• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 359
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 2
  • 2
  • Tagged with
  • 378
  • 378
  • 378
  • 151
  • 151
  • 148
  • 85
  • 78
  • 78
  • 78
  • 78
  • 59
  • 53
  • 53
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Sobre o modelo de supercondutividade de Ginzburg- Landau com efeito magnético em domínios delgados.

Pereira, Jamil Viana 04 March 2005 (has links)
Made available in DSpace on 2016-06-02T20:28:28Z (GMT). No. of bitstreams: 1 DissJVP.pdf: 432420 bytes, checksum: e77b0ed9a46632c6024ca9ffbdcbf168 (MD5) Previous issue date: 2005-03-04 / Universidade Federal de Minas Gerais / Devido a restrições dos caracteres especias, verifcar resumo em texto completo para download
312

Controle na fronteira para um sistema de equações de ondas /

Andrade, Juliano de. January 2010 (has links)
Orientador: Adalberto Spezamiglio / Banca: Juan Amadeo Soriano Palomino / Banca: Waldemar Donizete Bastos / Resumo: Um problema de controle exato na fronteira para um sistema de equações de ondas acopladas e considerado em um retângulo do plano. Obtem-se controle de quadrado integrável para estados iniciais de energia finita. / Abstract: We are concerned with a problem of exact boundary controllability for a coupled sistem of wave equations in a rectangle of the plane. We obtain square integrable control for initial state with nite energy. / Mestre
313

Fractional differential equations: a novel study of local and global solutions in Banach spaces / Equações diferenciais fracionárias: um novo estudo de soluções locais e globais em espaços de Banach

Paulo Mendes de Carvalho Neto 16 May 2013 (has links)
Motivated by the huge success of the applications of the abstract fractional equations in many areas of science and engineering, and by the unsolved question in this theory, in this work we study several matters related to abstract fractional Cauchy problems of order \'alpha\' \'it belongs\' (0, 1). We search to answer some questions that were open: for instance, we analyze the existence of local mild solutions for the problem, and its possible continuation to a maximal interval of existence. The case of critical nonlinearities and corresponding regular mild solutions is also studied. Finally, by establishing some general comparison results, we apply them to conclude the global well-posedness of a fractional partial differential equation coming from heat conduction theory / Motivados pelo êxito das aplicações nas equações abstratas em muitas áreas da ciência e da engenharia, e pelas perguntas ainda abertas, neste trabalho estudamos questões relativas aos problemas fracionários abstratos de Cauchy de ordem \'alpha\' \'pertence a\' (0, 1). Buscamos responder algumas perguntas: por exemplo, analisamos a existência de soluções locais fracas do problema e sua possível continuação em um intervalo maximal de existência. O caso da não-linearidade crítica e sua correspondente solução regular fraca também é abordado. Por último, mediante o estabelecimento de alguns resultados gerais de comparação, chegamos a conclusão de que as soluções de uma equação diferencial parcial fracionária, proveniente da teoria de condução de calor, existe globalmente
314

Classificação de soluções de algumas equações elípticas não lineraes

Barboza, Eudes Mendes 26 July 2013 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-22T11:11:05Z No. of bitstreams: 1 arquivototal.pdf: 1833639 bytes, checksum: aaa2e895cd2ba1edb07718225c7443ba (MD5) / Made available in DSpace on 2016-03-22T11:11:05Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1833639 bytes, checksum: aaa2e895cd2ba1edb07718225c7443ba (MD5) Previous issue date: 2013-07-26 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work, we classify the solutions of the equation u + fue = 0 in R2 or R2 +. For this, we use basically the Moving Planes Method and and Moving Spheres Method. These methods ensure monotonicity and radial symmetry of the solution under certain conditions. The first method was used to study the case f 1 in R2 when RR2 eu is finite. The other was used to verify that the equation has no solution when f is a continuous function and radially symmetric, monotone in the region which has positive image and not constant. The latter method was also applied to the study of the problem ( u + eu = 0 em R2 +; @u @t = ceu=2 sobre @R2 +; for = 1; = 􀀀1 or = 0, modifying the conditions under the finiteness of RR2 + eu and R@R2 + eu=2. In most cases, when the equation has the solution, it was verified that the radially symmetrical. From this symmetry, we transform our Partial Differential Equations for Ordinary Differential Equations and we classify their solutions. / Neste trabalho, classificamos as soluções da equação u + feu = 0 em R2 ou R2 +. Para isso, utilizamos basicamente o Método dos Planos Móveis e o Método das Esferas Móveis, garantindo, sob certas condições a monotonicidade e a simetria radial da solução. O primeiro método foi usado para estudarmos o caso f 1, em R2 com RR2 eu finito. O outro foi utilizado para verificar que a equação não tem solução quando f é uma função contínua, radialmente simétrica e monótona na região em que tem imagem positiva e não constante. Este último método também foi aplicado no estudo do problema ( u + eu = 0 em R2 +; @u @t = ceu=2 sobre @R2 +; para = 1; = 􀀀1 ou = 0, modificando as condições em relação a finitude das integrais RR2 + eu e R@R2 + eu=2. Na maioria dos casos em que a equação tem solução, verificamos que esta era a radialmente simétrica. A partir dessa simetria, transformamos nas equações diferenciais parciais em equações diferenciais ordinárias e podemos classificar suas soluções.
315

Análise teórica de uma técnica de aproximação da velocidade de Darcy utilizando o método dos elementos finitos mistos e híbridos

Galdino, Paulo Henrique Barbosa 05 March 2009 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The objective of this work is to present one approach technique for the solution of elliptic equations, using Raviart-Thomas spaces of low order. Especially, the equation that supplies Darcy's velocities for flow in porous media it will be considered, taking into account both scalar permeability and permeability in the tensor form, defined in regular meshes of a rectangular domain. The technique used is known as mixed finite and hybrid elements method. In this case, the main variable of the linear system derived from the discretization is named Multiplier of Lagrange that is associated with each edges of the finite elements (hybrid formulation). In the mixed formulation, two appropriate spaces are considered: one contains scalar functions and the other contains vectorial functions. Thus, it can be approached, simultaneously, the pressure and the pressure gradient. The main result of this study is the demonstration, using local arguments, of the fact that the linear system associated to a weak formulation of the Darcy equations, with Lagrange Multipliers related to the normal flow that approach the pressure in the edges, has a matrix symmetric and positive definite. / O objetivo deste trabalho é apresentar uma técnica de aproximação para a solução de equações elípticas, utilizando espaços de Raviart-Thomas de baixa ordem. Em especial, será considerada a equação que fornece a velocidade de Darcy para escoamentos em meios porosos, levando-se em conta tanto permeabilidades escalares como permeabilidades na forma de tensor, definidas em malhas regulares de um domínio retangular. A técnica empregada é conhecida como o método dos elementos finitos mistos e híbridos. Neste caso, a variável principal do sistema linear oriundo da discretização é denominada Multiplicador de Lagrange e está associada a cada uma das arestas dos elementos finitos (formulação híbrida). Na formulação mista, são considerados dois espaços apropriados: um contém funções escalares e o outro contém funções vetoriais. Assim, pode-se aproximar, simultaneamente, a pressão e o gradiente de pressão. O resultado principal do trabalho é a demonstração, usando argumentos locais, do fato que o sistema linear associado a uma formulação fraca das equações de Darcy, com Multiplicadores de Lagrange relacionados ao fluxo normal e que aproximam a pressão nas arestas, possui matriz simétrica e definida positiva. / Mestre em Matemática
316

Modelagem e simulação da propagação de ondas em barras não homogêneas envolvendo materiais elásticos não lineares. / Numerical simulation of the dynamical response of a nonlinear elástic rod composed by two materials.

Cleciano Berlando Miranda de Oliveira 24 August 2012 (has links)
O objetivo deste trabalho é tratar da simulação do fenômeno de propagação de ondas em uma haste heterogênea elástico, composta por dois materiais distintos (um linear e um não-linear), cada um deles com a sua própria velocidade de propagação da onda. Na interface entre estes materiais existe uma descontinuidade, um choque estacionário, devido ao salto das propriedades físicas. Empregando uma abordagem na configuração de referência, um sistema não-linear hiperbólico de equações diferenciais parciais, cujas incógnitas são a velocidade e a deformação, descrevendo a resposta dinâmica da haste heterogénea. A solução analítica completa do problema de Riemann associado são apresentados e discutidos. / The objective of this work is the simulation of the wave propagation phenomenon in a heterogeneous elastic rod, composed by two distinct materials (a linear and a non-linear one), each of them with its own wave propagation speed. At the interface between these materials there is a discontinuity, a stationary shock, due to the jump of the physical properties. Employing a reference configuration approach, a nonlinear hyperbolic system of partial differential equations, whose unknowns are the velocity and the strain, describing the dynamical response of the heterogeneous rod. The complete analytical solution of the associated Riemann problem is presented and discussed.
317

A conjectura de Lazer-McKenna para problemas de Ambrosetti-Prodi

Silva, Maria do Desterro Azevedo da 10 August 2012 (has links)
Made available in DSpace on 2015-05-15T11:46:10Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1460078 bytes, checksum: ab8d7121292edcb81fa92ad0b561c2e0 (MD5) Previous issue date: 2012-08-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this paper, we study questions related to the existence and multiplicity of solutions to problems of Ambrosetti-Prodi type. We present the conjecture of Lazer- McKenna, checking its validity in the one dimensional case. To obtain our results, we use essentially topological, variational and sub and supersolution methods. / Neste trabalho, estudamos questões relacionadas à existência e multiplicidade de soluções para problemas do tipo Ambrosetti-Prodi. Apresentamos a conjectura de Lazer-McKenna, verificando sua validade no caso unidimensional. Na obtenção de nosso resultados, utilizamos essencialmente métodos topológicos, variacionais e de sub e supersolução.
318

Ordenamento e destilação em um modelo estocástico de partículas interagentes sob contrafluxo

Stock, Eduardo Velasco January 2016 (has links)
Neste trabalho estudamos uma dinâmica estocástica de partículas de duas espécies baseada em células. Basicamente, incorporamos algumas inovações em um modelo unidimensional proposto e resolvido por R. da Silva et al. (Physica A, 2015), que considera que em um célula, na ausência de partículas da espécie contrária, a partícula vai pra frente com uma probabilidade p, que representaria um campo na direção longitudinal de um corredor e fica na própria célula com q=1-p. Contudo, essa probabilidade p é reduzida de acordo com a concentração de partículas contrárias. Nosso trabalho não apenas estendeu o problema pra duas dimensões como também incluiu aspectos relativos a colisão e o espalhamento para células vizinhas. Nossos resultados são divididos em duas situações: a) Espécie contrária permanece imóvel funcionando como obstáculos b) Espécie contrária em movimento. Na primeira situação podemos ver uma interessante transição na distribuição dos tempos de travessia em função das concentrações dos obstáculos, por monitorar a curtose da distribuição. Quando a espécie contrária se movimenta, vemos que o tempo de destilação entre as partículas (tempo para que as espécies estejam geograficamente separadas no corredor) depende do parâmetro ligado ao espalhamento transversal das partículas, parâmetro este, que não influencia no caso das partículas paradas. Finalmente nós colocamos as partículas em um sistema com condições periódicas de contorno. Neste caso, podemos observar o aparecimento de padrões de bandas longitudinais ao campo, exatamente como ocorrem em problemas de coloides carregados sob a ação de campos longitudinais e em modelos de pedestres em corredores. Mostramos como o sistema relaxa para tal tipo de estado estacionário utilizando um adequado parâmetro de ordem ligado a segregação das partículas. Nosso modelo, diferentemente dos modelos para pedestres, não se baseia em equações tipo Langevin. Nossa abordagem é totalmente estocástica e por esse ponto de vista ainda mais fundamental e geral, podendo ser estendida para mais modelos de partículas em fluxos contrários. Nossa solução vem tanto através de simulações Monte Carlo bem como soluções das equações diferenciais parciais que descrevem o sistema e que são oriundas das recorrências estabelecidas para os caminhantes aleatórios. As simulações Monte Carlo e soluções via EDP mostram boa concordância em todos os aspectos analisados, tanto qualitativa quanto quantitativamente. / In this work we study a stochastic dynamic of particles of two types based on cells. Basically we incorporate some innovations on a one-dimensional model proposed and solved by R. da Silva et al. (Physica A, 2015) which considers that in the absence of particles of the opposite species in the cell a particle goes toward the next cell with probability p and returns to the previous cell with probability q = 1 p. However this motion probability linearly decreases with the relative density of the contrary species. Our work not only expands the problem for two dimensions but also includes collision aspects by adding scattering to the neighbouring cells. Our results are divided into two di erent categories: a) One of the species remain xed in their places which means that such particles will work as obstacles; b) Both species can move in the environment. In the rst situation we can observe, by monitoring the kurtosis, that an interesting transition of the crossing time distribution arises as the concentration of the obstacles increases. When both species can move we can observe that the distillation time (spent time for the complete geographical separation of the species in the corridor) depends on the parameter related to the perpendicular scattering of the particles. This same parameter has shown no in uence over the time distributions in the rst situation. Finally we implement periodic boundary conditions in the eld's direction. In this case we are able to observe the arising of band patterns parallel to the eld's direction exactly as it does with oppositely charged colloids under the in uence of a uniform electric eld or pedestrian dynamics in corridors. We also show how the system relax to such stationary state by using a suitable order parameter related to the particles segregation. Di erently from other pedestrian dynamics models, our model is not based on a Langevin-type equation. Our approach is totally stochastic and from this point of view, more fundamental and general to be extended to more types of models considering particles under counter ow. Our solution is obtained by both Monte Carlo simulations and numerical integration of partial di erential equations (PDE) from recurrence relation of the directed random walkers. The Monte Carlo simulations and the solutions of the PDE show a good agreement in all aspects analysed both qualitatively and quantitatively.
319

Construção de método de solução funcional para problemas de fluxo em meios porosos não saturados

Furtado, Igor da Cunha January 2017 (has links)
Neste estudo, consideramos um problema transiente de fluxo unidimensional vertical de água em meio poroso insaturado, modelado pela equação Richards não-linear. As reações constitutivas de Van Genuchten são empregadas para representar a capacidade hidráulica e a condutividade. A fórmula da solução é otimizada e avaliada usando a equação governante em um critério de autoconsciente. Os resultados são apresentados para alguns tipos de solo e seus parâmetros relacionados, que são mencionados em literatura. / In this study, we consider a transiente vertical one-dimensional flow problem of water in unsaturated porus media, modelled by the non-linear Richards equation. Constitutive relations of Van Genutchten are employed to represent the hydraulic capacity and conductivity. The solution formula is optimized and evaluated using to governing equation for a self-consistency criterion. The results are presented for some oil types and its related soil parameters, that are reported in the literature.
320

Sobre alguns problemas de espalhamento e equações de evolução não lineares

Zingano, Paulo Ricardo de Avila January 1986 (has links)
Neste trabalho, são apresentados os aspectos essenciais da teoria de espalhamento inverso e suas aplicações ao estudo de equações de evolução não lineares. A teoria de espalhamento do operador de Schrõdinger para potenciais decaindo a limites definidos ao x + ± oo e considerada primeira com aplicações ao problema de valor inicial para a equação de Korteweg- de Vries. Segue uma discussão da teoria de espalhamento para sistemas AKNS, uma classe de problemas de autovalores direta ou indiretamente relacionada com a maior parte das equações de evolução não lineares solúveis pelo método de espalhamento inverso de interesse na prática . Uma equação não linear recentemente encontrada solúvel por esse método é discutida no Último capítulo em conexão com o problema de espalhamento de Shimizu- Wadati. Muitos tópicos importantes não são tratados aqui, incluindo o caso periódico da equação de Korteweg- de Vries, leis de conservação, formalismos Hamiltonianos, transformações de Bäcklund, comportamento assintótico das soluções ao t + co e teoria de perturbação. / In this work, it is presented the essential aspects of the theory of the inverse scattering transform and its applications to the study of nonlinear evolution equations. The scattering theory of the Schródinger operator for either bump- or steplike potencials is considered first, and applications to the initial value problem for the Korteweg- de Vries equation are given. There follows a discussion of the scattering theory for AKNS systems, a class of spectral problems which is ultimately related to most of the interesting nonlinear evolution equations solvable by the inverse scattering method. A recently found integrable equation is discussed in the last chapter in' connection with the scattering problem of Shimizu- Wadati. Many important topics are not considered here, such as the periodic case for the Korteweg- de Vries equation, conservation lav/S, Hamiltonian formalisms, Bäcklund transforrnations, long-time asymptotic behavior of solutions , and perturbation theory.

Page generated in 0.078 seconds