouded configurations. During the development of the model, the flow was assumed to be steady, laminar, developing flow. The model is also correlated to a simple equation within 8% confidence level for an easy implementation into the entropy generation minimization procedure. The influence of all the resistances to heat transfer associated with a heat sink are studied, and an order of magnitude analysis is carried out to include only the influential resistances in the thermal resistance model. Spreading and material resistances due to the geometry of the base plate, conduction and convection resistances associated with the fins of the heat sink and convection resistance of the wetted surfaces of the base plate are considered for the development of a thermal resistance model. The thermal resistance and pressure drop model are shown to be in good agreement with the experimental data over a wide range of flow conditions, heat sink geometries, bypass configurations and power levels, typical of many applications found in microelectronics and related fields. Data published in the open literature are also used to show the flexibility of the models to simulate a variety of applications. <br /><br /> The proposed thermal resistance and pressure drop model are successfully used in the entropy generation minimization procedure to design a heat sink with bypass for optimum dimensions and performance. A sensitivity analysis is also carried out to check the influence of bypass configurations, power levels, heat sink materials and the coverage ratio on the optimum dimensions and performance of a heat sink and it is found that any change in these parameters results in a change in the optimized heat sink dimensions and flow conditions associated with the application for optimal heat sink performance.
|
10 |
Modeling of Fluid Flow and Heat Transfer for Optimization of Pin-Fin Heat SinksKhan, Waqar January 2004 (has links)
In this study, an entropy generation minimization procedure is employed to optimize the overall performance (thermal and hydrodynamic) of isolated fin geometries and pin-fin heat sinks. This allows the combined effects of thermal resistance and pressure drop to be assessed simultaneously as the heat sink interacts with the surrounding flow field. New general expressions for the entropy generation rate are developed using mass, energy, and entropy balances over an appropriate control volume. The formulation for the dimensionless entropy generation rate is obtained in terms of fin geometry, longitudinal and transverse pitches, pin-fin aspect ratio, thermal conductivity, arrangement of pin-fins, Reynolds and Prandtl numbers. It is shown that the entropy generation rate depends on two main performance parameters, i. e. , thermal resistance and the pressure drop, which in turn depend on the average heat transfer and friction coefficients. These coefficients can be taken from fluid flow and heat transfer models. An extensive literature survey reveals that no comprehensive analytical model for any one of them exists that can be used for a wide range of Reynolds number, Prandtl number, longitudinal and transverse pitches, and thermal conductivity. This study is one of the first attempts to develop analytical models for the fluid flow and heat transfer from single pins (circular and elliptical) with and without blockage as well as pin-fin arrays (in-line and staggered). These models can be used for the entire laminar flow range, longitudinal and transverse pitches, any material (from plastic composites to copper), and any fluid having Prandtl numbers (≥0. 71). In developing these models, it is assumed that the flow is steady, laminar, and fully developed. Furthermore, the heat sink is fully shrouded and the thermophysical properties are taken to be temperature independent. Using an energy balance over the same control volume, the average heat transfer coefficient for the heat sink is also developed, which is a function of the heat sink material, fluid properties, fin geometry, pin-fin arrangement, and longitudinal and transverse pitches. The hydrodynamic and thermal analyses of both in-line and staggered pin-fin heat sinks are performed using parametric variation of each design variable including pin diameter, pin height, approach velocity, number of pin-fins, and thermal conductivity of the material. The present analytical results for single pins (circular and elliptical) and pin-fin-arrays are in good agreement with the existing experimental/numerical data obtained by other investigators. It is shown that the present models of heat transfer and pressure drop can be applied for a wide range of Reynolds and Prandtl numbers, longitudinal and transverse pitches, aspect ratios, and thermal conductivity. Furthermore, selected numerical simulations for a single circular cylinder and in-line pin-fin heat sink are also carried out to validate the present analytical models. Results of present numerical simulations are also found to be in good agreement.
|
Page generated in 0.1513 seconds