• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Epi-CHO, an episomal expression system for recombinant protein production in CHO cells

Kunaparaju, Raj Kumar, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2008 (has links)
The current project is to develop a transient expression system for Chinese Hamster Ovary (CHO) cells based on autonomous replication and retention of plasmid DNA. The expression system, named Epi-CHO comprises (1) a recombinant CHO-K1 cell line encoding the Polyoma (Py) virus large T-Antigen (PyLT-Ag), and (2) a DNA expression vector, pPy/EBV encoding the Py Origin (PyOri) for autonomous replication and encoding the Epstein-Barr virus (EBV), Nuclear Antigen-1 (EBNA-1) and EBV Origin of replication (OriP) for plasmid retention. The CHO-K1 cell line expressing PyLT-Ag, named CHO-T was adapted to suspension growth in serum-free media (EXCELL-302) to facilitate large scale transient transfection and recombinant (r) protein production. PyLT-Ag-expressed in CHO-T supported replication of PyOri-containing plasmids and enhanced growth and r- protein production. A scalable cationic lipid based transfection was optimised for CHO-T cells using LipofectAMINE-2000??. Destabilised Enhanced Green Fluorescence Protein (D2EGFP) and Human Growth Hormone (HGH) were used as reporter proteins to demonstrate transgene expression and productivity. Transfection of CHO-T cells with the vector pPy/EBV encoding D2EGFP showed prolonged and enhanced EGFP expression, and transfection with pPy/EBV encoding HGH resulted in a final concentration of 75 mg/L of HGH in culture supernatant 11 days following transfection.
2

Epi-CHO, an episomal expression system for recombinant protein production in CHO cells

Kunaparaju, Raj Kumar, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2008 (has links)
The current project is to develop a transient expression system for Chinese Hamster Ovary (CHO) cells based on autonomous replication and retention of plasmid DNA. The expression system, named Epi-CHO comprises (1) a recombinant CHO-K1 cell line encoding the Polyoma (Py) virus large T-Antigen (PyLT-Ag), and (2) a DNA expression vector, pPy/EBV encoding the Py Origin (PyOri) for autonomous replication and encoding the Epstein-Barr virus (EBV), Nuclear Antigen-1 (EBNA-1) and EBV Origin of replication (OriP) for plasmid retention. The CHO-K1 cell line expressing PyLT-Ag, named CHO-T was adapted to suspension growth in serum-free media (EXCELL-302) to facilitate large scale transient transfection and recombinant (r) protein production. PyLT-Ag-expressed in CHO-T supported replication of PyOri-containing plasmids and enhanced growth and r- protein production. A scalable cationic lipid based transfection was optimised for CHO-T cells using LipofectAMINE-2000??. Destabilised Enhanced Green Fluorescence Protein (D2EGFP) and Human Growth Hormone (HGH) were used as reporter proteins to demonstrate transgene expression and productivity. Transfection of CHO-T cells with the vector pPy/EBV encoding D2EGFP showed prolonged and enhanced EGFP expression, and transfection with pPy/EBV encoding HGH resulted in a final concentration of 75 mg/L of HGH in culture supernatant 11 days following transfection.
3

Identifikation Apoptose-assoziierter Gene in B-Zellen und Charakterisierung des Genproduktes LAPTM5

Schneider, Hauke 16 January 2003 (has links)
Programmierter Zelltod (PCD) oder Apoptose ist ein universeller biologischer Prozess, der in multizellulären Organismen essentiell ist für die Differenzierung und Homöostase von Geweben. Bei der Entwicklung eines funktionsfähigen zellulären Immunsystems können autoreaktive Zellen entstehen. Die negative Selektion von unreifen, autoreaktiven B-Zellen erfolgt durch IgM-vermittelte Apoptose und ist von de novo Transkription abhängig. Die genauen Mechanismen der IgM-vermittelten Apoptose und die involvierten Genprodukte sind nur unzureichend charakterisiert. Zur Identifikation Apoptose-assoziierter Gene in B-Zellen wurden die Differential Display-Analyse durchgeführt und die Expressionsmuster apoptotischer und nicht-apoptotischer BL60-Zellen untersucht. Es wurden 38 differentielle Fragmente identifiziert und kloniert. Sequenzanalysen ergaben Homologien eines Fragments mit LAPTM5, einem lysosomal-assoziierten Transmembran-Protein mit vorwiegender Expression in hämatopoetischem Gewebe. Northern Blot-Analysen zeigten 2 Stunden nach Inkubation von BL-60-Zellen mit anti-IgM einen Anstieg der Genexpression von LAPTM5. Das LAPTM5-Gen liegt auf Chromosom 1 (1p34), ist evolutionär konserviert und besitzt keine Homologien zu bekannten Genen. Die Untersuchung der gewebespezifischen Expression von LAPTM5 ergab neben der hohen Expressionsrate in hämatopoetischem Gewebe eine sehr starke Expression in Skelett- und Herzmuskelgewebe. Elektronenmikroskopisch zeigte sich eine Lokalisation des Proteins in späten Endosomen und Lysosomen. Daneben konnte LAPTM5 auch auf der Oberfläche von BL60-Zellen detektiert werden. Während des apoptotischen Prozesses bleibt die Menge an LAPTM5 auf der Zelloberfläche konstant. Zur weiteren Charakterisierung von LAPTM5 und anderen Kandidaten-Genen wurde ein episomales Expressions- und Selektionssystem entwickelt. Cotransfektionsanalysen unter Verwendung eines GFP (green fluorescent protein)- Konstrukts zeigten, dass die aufgereinigten Zellen zu 80% das interessierende Gen exprimieren und die Expression länger als vier Wochen anhält. / Programmed cell death (PCD) or apoptosis is a key feature of normal development and tissue homeostasis. In the development of a functional immunesystem the occurence of autoreactive cells is tightly controlled and prevented by apoptosis. The negative selection of autoreactive immature B cells after encountering self antigen occures via surface IgM (sIgM) mediated apoptosis and depends on de novo gene transcription. The precise mechanism of this process and the possible involvement of different genes in the regulation of sIgM-mediated cell death is not understood so far. In order to identify genes associated with B cell apoptosis Differential Display RT-PCR (DD) was performed to analyze sIgM-mediated apoptosis in the human Burkitt lymphoma line BL60. The expression patterns of apoptotic and non-apoptotic cells were investigated and 38 differentially expressed gene fragments were found. Subsequent northern blot analysis showed that LAPTM5, a lysosomal associated membrane protein preferential ly expressed in adult hematopoietic tissue, is up-regulated 2 hours after induction of apoptosis. LAPTM5 is a protein with five transmembrane domains, it is conserved during evolution and the gene, mapping to chromosome 1p34, has no homology to known genes. In contrast to earlier data a very high expression of the protein was detected not only in hematopoietic tissue but also in skeletal muscle and heart muscle. Electronmicroscopy was performed to investigate the subcellular localization in detail and showed that LAPTM5 is mainly present in late endosomes and lysosomes. FACS analysis revealed a surface expression of LAPTM5 and a constant amount of LAPTM5 at the surface during IgM mediated apoptosis. To further investigate the functional role of candidate genes during apoptosis an episomal expression and selection system was established. Cotransfection analysis with GFP (green fluorescent protein) showed that 80% of the separeted cells express the gene of interest for at least four weeks.
4

Células-tronco pluripotentes induzidas para o estudo e tratamento da anemia falciforme / Induced pluripotent stem cell for study and treatment of sickle cell anemia

Reis, Luiza Cunha Junqueira 25 April 2017 (has links)
A anemia falciforme (AF) é uma doença monogênica de elevada mortalidade e morbidade, que afeta milhões de pessoas em todo o mundo. Não há tratamento definitivo que seja amplo, eficaz e seguro para a AF, de forma que os tratamentos paliativos são os mais utilizados. O tratamento definitivo disponível é transplante alogênico de células-tronco hematopoiéticas, porém com várias complicações envolvidas. O estabelecimento de um modelo in vitro permite uma melhor compreensão de como a doença ocorre, além de permitir o desenvolvimento de novos testes e tratamentos mais eficazes contra a doença. Neste contexto, a tecnologia das células-tronco pluripotentes induzidas (iPSC), que surgiu em 2006, é uma ferramenta poderosa na pesquisa básica, na pesquisa da diferenciação de tecidos e no modelamento de doenças, e uma promessa para futuras aplicações clínicas, na descoberta e triagem de novas drogas mais eficazes e seguras, além da possibilidade de utilização na medicina regenerativa, na produção de células paciente-específicas para terapia celular. Este trabalho teve como objetivo obter um modelo de estudo e tratamento da AF utilizando iPSC. Para isso, vetores epissomais foram utilizados para a reprogramação de células mononucleares de sangue periférico para obter iPSC livres de integração. Estas células foram coletadas de pacientes tratados com o medicamento hidroxiureia e sem tratamento, para avaliação do impacto da droga na reprogramação. As linhagens de iPSC PBscd geradas foram caracterizadas quanto ao potencial pluripotente e de diferenciação. Todas as linhagens geradas se mostraram pluripotentes com potencial de auto renovação e potencial de formar células e tecidos dos 3 folhetos germinativos. O rastreamento dos vetores utilizados na reprogramação mostrou que as células estão livres após cerca de 10 passagens em média, e que eles não se integram espontaneamente nas células. As linhagens de iPSC foram diferenciadas em progenitores hematopoiéticos através da agregação forçada associada à indução com citocinas específicas e um cultivo em suspensão. Dessa forma, nós obtivemos um protocolo dinâmico e eficiente de produção de células CD34+CD45+ com poucos dias de indução. Foram realizados experimentos iniciais de padronização da metodologia de CRISPR, para que essa metodologia possa ser utilizada no futuro para a correção da mutação da AF no gene da ?- globin. Além disso, a reação padronizada para o rastreamento da mutação no gene da ?-globin poderá ser usado em experimentos futuros de edição gênica para avaliar a correção da mutação. Em resumo, oferecemos uma ferramenta valiosa para uma melhor compreensão de como a AF ocorre, além de tornar possível o desenvolvimento de drogas e tratamentos mais eficazes e de fornecer um melhor entendimento dos tratamentos amplamente utilizados, como a hidroxiurea / Sickle cell anemia (SCA) is a monogenic disease of high mortality and morbidity, that affects millions of people worldwide. There is no definitive treatment that is broad, effective and safe for SCA, so the palliative treatments are the most used. The definitive treatment available is the allogeneic transplantation of hematopoietic stem cells, but with several complications involved. The establishment of an in vitro model allows better understanding of how the disease occurs, besides allowing the development of more effective new tests and treatments against the disease. In this context, the induced pluripotent stem cell (iPSC) technology, that emerged in 2006, is a powerful tool for basic research, tissue differentiation research and disease modeling, and a promise for future clinical applications, to find and screen new, more effective and safe drugs, besides the possibility of use in regenerative medicine, in the production of patient-specific cells for cell therapy. This work aimed to obtain a model for study and treatment of SCA using iPSC. For this, episomal vectors were used for reprogramming peripheral blood mononuclear cells to obtain integration-free iPSC. This cells were collected from patients treated with hydroxyurea and without treatment, for evaluation of the impact of the drug in reprogramming. The generated iPSC PBscd lines were characterized for pluripotent and differentiation potential. All the generated lines were shown to be pluripotent with potential for self-renewal and to form cells and tissues of the 3 germ layers. Screening of the vectors used for reprogramming showed that they are absent after about 10 passages, and that they do not integrate spontaneously into the cells. The iPSC lines were differentiated into hematopoietic progenitors through forced aggregation associated with induction with specific cytokines and culture in cell suspension. Thus, we obtained a dynamic and efficient protocol of CD34+CD45+ cells production with a few days of induction. Initial standardization experiments of CRISPR methodology was performed, so that this methodology can be used in the future to correct the ?-globin chain mutation of SCA. Also, the standardized reaction for the screening of ?-globin chain mutation can be used in future gene-editing experiments to evaluate the mutation correction. In summary, we offer a valuable tool for a better understanding of how SCA occurs, in addition to make possible the development of more effective drugs and treatments and providing better understanding of widely used treatments, such hydroxyrea
5

Ανάπτυξη επισωματικού φορέα για τη γονιδιακή μεταφορά του φυσιολογικού γονιδίου της β-σφαιρίνης

Μπαβέλη, Μαρία 11 September 2008 (has links)
Η γονιδιακή θεραπεία θεωρείται μια πολλά υποσχόμενη προσέγγιση για την αντιμετώπιση διαφόρων ασθενειών, καθώς για αρκετές από αυτές δεν υπάρχει ουσιαστική θεραπεία παρά μόνο αντιμετώπιση των συμπτωμάτων. Οι αιμοσφαιρινοπάθειες ως μονογονιδιακές ασθένειες έχουν θεωρηθεί εδώ και πολλά χρόνια εξαιρετικά μοντέλα ασθενειών για τη γονιδιακή θεραπεία. Επιπλέον, ο μοριακός μηχανισμός της νόσου είναι από τους καλύτερα μελετημένους. Οι στρατηγικές που χρησιμοποιούνται στις προσπάθειες γονιδιακής θεραπείας των αιμοσφαιρινοπαθειών περιλαμβάνουν: Μεταφορά του φυσιολογικού γονιδίου β, κυρίως σε αρχέγονα αιμοποιητικά κύτταρα, και Προσπάθεια ενεργοποίησης των γ γονιδίων, καθώς ασθενείς με β- θαλασσαιμία και κληρονομική παραμονή της εμβρυϊκής αιμοσφαιρίνης παρουσιάζουν σχεδόν φυσιολογικό φαινότυπο. Όσον αφορά τη γονιδιακή μεταφορά, αυτή γίνεται κατά κύριο λόγο με ιϊκά συστήματα. Ωστόσο, οι φορείς αυτοί παρουσιάζουν ορισμένα μειονεκτήματα με κυριότερα την πρόκληση ανοσολογικών αντιδράσεων και την in vitro μεταλλαξιγένεση λόγω ενσωμάτωσης. Για το λόγο αυτό, τα τελευταία χρόνια οι έρευνες έχουν στραφεί στην κατασκευή επισωματικών φορέων που θεωρούνται γενικά πιο ασφαλείς καθώς δεν ενσωματώνονται στο γενετικό υλικό των κυττάρων. Σημαντικό βήμα στην ανάπτυξη επισωματικών φορέων για την γονιδιακή θερπαπεία των αιμοσφαιρινοπαθειών, επιτεύχθηκε με την κατασκευή του φορέα pEPI-eGFP ο οποίος έχει την ικανότητα να διατηρείται σε επισωματική κατάσταση χάρη στην αλληλουχία S/MAR που περιέχει και η οποία προέρχεται από το 5΄ άκρο του ανθρώπινου γονιδίου της ιντερφερόνης β. Επιπλέον, έρευνες στο παρελθόν έχουν δείξει ότι το mini LCR της β-σφαιρίνης είναι απαραίτητο για την υψηλή και ιστο-ειδική έκφραση του γενετικού τόπου της β-σφαιρίνης. Σκοπός της παρούσας εργασίας είναι η κατασκευή ενός επισωματικού φορέα που θα βασίζεται στον φορέα pEPI-eGFP και ο οποίος αποτελεί ενδιάμεσο στάδιο για την κατασκευή ενός κοσμιδιακού φορέα που θα περιλαμβάνει το mini locus της β-σφαιρίνης. / Gene therapy is considered many promising approach for the confrontation of enough various illnesses, while for from them does not exist essential treatment only that confrontation of symptoms. Haemoglobinopathies as monogenic disorders have been considered for many years exceptional models for gene therapy. Moreover, the molecular mechanism of haemoglobinopathies is very well studied. The strategies that are used in the efforts of gene therapy haemoglobinopathies include: Transport of physiologic gene b, mainly in original stem cells, and Effort of activation of γ-globin genes, since patients with b thalassaemia and hereditary presence of embrionic haemoglobin show almost physiologic phrenotype. With regard to the pertaining to genes transport, this becomes in the first place with virus systems. However, this vectors present certain disadvantages with mainly the challenge of immunological reactions and in vitro metallaxigenesi because incorporation. For this reason, in the past few year the researches have been turned in the manufacture of episomal vectors that is considered in general sure while is not incorporated in the genetic material of cells. Important step in the growth of episomal vectors for gene therapy of haemoglobinopathies, was achieved with the manufacture of pEPI-eGFP which has the faculty to be maintained in episomal situation thanks to the concatenation S/MAR that it contains and which is emanated from the 5΄ of the human gene of interferon β. Moreover, researches in the past have shown that mini LCR of b-globin is essential for high and specific expression of genetic place of b-globin. Aim of present work is the manufacture of episomal vector that will be based on the institution pEPI-eGFP and which constitutes intermediary stage for the manufacture of cosmidial vector that will include the mini locus b-globin.
6

Recombinant protein production using a Tobacco yellow dwarf virus-based episomal expression vector : control of Rep activity

Chanson, Aurelie Heitiare January 2009 (has links)
Over the past decade, plants have been used as expression hosts for the production of pharmaceutically important and commercially valuable proteins. Plants offer many advantages over other expression systems such as lower production costs, rapid scale up of production, similar post-translational modification as animals and the low likelihood of contamination with animal pathogens, microbial toxins or oncogenic sequences. However, improving recombinant protein yield remains one of the greatest challenges to molecular farming. In-Plant Activation (InPAct) is a newly developed technology that offers activatable and high-level expression of heterologous proteins in plants. InPAct vectors contain the geminivirus cis elements essential for rolling circle replication (RCR) and are arranged such that the gene of interest is only expressed in the presence of the cognate viral replication-associated protein (Rep). The expression of Rep in planta may be controlled by a tissue-specific, developmentally regulated or chemically inducible promoter such that heterologous protein accumulation can be spatially and temporally controlled. One of the challenges for the successful exploitation of InPAct technology is the control of Rep expression as even very low levels of this protein can reduce transformation efficiency, cause abnormal phenotypes and premature activation of the InPAct vector in regenerated plants. Tight regulation over transgene expression is also essential if expressing cytotoxic products. Unfortunately, many tissue-specific and inducible promoters are unsuitable for controlling expression of Rep due to low basal activity in the absence of inducer or in tissues other than the target tissue. This PhD aimed to control Rep activity through the production of single chain variable fragments (scFvs) specific to the motif III of Tobacco yellow dwarf virus (TbYDV) Rep. Due to the important role played by the conserved motif III in the RCR, it was postulated that such scFvs can be used to neutralise the activity of the low amount of Rep expressed from a “leaky” inducible promoter, thus preventing activation of the TbYDV-based InPAct vector until intentional induction. Such scFvs could also offer the potential to confer partial or complete resistance to TbYDV, and possibly heterologous viruses as motif III is conserved between geminiviruses. Studies were first undertaken to determine the levels of TbYDV Rep and TbYDV replication-associated protein A (RepA) required for optimal transgene expression from a TbYDV-based InPAct vector. Transient assays in a non-regenerable Nicotiana tabacum (NT-1) cell line were undertaken using a TbYDV-based InPAct vector containing the uidA reporter gene (encoding GUS) in combination with TbYDV Rep and RepA under the control of promoters with high (CaMV 35S) or low (Banana bunchy top virus DNA-R, BT1) activity. The replication enhancer protein of Tomato leaf curl begomovirus (ToLCV), REn, was also used in some co-bombardment experiments to examine whether RepA could be substituted by a replication enhancer from another geminivirus genus. GUS expression was observed both quantitatively and qualitatively by fluorometric and histochemical assays, respectively. GUS expression from the TbYDV-based InPAct vector was found to be greater when Rep was expected to be expressed at low levels (BT1 promoter) rather than high levels (35S promoter). GUS expression was further enhanced when Rep and RepA were co-bombarded with a low ratio of Rep to RepA. Substituting TbYDV RepA with ToLCV REn also enhanced GUS expression but more importantly highest GUS expression was observed when cells were co-transformed with expression vectors directing low levels of Rep and high levels of RepA irrespective of the level of REn. In this case, GUS expression was approximately 74-fold higher than that from a non-replicating vector. The use of different terminators, namely CaMV 35S and Nos terminators, in InPAct vectors was found to influence GUS expression. In the presence of Rep, GUS expression was greater using pInPActGUS-Nos rather than pInPActGUS-35S. The only instance of GUS expression being greater from vectors containing the 35S terminator was when comparing expression from cells transformed with Rep, RepA and REnexpressing vectors and either non-replicating vectors, p35SGS-Nos or p35SGS-35S. This difference was most likely caused by an interaction of viral replication proteins with each other and the terminators. These results indicated that (i) the level of replication associated proteins is critical to high transgene expression, (ii) the choice of terminator within the InPAct vector may affect expression levels and (iii) very low levels of Rep can activate InPAct vectors hence controlling its activity is critical. Prior to generating recombinant scFvs, a recombinant TbYDV Rep was produced in E. coli to act as a control to enable the screening for Rep-specific antibodies. A bacterial expression vector was constructed to express recombinant TbYDV Rep with an Nterminal His-tag (N-His-Rep). Despite investigating several purification techniques including Ni-NTA, anion exchange, hydrophobic interaction and size exclusion chromatography, N-His-Rep could only be partially purified using a Ni-NTA column under native conditions. Although it was not certain that this recombinant N-His-Rep had the same conformation as the native TbYDV Rep and was functional, results from an electromobility shift assay (EMSA) showed that N-His-Rep was able to interact with the TbYDV LIR and was, therefore, possibly functional. Two hybridoma cell lines from mice, immunised with a synthetic peptide containing the TbYDV Rep motif III amino acid sequence, were generated by GenScript (USA). Monoclonal antibodies secreted by the two hybridoma cell lines were first screened against denatured N-His-Rep in Western analysis. After demonstrating their ability to bind N-His-Rep, two scFvs (scFv1 and scFv2) were generated using a PCR-based approach. Whereas the variable heavy chain (VH) from both cell lines could be amplified, only the variable light chain (VL) from cell line 2 was amplified. As a result, scFv1 contained VH and VL from cell line 1, whereas scFv2 contained VH from cell line 2 and VL from cell line 1. Both scFvs were first expressed in E. coli in order to evaluate their affinity to the recombinant TbYDV N-His-Rep. The preliminary results demonstrated that both scFvs were able to bind to the denatured N-His-Rep. However, EMSAs revealed that only scFv2 was able to bind to native N-His-Rep and prevent it from interacting with the TbYDV LIR. Each scFv was cloned into plant expression vectors and co-bombarded into NT-1 cells with the TbYDV-based InPAct GUS expression vector and pBT1-Rep to examine whether the scFvs could prevent Rep from mediating RCR. Although it was expected that the addition of the scFvs would result in decreased GUS expression, GUS expression was found to slightly increase. This increase was even more pronounced when the scFvs were targeted to the cell nucleus by the inclusion of the Simian virus 40 large T antigen (SV40) nuclear localisation signal (NLS). It was postulated that the scFvs were binding to a proportion of Rep, leaving a small amount available to mediate RCR. The outcomes of this project provide evidence that very high levels of recombinant protein can theoretically be expressed using InPAct vectors with judicious selection and control of viral replication proteins. However, the question of whether the scFvs generated in this project have sufficient affinity for TbYDV Rep to prevent its activity in a stably transformed plant remains unknown. It may be that other scFvs with different combinations of VH and VL may have greater affinity for TbYDV Rep. Such scFvs, when expressed at high levels in planta, might also confer resistance to TbYDV and possibly heterologous geminiviruses.
7

Ενεργοποίηση του γονιδίου της γ-σφαιρίνης του ανθρώπου με επισωματική μεταφορά συνθετικού ενεργοποιητή

Σταύρου, Ελεάνα 16 June 2011 (has links)
Η αύξηση της έκφρασης του γονιδίου της γ-σφαιρίνης και κατ’ επέκταση και της εμβρυικής αιμοσφαιρίνης (HbF), μέσω ενεργοποίησης με φαρμακολογικούς παράγοντες ή μεταφοράς του γονιδίου της γ-σφαιρίνης, αποτελούν σημαντικές στρατηγικές για την θεραπεία της δρεπανοκυτταρικής και μεσογειακής αναιμίας. Καινοτομία αποτελεί η δημιουργία ενός ειδικού συνθετικού ενεργοποιητή της γ-σφαιρίνης, του Zif-VP64, με δομή δακτύλων ψευδαργύρου, ειδικά σχεδιασμένη για πρόσδεση σε αλληλουχία 18bp, περί την θέση -117HPFH του υποκινητή της γ-σφαιρίνης. Επιδίωξη της εργασίας αυτής ήταν η ανάπτυξη ενός μη ιϊκού, επισωματικού φορέα, που φέρει τον συνθετικό ενεργοποιητή του γονιδίου της γ-σφαιρίνης, ικανού να λειτουργεί με επάρκεια σε κύτταρα του αιμοποιητικού ιστού. Η φορέας αυτός, Zif-VP64-Ep1, περιλαμβάνει τον ενεργοποιητή της γ-σφαιρίνης και την μεταγραφική κασέτα CMV-eGFP-S/MAR, για την εξασφάλιση της επισωματικής του κατάστασης μέσω του στοιχείου S/MAR. Τα αποτελέσματά μας δείχνουν ότι ο φορέας Zif-VP64-Ep1: i. διαμολύνει επιτυχώς, K562 κύτταρα σε ποσοστό 45% παραμένοντας σε επισωματική κατάσταση και υποστηρίζοντας έκφραση του διαγονιδίου για τουλάχιστον 200 γενεές, προγονικά κύτταρα μυελού τον οστών ποντικού β-YAC BMCs σε ποσοστό 23% και CD34+ κύτταρα περιφερικού αίματος κινητοποιημένου υγιούς δότη σε ποσοστό 22,5%. ii. ο φορέας Zif-VP64-Ep1 υποστηρίζει σημαντική αύξηση των επιπέδων της γ-σφαιρίνης κατά 3.3±0.2 φορές σε Κ562 και 3.0±1 φορές σε CD34+ κύτταρα, και ενεργοποίηση του ανενεργού γονιδίου γ-σφαιρίνης σε κύτταρα β-YAC BMCs. Επιτυγχάνεται έτσι, για πρώτη φορά, επισωματική γονιδιακή μεταφορά του ενεργοποιητή Zif-VP64 και trans-ενεργοποίηση του γ-γονιδίου σε επίπεδο θεραπευτικής σημασίας. / The increase of HbF through activation of gamma-globin gene is a valid strategy for the treatment of hemoglobinopathies. Zif-VP64 is a selective, synthetic gamma-globin activator, containing a zinc-finger DNA protein that binds the gamma-globin promoter -117HPFH area and a transcription inducer that induces gamma globin gene in K562 cells, after viral transfer. We report the study of an episomal vector of this activator, which is based on a Scaffold/Matrix attachment region (S/MAR) that supports retention of episomes in the nucleus of the host cell. We constructed an episomal vector, Zif-VP64-Ep1, containing the activator Zif-VP64, the reporter gene cassette CMV-eGFP and the S/MAR element. Gene transfer into cells was done by electroporation or nucleofection. Expression of eGFP was documented by Florescent Microscopy and Flow Cytometry, while the fate of vector molecules in the cells was studied by Southern Blot and plasmid rescue experiments. Real time PCR, Western blotting and Intracellular Flow Cytometry were used to investigate gamma-globin mRNA, gamma-globin protein and HbF protein levels respectively. Binding specificity of the activator was determined by Chromatin Immunoprecipitation (ChIP). Gene transfer was done in K562 cells producing long term stable cell lines; murine beta-YAC cells, where the YAC contains the complete human, beta-globin gene locus; and human progenitor hemopoietic CD34+ cells from healthy, mobilized individuals, with transfection efficiencies of 65%, 25% and 23% respectively. In K562 cells, gamma-globin mRNA levels showed an increase of 250%, gamma-globin protein of 350% and HbF protein of 165%, as compared to the corresponding levels in the untransfected K562 cells, at least 200 generations post-transfection. Interestingly, vector Zif-VP64-Ep1 was able to mediate the activation of expression of the silent, human gamma-globin gene of the murine beta-YAC cells, at a level matching the (active) human beta-globin gene of the YAC, as well as the murine beta-globin gene, showing that it can efficiently activate the gamma-globin gene from within a heterochromatic region. Finally and most significantly, vector Zif-VP64-Ep1 was able to transfect the human, hemopoietic progenitor CD34+ cells and to mediate a 3.0±1 fold increase of gamma globin mRNA, compared to untrasnfected CD34+ cells, as estimated in cultures of 7-8 days after transfection. In conclusion, activation of human gamma-globin by episomal gene transfer of a synthetic activator, in three different hemopoietic cells, is documented, including the CD43+ cells, that are the target cells for gene therapy of the Hemoglobinopathies. This is the first time that an S/MAR based episomal vector is used for gene transactivation in a cell line and progenitor cells, aiming at specific gene therapy.
8

Μελέτη της γονιδιακής μεταφοράς επισωματικών φορέων σε αρχέγονα αιμοποιητικά κύτταρα

Λάζαρης, Βασίλειος 25 January 2012 (has links)
Στη γονιδιακή θεραπεία, οι κλινικές μελέτες μέχρι τώρα χρησιμοποιούν ιϊκούς φορείς για την μεταφορά του διαγονιδίου στα κύτταρα στόχους. Το DNA των ιϊκών φορέων ενσωματώνεται στο γενετικό υλικό των κυττάρων, και αυτό εμπεριέχει τον μεγάλο κίνδυνο της παρεμβολής στο ενδογενές πρόγραμμα γονιδιακής έκφρασης (μεταλλαξιγένεση λόγω ένθεσης). Μια λύση σε αυτή την ανεπιθύμητη κατάσταση είναι η χρήση επισωματικών φορέων και ιδιαίτερα όσων φέρουν χρωμοσωμικά στοιχεία. Παλαιότερα είχε αναφερθεί ότι ο πρότυπος επισωματικός φορέας pEPI που βασίζεται στο Scaffold /Matrix Attachment Region (S/MAR), παραμένει ως σταθερό επίσωμα για πολλές γενεές σε κυτταρικές σειρές ανθρώπου και ποντικού, αλλά δεν παραμένει για πολλές γενεές σε ανθρώπινα CD34+ κύτταρα. Για να ενισχυθεί η ικανότητα του φορέα να υποστηρίξει την γονιδιακή μεταφορά και συγκράτηση του σε πρωτογενή αρχέγονα/προγονικά αιμοποιητικά κύτταρα, πρώτον ενισχύθηκε η μεταγραφή του S/MAR χρησιμοποιώντας τους ισχυρούς υποκινητές EF1/HTLV ή SFFV για το διαγονιδίο της eGFP και δεύτερον προστέθηκε μια αλληλουχία έναρξης της αντιγραφής (IR) από το γενετικό τόπο των β σφαιρινικών γονιδίων. Στην εργασία αυτή έγινε μεταφορά των νέων αυτών φορέων με την μέθοδο της πυρινικής ηλεκτροδιάτρησης σε κύτταρα CD34+ που απομονώθηκαν από κινητοποιημένο περιφερικό αίμα δοτών μυελού των οστών τα οποία διαμόλυναν επιτυχώς. Στην συνέχεια τα διαμολυσμένα κύτταρα CD34+ επιλέχθηκαν με FACS και καλλιεργήθηκαν σε θρεπτικό υλικό μεθυλοκυτταρίνης. Μετά την πάροδο 14 ημερών, ανιχνεύτηκε, με μικροσκοπία φθορισμού, έκφραση της eGFP στις τελικά διαφοροποιημένες αιμοποιητικές αποικίες που προέκυψαν. / Gene therapy clinical trials are currently based on integrating viral vectors; this approach presents the major risk of insertional mutagenesis. A solution to this side effect could be the use of episomal vectors and particularly the ones carrying chromosomal elements.We previously reported that the prototype episomal vector pEPI, based on a Scaffold /Matrix Attachment Region (S/MAR), functions as a stable episome for many generations in human and murine hematopoietic cell lines, but mediates very low long term retention in human CD34+ cells. To enhance the vector’s potential for gene transfer into primary hematopoietic stem/progenitor cells, (a) was enforced transcription through the S/MAR by using the strong hybrid EF1/HTLV or SFFV promoters to drive expression of the upstream transgene (eGFP) and (b) was included the replication initiation region (IR) from the β-globin gene locus. In this thesis the new vectors where delivered by nucleofection in CD34+ cells isolated from mobilized peripheral blood of healthy donors; th cells were efficiently transfected. Moreover the the transfected CD34+ cells were separated with FACS and cultured in methylocyttarine containing medium. After 14 days, eGFP expression was readily detected by fluorescence microscopy in the differentiated hematopoietic colonies.
9

Reprogramming peripheral blood mononuclear cells using an efficient feeder-free, non-integration method to generate iPS cells and the effect of immunophenotype and epigenetic state on HSPC fate

Liu, Jing January 2014 (has links)
Background and objectives: In 2006 Shinya Yamanaka successfully reprogrammed mouse fibroblasts back to an embryonic stem cell-like state (called induced pluripotent cells, iPS cells) using retrovirus to introduce four genes that encode critical transcription factor proteins (Oct4, Sox2, KLF4, and c-Myc). This ability to reprogram has promising future applications in clinical and biomedical research for study of diseases, development of candidate drugs and to support therapeutic treatments in regenerative medicine. However, the clinical applications have to meet GMP requirements without the risk of insertional mutagenesis associated with retrovirus. Chromatin modifying agents are widely used in many protocols to generate iPS cells and culture of blood CD34+ cells with chromatin-modifying agents can lead to an increase in marrow repopulating cells and in the case of valproic acid increased erythroid cell colony formation. We undertook research to help understand what effects these reagents have on mobilised peripheral blood (mPB) CD34+ cells and optimised the expansion medium protocol to facilitate reprogramming work. This project aims to utilize peripheral blood mononuclear cells (MNC), one of the most easily accessible tissues to generate iPS cells using an efficient non-viral, feeder cell free methodology, with the ultimate goal of moving this methodology towards clinical use. Materials and Methods: G-CSF mobilised peripheral blood, buffy coat, cord blood and fetal liver were obtained from patients and donors under informed consent and ethics committee approval. Haematopoietic stem/progenitor cells CD34+ or CD133+) isolated by magnetic separation were flow cytometry sorted into CD34+/CD133+, CD34+/CD133-, and CD34-/CD133+ sub-populations and their lineage potential were assessed in colony forming unit assays. The effect of epigenetic modifiers valproic acid and 5-aza-2-deoxycytidine used singly or in combination with each other and with IL3 on phenotype and lineage potential of cultured CD34+ cells from mobilised peripheral blood were assessed by flow cytometry and colony-forming unit assays. Prior to reprogramming mononuclear cells from peripheral blood or CD34+ cells from blood were expanded in culture medium supplemented with stem cell factor (SCF), Fms-related tyrosine kinase 3 ligand (Flt3L) and Interleukin- 3 (IL-3) for several days. Actively proliferating cells were reprogrammed by electroporation using episomal vectors with an oriP/EBNA-1 backbone to deliver five reprogramming genes, Oct4, Sox2, Lin28, L-Myc, and Klf4. Electroporated cells were seeded onto matrigel coated plates immediately after transfection or were reseeded after three days’ culture. Subsequently, cells were cultured in specific medium on different days. When iPS colonies appeared, they were picked and cultured as for ES cells. Once established, iPS cell lines were immunophenotyped using flow cytometry and immunofluorescence and their potential to differentiate into the three germ layers was assessed in vitro. Results and Conclusion: The largest subpopulation of CD34+ cells was CD34+/CD133+ population which was essentially committed to myeloid colony production, while much smaller CD34+/CD133- subpopulation had a greater capacity to generate erythroid colonies. Optimised cytokine cocktail for expansion of CD34+ cells included IL-3, important in improving expansion and maintaining functionality of CD34+ cells. The optimised cytokine cocktail comprised 100 ng/ml SCF, 10 ng/ml Flt3L, and 20 ng/ml IL-3, which maintained CD34+ cells and MNC in an active proliferating state. In addition, valproic acid and IL3 were found to act synergistically, to increase the numbers of CD34+/CD36+ positive cells. However, we found that an apparent increase in red cell colony formation actually resulted from a decrease in white cell colonies, so no overall increase in red cell colonies was seen when equivalent numbers of CD34+ cells were plated. Proliferating MNC maintained in optimised cytokine cocktail were amenable to electroporation for the effective delivery of episomal transcription factors (Oct4, Sox2, Klf4, L-Myc, and Lin28) within a backbone of oriP/EBNA-1. We successfully developed an efficient and simple method for reprogramming MNC from fresh or frozen samples to generate induced pluripotent cells using episomal vectors in a feeder-free system without any requirement for small molecules and the highest reprogramming efficiency is 0.033% (65 colonies from 2 ◊ 105 seeding MNC). The cytokine cocktail and reprogramming methods work better in CD34+ cells from cord blood or fetal liver, and we obtained 148 iPS colonies from 105 seeding cells (0.148%) at most. In addition, fibroblasts from adult and fetal liver can be successfully reprogrammed using the same reprogramming method. The use of episomal vectors with an oriP/EBNA-1 backbone to deliver reprogramming genes, and efficient electroporation were the most important factors in efficiency of the reprogramming process. In addition, it is pivotal to initiate transfection when cells are actively proliferating. The iPS cell lines we generated maintained the successful expression of ES markers including Oct4, Nanog, SSEA3. SSEA4, TRA-1-60 and TRA-1-81, and had the capacity to successfully differentiate into cell types of ectoderm, mesoderm and endoderm layers in vitro.
10

Development of episomal expression systems for genetically engineering human hematopoietic cells: Model analyses of the M-CSF:M-CSF receptor pair

Groger, Richard Kevin January 1990 (has links)
No description available.

Page generated in 0.4181 seconds