• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 34
  • 5
  • 3
  • Tagged with
  • 83
  • 83
  • 23
  • 18
  • 13
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Produção e imobilização de lipases produzidas pelo fungo endofítico Cercospora kikuchii para aplicações biotecnológicas / Production and immobilization of lipases produced by the endophytic fungus Cercospora kikuchii for biotechnological applications

Tales Alexandre da Costa e Silva 16 April 2014 (has links)
O objetivo desse trabalho foi avaliar estratégias de imobilização de lipases produzidas pelo fungo endofítico Cercospora kikuchii através do uso de suportes não convencionais (subprodutos agroindustriais e quitosana). Investigou-se o uso de equipamentos de secagem (estufa, leito de jorro, leito fluidizado, liofilizador e \"spray dryer\") para desidratação dos derivados imobilizados obtidos. A imobilização por ligação covalente, usando glutaraldeído, epicloridrina e metaperiodato de sódio como agentes ligantes, apresentou valores para retenção da atividade enzimática superiores à imobilização por adsorção e encapsulação. Nos ensaios de imobilização utilizando glutaraldeído e secagem em leito de jorro, os melhores valores obtidos foram para a celulose microcristalina com retenção da atividade enzimática de 179,1%, seguido da casca de arroz 173,9%. A palha de milho foi o melhor suporte na imobilização covalente e secagem em estufa, com retenção de mais de 100% da atividade enzimática inicial. Na secagem por liofilização houve destaque para a casca de arroz (163,6%) seguida de palha de milho (157,2%) e cana de açúcar (154,6%). Utilizando quitosana como suporte e secagem em leito fluidizado, o valor para a retenção da atividade enzimática foi de 93,9% empregando-se o glutaraldeído como agente ligante. Na secagem do sistema quitosana-lipase em estufa a retenção da atividade enzimática foi de 68,2% e para secagem por liofilização esse valor foi superior a 80,0%. Realizou-se a caracterização dos materiais utilizados como suportes e estes apresentaram área superficial relativamente alta, elevada porosidade e estrutura constituída de macroporos. Estas características foram importantes por proporcionar a obtenção da enzima imobilizada com alta retenção da atividade catalítica. Alguns parâmetros bioquímicos e cinéticos da lipase na forma livre foram diferentes da lipase imobilizada. A alteração mais evidente foi a afinidade ao substrato (Km), que se mostrou dependente do protocolo de imobilização utilizado. Avaliou-se o potencial de aplicação biotecnológica dos derivados imobilizados que apresentaram maior retenção da atividade enzimática. Para a lipase imobilizada em casca de arroz o rendimento de transesterificação (produção de biodiesel) foi superior a 96,0% após 72 horas de reação enquanto que para as microesferas de quitosana esse valor foi atingido após 120 horas. Os produtos obtidos da transesterificação do óleo de coco estão de acordo com a especificação da Agência Nacional de Petróleo (ANP). Na avaliação da atividade de esterificação, a máxima concentração de butirato de butila foi obtida após 6 horas de reação, correspondendo a uma taxa de conversão de aproximadamente 99,0%, quando utilizou-se quitosana como suporte. Para o uso da casca de arroz, a máxima concentração de butirato de butila foi obtida também após 6 horas de reação, correspondendo a uma taxa de conversão de 92,5%. Este trabalho demonstrou que suportes de baixo custo permitiram a obtenção de derivados imobilizados com características semelhantes àqueles obtidos com o uso de polímeros sintéticos, os quais apresentaram excelente potencial para síntese de biodiesel e de butirato butila. / The objective of this study was to evaluate strategies for immobilization of lipases produced by the endophytic fungus Cercospora kikuchii through the use of unconventional supports (agroindustrial by-products and chitosan). The use of different drying process (oven, spouted bed, fluidized bed, freeze drying and spray drying) for dehydration of immobilized derivatives obtained by adsorption, covalent binding and encapsulation was investigated. The covalent immobilization (using glutaraldehyde, epichlorohydrin and sodium metaperiodate as crosslinking agents) was the best process for the enzymatic activity retention. For covalent immobilization using glutaraldehyde and spouted bed drying, the best values were obtained for microcrystalline cellulose with enzymatic activity retention of 179.1%, followed by rice husk and corn straw with 173.9% and 169.8%, respectively. Corn stover was the best support in the covalent immobilization and oven drying, with retention 100.0% of the initial enzyme activity. For freeze-drying rice husk was the best support (163.6%) followed by corn stover (157.2%), sugar cane bagasse (154.6%) and corn cob (129.5%). Utilizing chitosan as support and fluidized bed drying, the value for the retention of enzymatic activity was 93.9% employing glutaraldehyde as activating agent. For chitosan-lipase drying using oven, the enzymatic activity retention was 68.2% and using freeze-drying the retention of enzymatic activity was higher than 80.0%. The support characterization was carried out and showed high surface area, high porosity and macropore structure. These characteristics were important for providing immobilized derivatives with high catalytic activity retention. Some biochemical and kinetic parameters of lipase in free form were different from the immobilized lipase. The most important changes was the substrate affinity (Km) which was dependent of immobilization protocol used. The last experimental part of this study was the biotechnological applications of the best immobilized derivatives produced. For the immobilized lipase onto rice husk the transesterification yield (biodiesel production) was above 96.0% after 72 hours of reaction while for the use of chitosan microspheres this value was reached after 120 hours. The viscosity values for the biodiesel samples are in accordance with specifications recommended by Brazilian Petroleum Agency (ANP) to be used as biofuel. The immobilized derivatives catalytic power was measured in terms of esterification activity too. The maximum concentration for butyl butyrate was obtained after 6 hours, corresponding to conversion rate of 99.0% when chitosan was used as support. Using rice husk, the maximum butyl butyrate concentration was obtained after 6 hours of reaction, corresponding to conversion rate of 92.5%. This work demonstrated that cheap supports are biocompatible with lipases, rendering immobilized derivatives with characteristics similar to or better than those previously obtained with synthetic polymers. The immobilized derivatives showed excelente potential for biodiesel production and butyl butyrate synthesis.
42

Engineering Candida antarctica Lipase A for Enantioselective Transformations in Organic Synthesis : Design, Immobilization and Organic Solvent Screening of Smart Enzyme Libraries

Wikmark, Ylva January 2015 (has links)
The use of enzymes as catalysts in organic synthesis constitutes an attractive alternative to conventional chemical catalysis. Enzymes are non-toxic and biodegradable and they can operate under mild reaction conditions. Furthermore, they often display high chemo-, regio- and stereoselectivity, enabling specific reactions with single product outcome. By the use of protein engineering, enzymes can be altered for the specific needs of the researcher. The major part of this thesis describes engineering of lipase A from Candida antarctica (CalA), for improved enantioselectivity in organic synthetic transformations. The first part of the thesis describes a highly combinatorial method for the introduction of mutation sites in an enzyme library. By the simultaneous introduction of nine mutations, we found an enzyme variant with five out of the nine possible mutations. This quintuple variant had an enlarged active site pocket and was enantioselective and active for our model substrate, an ibuprofen ester. This is a bulky substrate for which the wild-type enzyme shows no enantioselectivity and very poor activity. In the second part of the thesis, we continued our approach of combinatorial, focused enzyme libraries. This time we aimed at decreasing the alcohol pocket of CalA, in order to increase the enantioselectivity for small and medium-sized secondary alcohols. The enzyme library was bound on microtiter plates and screened by a transacylation reaction in organic solvent. This library yielded an enzyme variant with high enantioselectivity for the model substrate 1-phenyl ethanol, and high to excellent selectivity for other alcohols tested. Screening in organic solvent is advantageous since a potential hit is more synthetically useful. In the third part of the thesis, we used manipulated beads of controlled porosity glass (EziG™) for enzyme immobilization, and demonstrated the generality of this carrier for several enzyme classes. EziG™ allowed fast enzyme immobilization with simultaneous purification and yielded active biocatalysts in all cases. The last project describes the function of the proposed active site flap in CalA. In our study, we removed this motif. The engineered variant was compared to the wild-type enzyme by testing the amount of interfacial activation and the selectivity for certain alcohols. We showed that the motif is indeed controlling the entrance to the active site and that the flap is not part of the enantioselectivity determining machinery. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
43

Produção de fruto-oligossacarídeos e açúcar Invertido utilizando enzimas imobilizadas

Lorenzoni, André Soibelmann Glock January 2014 (has links)
Fruto-oligossacarídeos (FOS) são fibras prebióticas com poder adoçante considerável, sendo um produto de alto valor para a indústria de alimentos. Açúcar invertido é o produto da hidrólise da sacarose possuindo maior poder adoçante, menor susceptibilidade à cristalização e maior higroscopicidade com relação à sacarose, sendo de grande interesse industrial. Ambos produtos podem ser produzidos por reações enzimáticas, utilizando β-frutosiltransferase e β- frutofuranosidase respectivamente, no entanto processos enzimáticos costumam ser caros devido ao alto custo e baixa estabilidade de enzimas. Esses fatores podem ser contornados com a imobilização da enzima, permitindo a reutilização e por vezes aumentando a estabilidade. No presente trabalho a enzima β-frutosiltransferase proveniente de um extrato comercial de Aspergillus aculeatus (Viscozyme L) foi parcialmente purificada, com resina de troca iônica, imobilizada covalentemente em esferas de quitosana e utilizada na produção de FOS. O processo de purificação aumentou a atividade específica em 6 vezes. A estabilidade do biocatalisador imobilizado foi avaliada em 50 bateladas para produção de FOS, foi observado cerca de 55 % de rendimento em cada batelada, sem perda de atividade detectada após as utilizações. Após esse experimento foi testada a utilização das esferas em reatores contínuos com leito fixo e fluidizado, com rendimentos de 59 % e 54 % respectivamente. A produção de açúcar invertido foi feita utilizando a enzima Maxinvert L (β-frutofuranosidase de Saccharomyces cerevisiae) que foi imobilizada, da mesma forma, em esferas de quitosana e sua utilização foi testada em reatores de leito fixo e fluidizado com rendimentos de 98 % e 94 % respectivamente. Os reatores de leito fixo possuem potencial para estudos envolvendo aplicações industriais tanto para produção de FOS quanto para produção de Açúcar Invertido. / Fructooligosaccharides (FOS) are prebiotic fibre with sweetening power, being a highvalue product for the food industry. Invert sugar is the product of sucrose hydrolysis; it has a higher sweetening power, it is less susceptible to crystallization and has a higher hygroscopicity than regular sugar. Finding many uses in food industry processes. Both products can be obtained by enzymatic reactions using β-fructosyltransferase and β- fructofuranosidase, respectively. However, enzymatic processes are often costly because of high enzymatic cost and lack of operational stability. These drawbacks can be overcome by immobilization of enzyme, enabling reuses and usually increasing its stability. In the present work, β-fructofuranosidase from a commercial preparation from Aspergillus aculeatus (Viscozyme L) was partially purified, covalently immobilized on chitosan spheres and used for FOS production. Partial purification resulted in a 6-fold increase in specific activity. Operational stability of biocatalyst was evaluated along 50 batches, resulting in around 55 % yield on each batch and no loss of activity after batches. The immobilized biocatalyst was also used for FOS production in packed bed and fluidized bed reactors with yields of 59 % and 54 % respectively. Invert sugar production was carried out using Maxinvert L (β- fructofuranosidase from Saccharomyces cerevisiae) immobilized, by the same method, on chitosan spheres. Its application on packed bed and fluidized bed reactors was evaluated resulting in yields of 98 % and 94 % respectively. The packed bed reactors presented potential for further studies aiming industrial applications for FOS and Invert Sugar production.
44

Imobilizace vybraných glykanohydroláz / Immobilization of selected glycanohydrolases

Reichstädter, Marek January 2015 (has links)
The theoretical part of this thesis deals with cellulolytic enzymes, their microbial producers, the possibilities of using such enzymes in the industry and how can be enzymes - not only cellulolytic - immobilized. Experimental part examines the preparations created by immobilizing various amounts of the commercially used cellulolytic complex Cellulast 1.5L onto various synthetic carriers made of polyethylene terephthalate - commercially used Sorsilen, PET carrier and glutaraldehyde-treated PET carrier. Enzyme activity of these preparations was determined by Somogyi - Nelson method by spectrophotometry. For the highest activity immobilized preparation was determined the temperature- and the pH-optimum. The difference in effects change between the free and immobilized enzyme by measuring viscosity decrease of the substrate depending on the degradation of glycosidic bonds was also studied.
45

Development of Biocatalytic Nanofibrous Membranes Using Different Modification Approaches for Continuous Proteolytic Reactors

Li, Aotian 07 May 2020 (has links)
Biocatalytic membranes (BMs) have promising applications in a diversity of fields including food, pharmaceutical and water treatment industries. Of particular relevance, Alcalase is a commercially important protease that has been applied for the production of peptides from the hydrolysis of proteins. In this study, two different approaches were applied for the modification of electrospun polyacrylonitrile nanofibrous membranes (EPNMs) for Alcalase immobilization. The first approach is alkali modification of EPNMs followed by EDC/NHS coupling for covalent bonding with Alcalase, whereas the other is based on polydopamine coating with or without glutaraldehyde grafting as a covalent linker. Immobilized Alcalase on these prepared BMs were studied and compared with free enzymes. It was found that the stabilities of Alcalase on BMs created using both approaches were improved, which enabled their reuse of 10 cycles with significant retention of enzymatic activity. A continuous reactor housing BMs were tested for hydrolysis of both model substrate, azo-casein and soybean meal protein (SMP). It was found that decreasing flux could improve the extent of hydrolysis and that a single-layer reactor can hydrolyze about 50% of the substrate to peptides with the molecular weight of 10 kDa or less. Hydrolysis of SMPs was demonstrated in a continuous five-layer BM reactor and both BMs showed excellent hydrolysis capacity. This study provides the groundwork for the development of high-efficiency BM for continuous and cost-effective protein hydrolysis for the production of value-added peptides.
46

Studium enantioselektivity a syntézy β-laktamových antibiotik katalyzované penicilin G acylasou: biokatalýza a in-silico experimenty / Study enantioselectivity and synthesis of β-lactam antibiotics catalyzed by penicilin G acylase: Biocatalysis and in-silico experiments

Grulich, Michal January 2015 (has links)
11 Abstract Penicillin G acylases (PGAs) belong among enantioselective enzymes catalyzing a hydrolysis of stable amide bond in a broad spectrum of substrates, often having high application potential. PGAEc from Escherichia coli and PGAA from microorganism Achromobacter sp. CCM 4824 were used to catalyze enantioselective hydrolyses of seven selected N-phenylacetylated (N-PhAc) α/β-amino acid racemates. The PGAA showed higher stereoselectivity for three (S) enantiomers: N-PhAc-β-homoleucine, N-PhAc-α-tert- leucine and N-PhAc-β-leucine. We have constructed a homology model of PGAA that was used in molecular docking experiments with the same substrates. In-silico experiments reproduced the data from experimental enzymatic resolutions confirming validity of employed modeling protocol. We employed this protocol to evaluate enantiopreference of PGAA towards seven new substrates with application potential. For five of them, high enantioselectivity of PGAA was predicted for. PGAA was further studied in kinetically controlled syntheses of β-lactam antibiotics (SSBA). The PGAA was significantly more efficient at synthese of ampicillin and amoxicillin (higher S/H ratio and product accumulation) compared with PGAEc . Analogously to prediction of enantioselectivity of PGAA towards new substrates this protocol was applied...
47

Designing a Two Component System for Enzyme Immobilization Using a Modified Chitosan Support

Mioro, Miriam Kanyua 14 July 2020 (has links)
No description available.
48

Enhancing Protein and Enzyme Stability Through Rationally Engineered Site-Specific Immobilization Utilizing Non-Canonical Amino Acids

Wu, Jeffrey Chun 01 December 2014 (has links) (PDF)
The demand for economical, efficient protein production, reuse, and recovery has never been greater due to their versatility in a large variety of applications ranging from industrial chemical manufacturing to pharmaceutical drug production. The applications for naturally and artificially produced proteins include protein drugs and other pharmaceutical products, as biocatalysts in environmentally friendly chemical manufacturing, as enzymes for food processing purposes, and as an essential component in many biomedical devices. However, protein production suffers from many challenges, which include the cost of production, protein stability especially under harsh conditions, and recoverability and reusability of the proteins. The combination of two developing technologies, cell-free protein synthesis systems (CFPS) and unnatural amino acid incorporation, provides solutions to these protein production challenges.This dissertation reports on the use of cell-free protein synthesis systems and unnatural amino acid incorporation to develop new proteins and enzyme immobilization techniques that significantly increase activity and stability while simplifying recoverability and reuse.
49

Production and separation of galacto-oligosaccharides from lactose by β-galactosidase immobilized on nanofiltration membranes

Pruksasri, Suwattana 20 September 2007 (has links)
No description available.
50

Examining Stability in Self-Assembled Systems for Biological Applications

Fry, Cathleen Marie 05 October 2022 (has links)
No description available.

Page generated in 0.1292 seconds