• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 399
  • 52
  • 35
  • 22
  • 19
  • 11
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 4
  • 2
  • 2
  • Tagged with
  • 602
  • 602
  • 148
  • 64
  • 48
  • 47
  • 46
  • 45
  • 45
  • 44
  • 43
  • 43
  • 42
  • 40
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Airway epithelial cell function in childhood wheeze

McDougall, Catherine M. January 2008 (has links)
Nasal AEC cultures were established from children (0.6-14.9 years) undergoing elective surgical procedures under general anaesthetic, categorised as atopic asthmatics (n=12), virus-induced wheezers (n=8) or healthy controls (n=32) using questionnaire and serum IgE levels. All subjects were free of current respiratory symptoms. Successful AEC cultures were maintained to passage 2 or 41 (79%) subjects. AEC from children with a history of wheeze produced significantly less IL-8, IL-6, MCP-1 and G-CSF than AEC from healthy controls. When the wheezing phenotypes were considered separately, AEC from atopic asthmatic children released significantly less IL-8, IL-6, MCP-1 and G-CSF than AEC from controls but there were no significant differences between AEC mediator release from children with virus-induced wheeze and either atopic asthmatics or controls. Similar results were found for cytokine-stimulated AEC. In non-wheezy subjects, there were no differences in AEC mediator release between atopic and non-atopic individuals. There were no differences between the study groups in the percentage increments in mediator release in response to stimulation. In multivariate analysis, taking into account age, gender, passive smoke exposure, use of inhaled corticosteroids, total serum IgE and specific responses to inhaled aeroallergens as possible confounders, wheeze was the only significant predictor of AEC mediator release. It was concluded that there are intrinsic differences in AEC from children with a history of wheeze compared to healthy controls and these are independent of atopic status. This study provides further evidence that the airway epithelium is implicated in the pathogenesis of childhood wheezing. It is hypothesised that different systemic factors, such as atopy and viral responsiveness, interact with common epithelial abnormalities to give rise to different wheezing phenotypes. Further work is required to establish whether these abnormalities are primary or secondary and to confirm these findings in well-differentiated AEC cultured with an air-liquid interface.
142

Characterization of endometrial ion channels: their roles in hormonal-regulated anion secretion.

January 1999 (has links)
Chan Ling Nga. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 143-153). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.vi / Table of Contents --- p.vii / List of Figures --- p.xi / List of Tables --- p.xiv / Abbreviations --- p.xv / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- The Human Endometrium --- p.1 / Chapter 1.1.1 --- The Structure of the Endometrium --- p.1 / Chapter 1.1.2 --- Cyclic Changes in the Endometrium --- p.1 / Chapter 1.1.3 --- Physiological Roles of the Endometrium --- p.5 / Chapter 1.1.4 --- Roles of Luminal Epithelium in Implantation --- p.5 / Chapter 1.1.5 --- Exocrine Functions of the Endometrial Epithelium --- p.6 / Chapter 1.2 --- Review of Epithelial Ion Channels --- p.8 / Chapter 1.2.1 --- Epithelial Na+ Channels (ENaC) in Absorbing Epithelia --- p.9 / Chapter 1.2.2 --- Epithelial C1- Channels in Secretory Epithelia --- p.13 / Chapter 1.2.3 --- Na+ and C1- Channels in Endometrial Epithelia --- p.15 / Chapter 1.3 --- Review of the Intracellular Signal Transduction Pathways --- p.15 / Chapter 1.3.1 --- The cAMP-Mediated Signal Transduction Pathway --- p.17 / Chapter 1.3.2 --- The cAMP-Mediated Chloride Channels in Epithelial Cells --- p.17 / Chapter 1.3.3 --- Ca2+-Dependent Signal Transduction Pathway --- p.21 / Chapter 1.4 --- Physiological Roles of some Neurohormonal Agents in Uterine Functions: Selected Examples --- p.23 / Chapter 1.4.1 --- Roles of Adrenaline on the Endometrial Ion Transport --- p.23 / Chapter 1.4.2 --- Prostaglandin (PG) E2 and PGF2α --- p.24 / Chapter 1.4.3 --- Biological Effect of Extracellular Nucleotides --- p.26 / Chapter 1.5 --- Objective of this Study --- p.28 / Chapter 2 --- Materials and Methods --- p.31 / Chapter 2.1 --- Materials --- p.31 / Chapter 2.1.1 --- Culture Media and Enzymes --- p.31 / Chapter 2.1.2 --- Drugs --- p.31 / Chapter 2.1.3 --- Chemicals --- p.32 / Chapter 2.1.4 --- Experimental Tissues and Animals --- p.32 / Chapter 2.2 --- Preparations --- p.32 / Chapter 2.2.1 --- Previous Support for Cell Growth --- p.32 / Chapter 2.2.2 --- Growth Medium --- p.33 / Chapter 2.2.3 --- Culture of Mouse Endometrial Epithelial Cells --- p.35 / Chapter 2.2.4 --- Solutions for the Short-Circuit Current Measurements --- p.36 / Chapter 2.2.5 --- Solutions for the Patch-Clamp Experiments --- p.38 / Chapter 2.2.6 --- Running Buffers for RNA and DNA Gel Electrophoresis --- p.39 / Chapter 2.2.7 --- UTP-free UDP --- p.40 / Chapter 2.2.8 --- Electrodes for the Short-Circuit Current Measurement --- p.40 / Chapter 2.3 --- Protocols --- p.41 / Chapter 2.3.1 --- Characterization of Neurohormonal Agents-induced Ion Channels --- p.41 / Chapter 2.3.2 --- Possible Interaction between CFTR and ENaC --- p.41 / Chapter 2.3.3 --- Characterization of Pyrimidinoceptors-mediated Conductances --- p.42 / Chapter 2.4 --- Methods of Measurements --- p.42 / Chapter 2.4.1 --- The Patch-Clamp Technique --- p.42 / Chapter 2.4.1.1 --- The Patch-Clamp Setup --- p.43 / Chapter 2.4.1.2 --- Shielding and Grounding --- p.45 / Chapter 2.4.1.3 --- Pipette Fabrication --- p.45 / Chapter 2.4.1.4 --- Pipette Holder and Electrodes --- p.48 / Chapter 2.4.1.5 --- Experimental Procedures --- p.49 / Chapter 2.4.1.6 --- Signal Recording and Data Acquisition --- p.54 / Chapter 2.4.1.7 --- Data Analysis --- p.54 / Chapter 2.4.2 --- The Short-Circuit Current Technique --- p.55 / Chapter 2.4.2.1 --- The Short-Circuit Current Setup --- p.56 / Chapter 2.4.2.2 --- Experimental Procedures --- p.56 / Chapter 2.4.2.3 --- Data Analysis --- p.61 / Chapter 2.4.3 --- Reverse Transciption - Polymerase Chain Reaction (RT-PCR) --- p.61 / Chapter 2.4.3.1 --- RNA Isolation --- p.61 / Chapter 2.4.3.2 --- RNA Gel Electrophoresis --- p.62 / Chapter 2.4.3.3 --- Reverse Transcription (RT) --- p.63 / Chapter 2.4.3.4 --- Polymerase Chain Reaction (PCR) --- p.64 / Chapter 2.4.3.5 --- DNA Gel Electrophoresis --- p.66 / Chapter 2.4.4 --- Statistical Analysis --- p.66 / Chapter 3 --- Results --- p.67 / Chapter 3.1 --- Activation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in Response to Hormonal Stimuli --- p.67 / Chapter 3.2 --- Inhibition of Na+ Absorption by CFTR --- p.89 / Chapter 3.3 --- Pyrimidinoceptors-activated Ca2+-dependent C1- Conductance --- p.111 / Chapter 4 --- General Discussions --- p.132 / Appendix --- p.140 / Chapter A --- RNA Isolation --- p.140 / Chapter B --- Reverse Transcription --- p.141 / Chapter C --- Polymerase Chain Reaction --- p.142 / References --- p.143
143

Determinants of Human Rhinovirus Cellular Tropism in Monocyte-Lineage Cells

Schreiber, Michael Thomas January 2016 (has links)
Human rhinovirus (HRV) is responsible for the majority of common cold infections and asthma exacerbations. HRV predominantly replicates in the epithelial cells of the upper airway, where common cold symptoms are produced. However, HRV also enters the lower airway, encountering the epithelial cells and alveolar macrophages thought to produce inflammatory responses during HRV-induced asthma exacerbations. Notably, alveolar macrophages release inflammatory mediators such as MCP1/CCL2 and RANTES/CCL5 in response to HRV despite the fact that limited if any HRV replication occurs in these cells. The present study seeks to address the mechanism by which alveolar macrophages are susceptible but not permissive to HRV replication and to identify the step in the HRV replication cycle that restricts HRV to abortive replication in macrophages. Evidence presented herein demonstrates that major-group (ICAM-1 tropic) HRV replicate with limited success in cell line-derived macrophages, whereas minor-group (LDLR tropic) HRV do not replicate in these monocyte-lineage cells. In contrast, neither major- nor minor-group HRV replicate in primary human PBMC-derived macrophages. Capsid swap experiments demonstrated that difference in replicative capacity between major- and minor-group HRV is mediated at the level of permissiveness rather than susceptibility. RNA- Seq gene expression studies identified candidate host genes that may act to regulate HRV replication. These RNA-Seq studies also revealed positive- and negative-sense HRV RNA genomes in monocyte-lineage cells, suggesting that abortive HRV replication takes place within them. Overexpressing interferon-stimulated genes (ISGs) implicated in restricting the replication of poliovirus did not affect the accumulation of HRV RNA. Further study will continue to investigate the differences between major- and minor-group HRV responsible for differential replication success in cell-line derived macrophages and characterize the point(s) in the HRV replication cycle at which replication is blocked in primary macrophages. The ultimate goals of these studies are to reveal vulnerabilities in the HRV replication cycle and to identify host factors whose expression might be pharmacologically altered to attenuate HRV infection, thereby providing novel treatment options for controlling the common cold and HRV-induced asthma exacerbations.
144

An orthotopic mammary epithelial cell transplantation model and prognostic molecular imaging of early breast cancer formation

Szucs, Zoltan January 2015 (has links)
No description available.
145

Activation of NF-[kappa]B and p38 MAPK regulating the expression of cytokines, chemokines and adhesion molecules upon the co-culture of human eosinophils and bronchial epithelial cells. / CUHK electronic theses & dissertations collection

January 2005 (has links)
Co-culture of eosinophils and BEAS-2B cells was found to increase the release of cytokine IL-6 and chemokines MIG, MCP-1, IL-8 and IP-10 and up-regulate the corresponding genes expression in BEAS-2B cells or eosinophils. Interaction of eosinophil-BEAS-2B cells could also elevate adhesion molecules ICAM-1, VCAM-1, ICAM-3, and CD49d expression on the surface of BEAS-2B cells, and CD18 and ICAM-3 on eosinophils, and up-regulate ICAM-1 gene expression in BEAS-2B cells. Lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-alpha could induce or further induce ICAM-1 expression on eosinophils and BEAS-2B cells upon their interaction. Moreover, activities of both NF-kappaB and p38 MAPK in BEAS-2B cells were markedly elevated after co-cultured with eosinophils. / Freshly isolated eosinophils from human peripheral blood and confluent BEAS-2B cells were co-cultured together in tissue culture plate for a pre-determined time period. Cytokines including interleukin (IL)-1beta, IL-2, IL-4, IL-6, IL-10, IL-12p70, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma and chemokines regulated upon activation normal T cell expressed and secreted (RANTES), monokine induced by interferon-gamma (MIG), monocyte chemoattractant protein (MCP)-1, IL-8, and interferon inducible protein (IP)-10 in culture supernatant were evaluated by protein array and quantified by cytometric bead array (CBA) kit of Th1/Th2 cytokines, inflammatory cytokines, and human chemokines using flow cytometry and enzyme linked immunosorbent assay (ELISA) kit. / In order to investigate the immunopathological mechanism in allergic asthma of eosinophils interacting with bronchial epithelium in inflammation site, a in vitro system of co-culture of human bronchial epithelial cells and eosinophils was set up to mimic the inflammatory reaction. / In summary, co-culture of epithelial cells, BEAS-2B cells, and eosinophils could activate NF-kappaB and p38 MAPK signal transduction pathways to induce inflammatory cytokine IL-6, and chemokines IL-8, MCP-1, MIG and IP-10 release in culture supernatant, and up-regulated the expression of surface adhesion molecules ICAM-1, VCAM-1, ICAM-3 and CD49d protein on BEAS-2B, and CD18 and ICAM-3 on eosinophils. (Abstract shortened by UMI.) / In this study, co-culture of a human epithelial cell line, BEAS-2B cells, and peripheral eosinophils was adopted as an in vitro model to investigate the effect of interaction of epithelial cells and eosinophils in airways on pathophysiology of asthma. / Wang Chengbin. / "July 2005." / Advisers: Wai kei Lam; Chun kwok Wong; Yaping Tian. / Source: Dissertation Abstracts International, Volume: 67-07, Section: B, page: 3723. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 119-134). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract in English and Chinese. / School code: 1307.
146

Functional studies of gill epithelial cells isolated from Japanese eels (anguilla japonica)

Tse, Ka Fai William 01 January 2008 (has links)
No description available.
147

Anastrozole when used as a superovulator, may alter key focal adhesion proteins associated with receptivity of uterine epithelial cells during implantation in the rat: a potential therapeutic clue in assisted reproductive technologies

Mwakikunga, Anthony Raphael. January 2015 (has links)
A thesis submitted to the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Doctor of Philosophy July, 2015 / Introduction: Anastrozole is clinically effective in ovulation induction, but it has not been well researched. The aim of this study was to determine the optimal dose for anastrozole as a superovulator and ascertain its effects on implantation in Wistar rats; also to determine its effects on uterine morphology during early pregnancy using light microscopy and scanning electron microscopy (SEM). [Abbreviated Abstract. Open document to view full version] / AC2016
148

An investigation into the mechanism of TMIGD1-mediated signal transduction pathway in human epithelial cells

Engblom, Nels 11 July 2017 (has links)
Dysregulation of protein expression, in particular expression of proto-oncogenes and tumor-suppressor genes whose function play key roles in cell growth, adhesion and migration, are hallmarks of human malignancies. Transmembrane and immunoglobulin-containing domain 1 (TMIGD1) was recently discovered as a cell adhesion molecule (CAM) that plays an important role in epithelial cell function by regulating epithelial cell polarity and adhesion. The extracellular domain of TMIGD1 contains two Ig domains that are involved in cell-cell interaction, followed by a transmembrane region and short cytoplasmic domain with potential to relay signal transduction. Our further investigation demonstrated TMIGD1 is downregulated in human colon cancer, suggesting a potentially important role for TMIGD1 in the regulation colorectal cancer. However, the molecular mechanisms of TMIGD1-mediated signal transduction, which could relay its function in epithelial cells, are not known. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, we have identified moesin as a possible TMIGD1 binding protein. Moesin, a member of the Ezrin/Radixin/Moesin (ERM) family of proteins, is upregulated in human tumors. Moesin stimulates cell migration, tumor invasion, adherence and modulates cytoskeletal actin assembly. Similar to other ERM family proteins, moesin contains an N-terminal FERM domain, which binds to transmembrane proteins, and a C-terminal C-ERMAD domain, which binds F-actin. The overall goal of this study was to determine the binding of moesin with TMIGD1 and the specific domain involved in mediating the binding of moesin with TMIGD1. Our study in vitro and in vivo binding assays demonstrate that moesin interacts with the cytoplasmic domain of TMIGD1 via its FERM domain. Moreover, we demonstrate TMIGD1 interaction with moesin inhibits phosphorylation of moesin, indicating that perhaps TMIGD1 inhibits tumor cell migration through inhibition of phosphorylation of moesin. Additionally, TMIGD1 alters cellular localization of moesin, suggesting that altered cellular localization by TMIGD1 could account for inhibition of phosphorylation of moesin. We propose that TMIGD1 sequesters moesin near the cell membrane, preventing its interaction with PIP2, which is required for its phosphorylation and hence inhibits moesin activation. Altogether, the data presented in this work identifies moesin as a key signaling component of TMIGD1. Moesin directly interacts with TMIGD1 via its FERM domain. Recruitment of moesin to TMIGD1 blocks phosphorylation of moesin, suggesting that TMIGD1 exerts its effect in tumor cells in part by inhibition of moesin activation. / 2018-07-11T00:00:00Z
149

Role of second messengers in controlling growth patterns of corneal epithelial cells

Liu, Ke, University of Western Sydney, College of Science, Technology and Environment, School of Science, Food and Horticulture January 2002 (has links)
The purpose of this thesis was to investigate mechanisms contolling the growth of corneal epithelial cells, particularly the intracellular signals involved with stratification compared with cellular migration and maturation. Buttons of epithelium were cultured in different culture media. The explants were monitored microscopically for their growth patterns and finally fixed and examined for cytokeratin, vimentin and actin. Different growth patterns were observed in the different media, indicating that different signalling patterns must be operating in these cells depending upon the media in which they were grown. To investigate the intracellular pathways controlling the different growth patterns, the protein phosphorylation of different cultures was investigated. The two proteins, p57 and p30, are strongly suggested to be associated with stratification of the epithelial cells. The possible involvement of the common serine kinase, PKC, in controlling the growth pattern of corneal epithelial cells were also investigated. The results suggested that an intracellular pathway involving PKC promotes the maturation and spread of the cells but is not involved in their stratification. These experiments taken together indicate that the different aspects of corneal epithelia cell growth are tightly controlled and may occur quite independently. Specific protein expression appears to be important for stratification, and phosphorylation of proteins by PKC appears to be involved with the maturation of epithelial cells from basal cells. It also indicates that the mature cells are capable of producing the extracellular matrix protein fibronectin which appears to have an important role in causing the spread as distinct from the stratification of the corneal epithelial cells. / Doctor of Philosophy (Ph.D.)
150

Regulation of 1,25D(3)-MARRS expression by TGFB1 in a rat intestinal epithelial cell line

Rohe, Benjamin G. January 2006 (has links)
Thesis (M.S.)--University of Delaware, 2006. / Principal faculty advisor: Mary C. Farach-Carson, Dept. of Biological Sciences. Includes bibliographical references.

Page generated in 0.0734 seconds