• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 451
  • 55
  • 49
  • 21
  • 21
  • 18
  • 13
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 748
  • 360
  • 358
  • 130
  • 118
  • 113
  • 112
  • 110
  • 102
  • 100
  • 98
  • 95
  • 93
  • 79
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Modeling the electrical transport in epitaxial undoped and Ni-, Cr-, and W-doped TiO2 anatase thin films

Kneiß, Max, Jenderka, Marcus, Brachwitz, Kerstin, Lorenz, Michael, Grundmann, Marius 14 August 2018 (has links)
Electrical transport in undoped and Ni-, Cr-, and W-doped TiO2 thin films on SrTiO3(001) is modelled either with the sum of two thermally activated processes with exponential temperature dependence of conductivity, or with the sum of three-dimensional Mott variable-range hopping (VRH) and an activated process with low activation energy. The latter is interpreted for both models as small polaron hopping (<θD/4). According to reduced chi-square values, the double activated model is superior for data of higher ordered films grown at 540 and 460 °C. For lower growth temperature, VRH plus activated conductivity fits partly better. For all dopants, n-type conductivity is observed.
412

Germanium thin film integration on silicon substrates via oxide heterostructure buffers

Giussani, Alessandro 16 April 2010 (has links)
Germanium-on-Insulator (GeOI) substrates combine the potential of the Silicon-on-Insulator (SOI) technology with the superior properties of Ge over Si in terms of a) charge carrier mobilities (relevant for CMOS), b) optical bandgap and absorption coefficient (of impact for infra-red photodetectors and high-bandwidth optical interconnects), and c) lattice and thermal match with GaAs (of interest for integration of III-V based optoelectronics and photovoltaics on the mainstream Si platform). Several techniques are under study for the achievement of GeOI structures, such as layer transfer, Ge condensation, and Ge epitaxial overgrowth of Si via crystalline oxide templates. Following the GeOI heteroepitaxial approach, Ge was deposited by molecular beam epitaxy (MBE) on PrO2(111) / Si(111) support systems, and the initial growth stages were studied by means of in-situ reflection high energy electron diffraction (RHEED), and x-ray and ultra-violet photoelectron spectroscopy (XPS and UPS, respectively). It was shown that in the first evaporation stages an amorphous GeO2-like layer forms as a result of the Ge adatom interaction with the PrO2 substrate, namely the diffusion of lattice oxygen from the dielectric into the growing semiconductor deposit. In consequence the PrO2(111) buffer oxide is fully reduced to an oxygen-deficient cub (cubic) Pr2O3(111) film structure. Since no oxidizing species are available in the process anymore, the Ge oxide layer converts under continuous Ge evaporation to GeO, which is volatile at the deposition temperature (~550°C). The sublimation of GeO uncovers the cub-Pr2O3(111) surface, which finally provides a thermodynamically stable template for the heteroepitaxial growth of elemental Ge. A Volmer-Weber growth mode is initially observed, which, by properly tuning the deposition parameters, results after island coalescence in the formation of a closed and flat Ge / cub-Pr2O3 / Si heterostructure. Ge epilayer thickness (in the range 20-1000 nm) and morphology were studied ex-situ by means of x-ray reflectivity (XRR) and secondary electron microscopy (SEM). Dynamic secondary ion mass spectroscopy (D-SIMS) was employed to study the chemical compositions of the Ge films, which turned out to be free from Si and Pr impurities at the sensitivity of some parts-per-billion (ppbs), even after supplying a high thermal budget. This is an important achievement, because in most applications (i.e., optoelectronics), there is the demand for ultra-pure Ge epilayers. Then, laboratory- and synchrotron-based x-ray diffraction (XRD) analyses were performed to assess the epitaxial relationship and the defect structure of the Ge epifilms. It was demonstrated that the Ge layers grow single crystalline with (111) orientation and an exclusive type-A stacking configuration on the type-B cub-Pr2O3(111) / Si(111) support system. Furthermore, the Ge epifilms are fully relaxed in the thickness range 20-1000 nm. Finally, XRD techniques combined with transmission electron microscopy (TEM) permitted the identification and the quantification of three main types of defects at work during the growth of the Ge epi-layers, namely rotation twins, stacking faults and microtwins across {11-1} net-planes. These structural flaws were studied as a function of Ge film thickness and after annealing at 825°C for 30 min in ultrahigh vacuum. It turned out that rotation twins constitute less than 1% of the Ge matrix, are located at the Ge(111) / cub-Pr2O3(111) interface and their amount can be lowered by the thermal treatment. Microtwins across {11-1} were detected only in closed Ge films, after Ge island coalescence. The fraction of Ge film volume affected by microtwinning is constant within the thickness range 20–260 nm. Beyond 260 nm, the density of microtwins is clearly reduced, resulting in thick layers with a top part of higher crystalline quality. Microtwins were found to be insensitive to the post-deposition annealing (PDA). Instead, the density of stacking faults across {11-1} planes decreased after the thermal treatment. In conclusion, the defect density was proved to diminish with increasing Ge thickness and after annealing. A defect density of 10^8-10^9 per cm^2 was estimated in case of a ~ 1000 nm-thick Ge film after PDA.
413

Modeling of a silane-hydrogen plasma discharge including nanoparticle dynamics for photovoltaic applications. / Modélisation d'un plasma de silane-hydrogène avec dynamique de nanoparticules pour applications photovoltaïques.

Orlac'h, Jean-Maxime 02 May 2017 (has links)
Cette thèse porte sur la modélisation de la dynamique des nanoparticules de silicium dans les plasmas de silane à couplage capacitif pour applications photovoltaïques.Une dérivation complète des équations fluides pour un plasma bi-température réactif polyatomique a été effectuée dans le cadre de la théorie cinétique des gaz. A partir d'une analyse asymptotique de l'équation de Boltzmann, la méthode de Chapman-Enskog a permis d'obtenir les équations d'ordre zéro en le nombre de Knudsen, qui correspondent au régime "Euler", et les équations d'ordre un qui correspondent au régime "Navier-Stokes-Fourier". La méthode fournit également une expression des flux de transport en termes des gradients des variables macroscopiques, ainsi que les coefficients de transports associés.Le modèle de plasma fluide multi-espèces ainsi dérivé a été simplifié et implémenté numériquement en vue de modéliser un réacteur de dépôt chimique en phase vapeur assisté par plasma utilisé pour le dépôt de couches minces de silicium. Un logiciel a été écrit en FORTRAN et validé numériquement à l'aide d'un "benchmark" issu de la littérature. Il a ensuite été mis en oeuvre dans les conditions typiques de l'épitaxie par plasma basse température. Les densités des principales espèces sont en accord avec les données expérimentales de la littérature. L'influence de la chimie du silane sur la tension d'auto-polarisation a également été étudiée, grâce à l'utilisation de formes d'ondes asymétriques sur mesure.Le modèle a ensuite été enrichi à l'aide d'un modèle sectionnel en taille et en charges pour les nanoparticules. La comparaison avec les résultats expérimentaux existants a permis d'estimer le coefficient d’accommodation du silane sur les nanoparticules. Les résultats obtenus confirment le rôle prépondérant des ions positifs dans le processus de dépôt.Le modèle développé dans cette thèse ouvre ainsi la voie à une étude systématique de l’évolution du plasma en fonction des conditions de dépôt et de l'influence des nanoparticules sur les propriétés physico-chimiques du plasma. / This thesis addresses the modeling of silicon nanoparticle dynamics in radio-frequency capacitively-coupled silane plasma discharges for photovoltaic applications.A complete derivation of fluid equations for a two-temperature reactive polyatomic plasma has been achieved in the framework of the kinetic theory of gases. From an asymptotic analysis of the Boltzmann equation, the Chapman-Enskog method was applied to derive the zeroth-order “Euler-type” equations and the first-order “Navier-Stokes-type” equations. Expressions for transport fluxes have been obtained in terms of the macroscopic variables gradients, and associated transport coefficients have been derived.The multicomponent fluid plasma model thus derived has been simplified and implemented numerically in order to model a plasma enhanced chemical vapor deposition reactor as used for silicon thin films deposition. A software has been written in FORTRAN and validated against a benchmark model from the literature. The plasma model has then been applied to typical conditions for low temperature plasma enhanced silicon epitaxy. The main plasma species densities are in good agreement with existing experimental data. The influence of silane plasma chemistry on the DC bias voltage has also been investigated using “tailored voltage” asymmetric waveforms.The model has then been enriched with a sectional model accounting for size and charge of nanoparticles. An estimation of the accommodation coefficient of silane on nanoparticles was obtained from a comparison with existing experimental results. Results of the simulations confirm the critical role of positive ions in the deposition process.The model implemented in this work opens the path for a systematic study of the evolution of the plasma properties as a function of the process conditions and of the influence of nanoparticles on the plasma physicochemical properties.
414

Electromechanical couplings and growth instabilities in semiconductors / Couplages électromécaniques et instabilités de croissance dans les semi-conducteurs

Guin, Laurent 14 December 2018 (has links)
Ces dernières décennies, la mécanique des solides est allée au-delà de ses problématiques originelles ayant trait aux propriétés mécaniques des matériaux et des structures pour embrasser des questions issues d'autres champs scientifiques et en particulier de la physique. Les semi-conducteurs, matériaux de base de tous les dispositifs électroniques, sont un bon exemple où des solides cristallins présentent des couplages multiphysiques. En effet, la mécanique y joue un rôle important, à la fois dans le processus de fabrication et dans l'utilisation des dispositifs électroniques. Dans ce travail, nous examinons ces deux aspects en étudiant dans une première partie les couplages entre les phénomènes de transport électronique et les déformations mécaniques et dans une seconde partie les instabilités morphologiques qui apparaissent lors de la croissance épitaxiale des semi-conducteurs.Premièrement, en développant une théorie entièrement couplée des semi-conducteurs déformables qui inclut les champs mécaniques, électrique et électroniques, nous montrons, pour la première fois, l'existence d'une contribution électronique à la contrainte mécanique. Alors que pour les semi-conducteurs cristallins cette contribution est faible, l'effet des déformations sur le transport électronique demeure important par les modifications qu'elles induisent sur les niveaux d'énergie de bandes, les densités d'états et la mobilité des électrons et des trous. Compte tenu de l'avènement de nouvelles technologies d'électronique flexible, nous mettons en pratique la théorie générale pour calculer, au moyen de développements asymptotiques, l'effet de la flexion - qui entraîne des déformations non uniformes - sur la caractéristique courant-tension d'une jonction p-n, la brique élémentaire des cellules solaires. Pour compléter ce tableau, nous mesurons les changements induits par des contraintes uniaxiales sur la caractéristique électronique de cellules solaires silicium à hétérojonction.Dans la deuxième partie de ce travail, en descendant à l'échelle atomique, nous étudions le phénomène de la croissance épitaxiale sur des surfaces vicinales. Sur ces surfaces, le cristal croît par propagation de marches atomiques, qui peuvent développer de la mise en paquets, une instabilité par laquelle l'espacement régulier entre marches est brisé, donnant lieu à un motif alternant entre de larges terrasses atomiques et des paquets de marches. Au travers d'une analyse de stabilité linéaire exhaustive des équations de la dynamique des marches, nous discutons de l'influence de chaque mécanisme physique sur l'instabilité de la mise en paquets. En particulier, nous clarifions l'incidence sur la stabilité de la dynamique, de l'effet de saut d'adatomes ainsi que de l'élasticité, au-delà de l'hypothèse d'interactions de plus proches voisins. De plus, nous montrons que nos résultats généraux de stabilité, c'est-à-dire obtenus sans négliger les termes dynamiques, sont significativement différents de ceux obtenus avec l'approximation quasi-statique, et ce, même dans les régimes de déposition ou d'évaporation lentes où cette dernière était considérée comme suffisante. Non seulement intéressants d'un point de vue théorique, ces nouveaux résultats fournissent des explications possibles pour certains cas de mise en paquets observés sur le silicium et l'arséniure de gallium. Compte tenu de ces nouveaux aspects, nous réexaminons le phénomène de la mise en paquets sous électromigration et montrons que les effets de saut d'adatomes et de la dynamique n'affectent pas la dépendance de la stabilité à la direction du courant d'électromigration.Enfin, nous étudions les propriétés mécaniques, à l'échelle atomique, d'un autre matériau cristallin aux propriétés semi-conductrices, le graphène polycristallin. En utilisant des simulations de dynamique moléculaire, nous développons un modèle de zone cohésive pour la rupture le long des joints de grains. / In the last decades, solid mechanics has gone beyond its original issues of mechanical properties of materials and structures to embrace problems coming from other scientific fields and in particular physics. Semiconductors, the base materials of all electronic devices, are a prime example where crystalline solids show multiphysics couplings. Indeed, mechanics plays there an important role both in the fabrication process and in the operation of electronic devices. In this work, we examine these two aspects by studying first the couplings between electronic transport phenomena and mechanical deformations and second the morphological instabilities that develop in semiconductor epitaxial growth.First, developing a fully-coupled theory of deformable semiconductors that includes mechanical, electrical and electronic fields, we show for the first time the existence of an electronic contribution to mechanical stress. While for crystalline semiconductors this contribution is weak, the effect of strains on electronic transport remains significant through their modification on band energy levels, density of states and mobility of electrons and holes. Considering the advent of new technologies of flexible electronics, we apply the general theory to compute through asymptotic expansions, the effect of bending -causing non-uniform strains- on the current-voltage characteristic of a p-n junction, the basic device of solar cells. To complete this picture, we measure the changes induced by uniaxial stresses on the electronic characteristic of a silicon heterojunction solar cell.In the second part of this work, going down to the atomic scale, we consider the problem of epitaxial growth on vicinal surfaces. On these surfaces, the crystal grows through the propagation of the atomic steps, which may develop step bunching, an instability whereby the regular step spacing breaks down, resulting in an alternating pattern of wide atomic terraces and step bunches. Through a comprehensive linear stability analysis of the step dynamics governing equations, we discuss the influence of each physical mechanism on the step bunching instability. In particular, we clarify the impact on stability of the dynamics, of the recently pointed out adatom jump effect, and of elasticity, beyond the assumption of nearest-neighbor interactions. In addition, we show that our general stability results, i.e., obtained without neglecting the dynamics terms, are significantly different from those derived with the quasistatic approximation, even in regimes of slow deposition or evaporation where the latter was considered sufficient. Not only valuable from a theoretical prospective, these new results provide possible explanations for some cases of step bunching observed in silicon and gallium arsenide. In view of these new aspects, we reexamine the problem of step bunching under electromigration and show that the adatom jump and dynamics effects do not affect the stability dependence on the direction of the electromigration current.Finally, we investigate the mechanical properties at the atomic scale of another crystalline material with semiconducting properties, polycrystalline graphene. Using molecular dynamic simulation, we develop a cohesive zone model for fracture along grain boundaries.
415

Superconducting properties of heavy fermion thin films and superlattices / 重い電子系薄膜および人工超格子による超伝導状態の研究

Shimozawa, Masaaki 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18052号 / 理博第3930号 / 新制||理||1567(附属図書館) / 30910 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 松田 祐司, 准教授 芝内 孝禎, 教授 石田 憲二 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
416

Role of eEpitaxy-mediated transformation in Ostwald's step rule / オストワルド段階則におけるエピタキシ媒介相転移の役割

Niekawa, Natsuki 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18088号 / 理博第3966号 / 新制||理||1572(附属図書館) / 30946 / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 下林 典正, 教授 土`山 明, 准教授 三宅 亮 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
417

Heterovalent Semiconductors: First-Principles Calculations of the Band Structure of ZnGeGa<sub>2</sub>N<sub>4</sub>, and Metalorganic Chemical Vapor Deposition of ZnGeN<sub>2</sub> - GaN Alloys and ZnSnN<sub>2</sub>

Jayatunga, Benthara Hewage Dinushi 21 June 2021 (has links)
No description available.
418

Growth and Characterization of CdTe/ZnTe Thin Films and Heterostructures

Miki, Carley January 2014 (has links)
CdTe and ZnTe are common semiconductors, currently used in a wide variety of applications. Heterostructures, composed of two or more layered materials, create further potential for the use of these semiconductors in the development of new technologies. In this thesis, the epitaxial growth of CdTe/ZnTe thin films and heterostructures are studied with the intention of better understanding the mechanisms by which they grow and how their overall structure and properties may be modified. Single-layer, bilayer, and multilayer structures were grown by pulsed laser deposition on sapphire substrates. The resulting crystal structure, interface, and optical properties were characterized using X-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and electron microscopy and spectroscopy techniques. It was found that the growth conditions have a direct impact on the crystal quality of these materials, that can be understood in terms of the growth dynamics and film-substrate interactions. Domain formation was also found to vary between CdTe and ZnTe depositions, revealing important information about their growth. This work presents methods of consistently producing high quality CdTe and ZnTe thin films and bilayers, and insight into how this may be applied to the growth of multilayer films. / Thesis / Master of Science (MSc)
419

Operation of Cold STM System In Conjunction With In Situ Molecular Beam Epitaxy

Foley, Andrew January 2012 (has links)
No description available.
420

The Study of Coupling in InGaAs Quantum Rings Grown by Droplet Epitaxy

Alsolamy, Samar M. 12 June 2013 (has links)
No description available.

Page generated in 0.0328 seconds