• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 359
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 2
  • 2
  • Tagged with
  • 378
  • 378
  • 378
  • 151
  • 151
  • 148
  • 85
  • 78
  • 78
  • 78
  • 78
  • 59
  • 53
  • 53
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica

Pinto, Aldo Vieira 08 July 2010 (has links)
Made available in DSpace on 2016-06-02T20:28:25Z (GMT). No. of bitstreams: 1 3166.pdf: 902639 bytes, checksum: ea05b6d6e2b4c76c819c3abd8b7bd595 (MD5) Previous issue date: 2010-07-08 / Financiadora de Estudos e Projetos / Neste trabalho, estudamos o resultado de boa-colocação para a equação da onda cúbica u +uR3 = 0 em R3, devido a H. Bahouri e J.-Y. Chemin, no qual os dados de Cauchy estão no espaço de Sobolev homogêneo H3/4 (R3) H-1/4 (R3). A prova utiliza um método de interpolação não-linear, decomposição de Bony e desigualdade logarítmica de Strichartz, todas formuladas na Teoria de Littlewood-Paley.
352

A Teoria de Semigrupo aplicada às equações diferenciais parciais. / The Semigroup Theory applied to partial differential equations.

MELO, Romero Alves de. 10 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-10T18:13:32Z No. of bitstreams: 1 ROMERO ALVES DE MELO - DISSERTAÇÃO PPGMAT 2006..pdf: 1038740 bytes, checksum: d9fd10d289c6cf822fe688e743b58356 (MD5) / Made available in DSpace on 2018-07-10T18:13:32Z (GMT). No. of bitstreams: 1 ROMERO ALVES DE MELO - DISSERTAÇÃO PPGMAT 2006..pdf: 1038740 bytes, checksum: d9fd10d289c6cf822fe688e743b58356 (MD5) Previous issue date: 2006-12 / Capes / Neste trabalho usaremos a Teoria de Semigrupos para demonstrar resultados de existência e unicidade de solução para Equações Diferenciais Ordinárias, em espaços de Banach. Usando esta teoria resolvemos problemas de valor inicial, com relação a equação do calor e a equação da onda. (Para visualizar a equação ou fórmula deste resumo recomendamos o download do arquivo). / In this work we use semigroup theory to prove some results of existence and unicity for a class Ordinary Differential Equation, on Banach spaces. Using this tool, we show the existence of solutions for wave and heat equations. (To visualize the equation or formula of this summary we recommend downloading the file).
353

Soluções de sistemas de equações diferenciais elípticas via Teoria de ponto fixo em cones. / Systems solutions of differential elliptic equations via fixed point theory in cones.

SANTOS, Joselma Soares dos. 16 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-16T19:36:43Z No. of bitstreams: 1 JOSELMA SOARES DOS SANTOS - DISSERTAÇÃO PPGMAT 2007..pdf: 482798 bytes, checksum: c569721d7def4ccf67efe94c085198f8 (MD5) / Made available in DSpace on 2018-07-16T19:36:43Z (GMT). No. of bitstreams: 1 JOSELMA SOARES DOS SANTOS - DISSERTAÇÃO PPGMAT 2007..pdf: 482798 bytes, checksum: c569721d7def4ccf67efe94c085198f8 (MD5) Previous issue date: 2007-04 / Neste trabalho usaremos a Teoria do Ponto fixo em Cones para provar a existência e multiplicidade de solução positiva radial para sistemas de equações diferenciais parciais elípticas de segunda ordem onde 0 < r1 < r2 e a,b são parâmetros não-negativos. * (O resumo original da dissertação aprenta um sistema de equação que não foi possível adiciona-lo aqui. Recomendamos o download do arquivo para acessoao resumo completo) / In this work we will use the Theory of the Fixed Point in Cones to prove the existence and multiplicity of positive solutions for systems of second-ordem elliptic differential equations where 0 < r1 < r2 and a,b are non-negative parameters. * (The original abstract of the dissertation presents an equation system that could not be added here. We recommend downloading the file for access to the full summary)
354

Sobre o teorema de Campbell-Magaard e o problema de Cauchy na relatividade

Sanomiya, Thais Akemi Tokubo 11 March 2016 (has links)
Submitted by Vasti Diniz (vastijpa@hotmail.com) on 2017-09-18T11:49:17Z No. of bitstreams: 1 arquivototal.pdf: 2571485 bytes, checksum: 176b4eb5f639864aaef387d41330b286 (MD5) / Made available in DSpace on 2017-09-18T11:49:17Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2571485 bytes, checksum: 176b4eb5f639864aaef387d41330b286 (MD5) Previous issue date: 2016-03-11 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / After the formulation of general relativity differential geometry has become an increasing important tool in theoretical physics. This is even more clear in the investigation of the so-called embedding space-time theories. In this work we focus our attention in the Cauchy problem. These have played a crucial role in our understanding of the mathematical struc­ture of general relativity and embedding theories. We investigate the similarities and diffe­rences between the two approaches. We also study an extension of the Campbell-Magaard theorem and give two examples of both formalisms. / A geometria diferencial passou a ser uma ferramenta fundamental na fisica com o surgi­mento da relatividade geral. Em particular, destacamos sua importância na investigado das chamadas teorias de imersdo do espaco-tempo. Neste trabalho analisamos dois grandes for­malismos fundamentados de forma direta ou indireta na teoria de imersões: o teorema de Campbell-Magaard e o problema de Cauchy para a relatividade geral. Tendo como princi­pal objetivo tracar um paralelo entre esses dois formalismos, estudamos, nesta dissertacdo, o problema de valor inicial (pvi) para a relatividade geral mostrando que alem de admitir a formulae-do de pvi, a mesma é bem posta. Ademais, aplicamos este formalismo para o caso de uma metrica do tipo Friedmann-Robertson-Walker em (3+1). Estudamos tambem o teorema de Campbell-Magaard e sua extensdo para o espaco-tempo de Einstein e aplicamos este teorema para uma metrica do tipo de Sitter em (2+1).
355

Problemas inversos sobre a esfera / Inverse problems of the sphere

Fábio Freitas Ferreira 29 August 2008 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / O objetivo desta tese é o desenvolvimento de algoritmos para determinar as soluções, e para determinação de fontes, das equações de Poisson e da condução de calor definidas em uma esfera. Determinamos as formas das equações de Poisson e de calor sobre a esfera, e desenvolvemos métodos iterativos, baseados em uma malha icosaedral e sua respectiva malha dual, para obter as soluções das mesmas. Mostramos que os métodos iterativos convergem para as soluções das equações discretizadas. Empregamos o método de regularização iterada de Alifanov para resolver o problema inverso, de determinação de fonte, definido na esfera. / The objective of this thesis is the development of algorithms to determine the solutions, and for determination of sources of, the equations of Poisson and heat conduction for a sphere. We establish the form of equations of Poisson and heat on the sphere, and developed iterative methods, based on a icosaedral mesh and its dual mesh, to obtain the solutions for them. It is shown that the iterative methods converge to the solutions of the equations discretizadas. It employed the method of settlement of Alifanov iterated to solve the inverse problem, determination of source, set in the sphere.
356

Avaliação dos algoritmos de Picard-Krylov e Newton-Krylov na solução da equação de Richards / Evaluation of algorithms of Picard-Krylov and Newton-Krylov in solution of Richards equation

Marcelo Xavier Guterres 13 December 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A engenharia geotécnica é uma das grandes áreas da engenharia civil que estuda a interação entre as construções realizadas pelo homem ou de fenômenos naturais com o ambiente geológico, que na grande maioria das vezes trata-se de solos parcialmente saturados. Neste sentido, o desempenho de obras como estabilização, contenção de barragens, muros de contenção, fundações e estradas estão condicionados a uma correta predição do fluxo de água no interior dos solos. Porém, como a área das regiões a serem estudas com relação à predição do fluxo de água são comumente da ordem de quilômetros quadrados, as soluções dos modelos matemáticos exigem malhas computacionais de grandes proporções, ocasionando sérias limitações associadas aos requisitos de memória computacional e tempo de processamento. A fim de contornar estas limitações, métodos numéricos eficientes devem ser empregados na solução do problema em análise. Portanto, métodos iterativos para solução de sistemas não lineares e lineares esparsos de grande porte devem ser utilizados neste tipo de aplicação. Em suma, visto a relevância do tema, esta pesquisa aproximou uma solução para a equação diferencial parcial de Richards pelo método dos volumes finitos em duas dimensões, empregando o método de Picard e Newton com maior eficiência computacional. Para tanto, foram utilizadas técnicas iterativas de resolução de sistemas lineares baseados no espaço de Krylov com matrizes pré-condicionadoras com a biblioteca numérica Portable, Extensible Toolkit for Scientific Computation (PETSc). Os resultados indicam que quando se resolve a equação de Richards considerando-se o método de PICARD-KRYLOV, não importando o modelo de avaliação do solo, a melhor combinação para resolução dos sistemas lineares é o método dos gradientes biconjugados estabilizado mais o pré-condicionador SOR. Por outro lado, quando se utiliza as equações de van Genuchten deve ser optar pela combinação do método dos gradientes conjugados em conjunto com pré-condicionador SOR. Quando se adota o método de NEWTON-KRYLOV, o método gradientes biconjugados estabilizado é o mais eficiente na resolução do sistema linear do passo de Newton, com relação ao pré-condicionador deve-se dar preferência ao bloco Jacobi. Por fim, há evidências que apontam que o método PICARD-KRYLOV pode ser mais vantajoso que o método de NEWTON-KRYLOV, quando empregados na resolução da equação diferencial parcial de Richards. / Geotechnical Engineering is the area of Civil Engineering that studies the interaction between constructions carried out by man or natural phenomena with geological environment, which most of times is partially saturated soil. In this sense, work developing as stabilization, dam containing, retaining walls, foundations and highways are conditioned to a right prediction of water flow into the soil. However, considering the water flow, the studied region areas are commonly on the order of square kilometers, mathematical models solutions require computational meshes of large proportions, causing serious limitations linked to computational memory requirements and processing time. In order to overcome these limitations, efficient numerical methods must be used in the solution of the considered problem. Hence iterative methods for solving nonlinear and large sparse linear systems must be used in this type of application. In short, this study approached a solution to the Richard partial differential equation by the two dimensions finite volume method, bringing Picard and Newton method with greater efficiency. Linear system resolution iterative techniques based on Krylov space with pre-conditioners matrix were used. Portable Extensible Toolkit for Scientific Computation (PETSc) numerical library was a tool used during the task. The results indicate when a Richards equation is solved considering thr PICARD-KRYLOV method, no matter the soil evaluation model, the best combination for solving linear systems is the stabilized double gradient method and the SOR preconditioning. On the other hand, when the van Genuchten equations are used the gradients methods with the SOR preconditioning must be chosen. Adopting the NEWTON-KRYLOV method, the stabilized double gradient method is more efficient in soling Newton linear system, in relation to the preconditioning it must be giving preference to the Jacob block. Finally, there are strong indications that the PICARDKRYLOV method can be more effective than the NEWTON-KRYLOV one, when used for solving Richards partial differential equation.
357

Modelos de EDP integrados a logica Fuzzy e metodos probabilisticos no tratamento de incertezas : uma aplicação a febre aftosa em bovinos / PDE models associated to fuzzy logic ans statistical methods in the treatment of uncertainties : an application on food-and-mooth disease

Missio, Maristela 19 September 2008 (has links)
Orientador: Laercio Carvalho de Barros. / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica. / Made available in DSpace on 2018-08-12T00:22:47Z (GMT). No. of bitstreams: 1 Missio_Maristela_D.pdf: 2748963 bytes, checksum: f8fcd60a906d00c35ee8f90f26919908 (MD5) Previous issue date: 2008 / Resumo: A febre aftosa é uma patologia viral, infecto-contagiosa, caracterizada por um cenário repleto de incertezas que lhe são inerentes, resultantes da influência de fatores socioeconômicos e ambientais relacionados ao processo de transmissão, que pode ocorrer por via direta e indireta. Em epidemiologia, grande parte das incertezas são tratadas ou pela Teoria das Probabilidades ou pela Teoria de Conjuntos Fuzzy, a depender da natureza, seja ela oriunda da aleatoriedade ou de verdade parcial. O uso integrado de modelos clássicos, particularmente as Equações Diferenciais Parciais (EDP), modelos fuzzy e probabilísticos no tratamento das duas classes de incertezas ainda é muito incipiente. Com a intenção de contribuir para o aumento dos estudos nessa área, propõe-se um modelo integrado, envolvendo EDP, lógica fuzzy e métodos probabilísticos, a fim de estudar a dinâmica espacial e temporal de fenômenos epidemiológicos, cujas incertezas são importantes para sua evolução. Para tanto, tomou-se como objeto de estudo a febre aftosa em bovinos e elaborou-se um modelo SIR envolvendo EDP para estudar sua evolução espaço-temporal com parâmetros de difusão e transmissão incertos. Esses foram estimados fazendo-se uso de Sistemas Baseados em Regras Fuzzy (SBRF). As variáveis lingüísticas utilizadas nos SBRF apresentaram incertezas de natureza aleatória, as quais foram tratadas por modelos estocásticos. Na implementação computacional, fez-se o acoplamento dos métodos de elementos finitos para a discretização espacial, e Cranck-Nicolson para a temporal, toolbox fuzzy para os modelos fuzzy e Monte Carlo para os modelos estocásticos, todos em um mesmo algoritmo, construído nos ambientes Matlab e Fortran. / Abstract: The foot-and-mouth disease is a viral, infectum contagious pathology, characterized for a scene full of inherent uncertainties, resultants of the influence of social, economic and environmental factors related to the transmission process, that can occur for direct and indirect means. In Epidemiology, great part of the uncertainties are treated either by the Theory of Probabilities or by Fuzzy Logic Theory, depending on the nature, in accordance with the type of uncertainty which can be either deriving of the randomness or coming from the subjectivity. The integrated use of models involving Partial Differential Equations (PDE), Fuzzy Theory and Probabilistic in the treatment of the two categories of uncertainties, simultaneously, is still very incipient. Aiming to contribute to the growth of existing studies in this area, we propose an integrated model, involving PDE Models, Fuzzy Models and Stochastic Models, in order to study the space and secular dynamics of these epidemiological phenomena, whose uncertainties are important for their evolution. To do so, the foot-and-mouth disease in bovines was taken overcome as our study's object and we elaborated a SIR model involving EDP to study its space-weather evolution with uncertain parameters of diffusion and transmission. Due the uncertainties these parameters had been estimated using Rule-Based Fuzzy Systems (RBFS). The linguistic variables of the RBFSs presented uncertainties of random nature, which were treated by random models. For computational results, we coupling several models, using the method of finite elements for the space discretization and Cranck-Nicolson for time discretization, toolbox fuzzy for Fuzzy Models and Mount Carlo for Random Models, all in the same algorithm constructed in the environments Matlab and Fortran. / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
358

Modelagem e solução numérica de equações reação-difusão em processos biológicos

Rodrigues, Daiana Aparecida 29 August 2013 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-04-11T19:27:27Z No. of bitstreams: 1 daianaaparecidarodrigues.pdf: 8225936 bytes, checksum: 96ec323f343f92c319f4e261145f9c6a (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-04-24T03:34:16Z (GMT) No. of bitstreams: 1 daianaaparecidarodrigues.pdf: 8225936 bytes, checksum: 96ec323f343f92c319f4e261145f9c6a (MD5) / Made available in DSpace on 2016-04-24T03:34:16Z (GMT). No. of bitstreams: 1 daianaaparecidarodrigues.pdf: 8225936 bytes, checksum: 96ec323f343f92c319f4e261145f9c6a (MD5) Previous issue date: 2013-08-29 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Fenômenos biológicos são todo e qualquer evento que possa ser observado nos seres vivos. O estudo desses fenômenos permite propor explicações para o seu mecanismo, a m de entender as causas e efeitos. Pode-se citar como exemplos de fenômenos biológicos o comportamento das células como respiração, reprodução, metabolismo e morte celular. Equações de reação-difusão são frequentemente utilizadas para modelar fenômenos bioló- gicos. Sistemas de reação-difusão podem produzir padrões espaciais estáveis a partir de uma distribuição inicial uniforme esse fenômeno é conhecido como instabilidade de Turing. Este trabalho apresenta a análise da instabilidade de Turing bem como resultados numéricos para a solução de três modelos biológicos, modelo de Schnakenberg, modelo de glicólise e modelo da coagulação sanguínea. O modelo de Schnakenberg é utilizado para descrever uma reação química autocatalítica e o modelo de glicólise é relativo ao processo de degradação metabólica da molécula de glicose para proporcionar energia para o metabolismo celular, esses dois modelos são frequentemente relatados na literatura. O terceiro modelo é mais recente e descreve o fenômeno da coagulação sanguínea. Nas soluções numéricas se utiliza o método das linhas onde a discretização espacial é feita através de um esquema de diferenças nitas. O sistema de equações diferencias ordinárias resultante é resolvido por um esquema de integração adaptativo, com a utilização de pacote para computação cientí ca da linguagem Python, Scipy. / Biological phenomena are all and any event that can be observed in living beings. The study of these phenomena enables us to propose explanations for its mechanisms in order to understand causes and e ects. One can cite as examples of biological phenomena the behavior of cells as respiration, reproduction, metabolism and cell death. Reactiondi usion equations are often used to model biological phenomena. Reaction-di usion systems can produce stable spatial patterns from a uniform initial distribution, this phenomenon is known as Turing instability. This dissertation presents an analysis of the Turing instability as well as numerical results for the solution of three biological models, model Schnakenberg, model of glycolysis and model of blood coagulation. The Schnakenberg model is used to describe an autocatalytic chemical reaction and glycolysis model refers to the process of metabolic breakdown of the glucose molecule to provide energy for cellular metabolism, these two models are frequently reported in the literature. The third model is newer and describes the phenomenon of blood coagulation. The method of lines is used in the numerical solutions, where the spatial discretization is done through a nite di erence scheme. The resulting system of ordinary di erential equations is then solved by an adaptive integration scheme with the use of the package for scienti c computing of Python language, Scipy.
359

Implementação paralela em um ambiente de múltiplas GPUs de um modelo 3D do sistema imune inato

Xavier, Micael Peters 26 August 2013 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-02-24T13:29:14Z No. of bitstreams: 1 micaelpetersxavier.pdf: 17481766 bytes, checksum: fb76bff140085a73dc148ca7493df8b3 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-02-24T15:36:12Z (GMT) No. of bitstreams: 1 micaelpetersxavier.pdf: 17481766 bytes, checksum: fb76bff140085a73dc148ca7493df8b3 (MD5) / Made available in DSpace on 2017-02-24T15:36:12Z (GMT). No. of bitstreams: 1 micaelpetersxavier.pdf: 17481766 bytes, checksum: fb76bff140085a73dc148ca7493df8b3 (MD5) Previous issue date: 2013-08-26 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O desenvolvimento de sistemas computacionais que simulam o funcionamento de tecidos ou mesmo de órgãos completos é uma tarefa extremamente complexa. Um dos muitos obstáculos relacionados ao desenvolvimento de tais sistemas é o enorme poder computacional necessário para a execução das simulações. Por essa razão, o uso de estratégias e métodos que empregam computação paralela são essenciais. Este trabalho foca na simulação temporal e espacial, em uma seção tridimensional de tecido, do comportamento de algumas das células e moléculas que constituem o sistema imunológico humano (SIH) inato. Com o objetivo de reduzir o tempo necessário para realizar a simulação, foram utilizadas múltiplas unidades de processamento gráfico (Graphics Processing Unit, GPUs) em um ambiente de agregados computacionais. Apesar do alto custo de comunicação imposto pelo uso de múltiplas GPUs, as abordagens e técnicas utilizadas neste trabalho para implementar as versões paralelas do simulador mostraram-se efetivas para alcançar o objetivo de redução do tempo de simulação. / The development of computer systems that simulate the behavior of tissues or even whole organs is an extremely complex task. One of the many obstacles related to the development of such systems is the huge computational resources needed to execute the simulations. For this reason, the use of strategies and methods that employ parallel computing are essential. This work focuses on the spatial-temporal simulation of some human innate immune system (HIS) cells and molecules in a three-dimensional section of tissue. Aiming to reduce the time required to perform the simulation, multiple graphics processing units (GPUs) were used in a cluster environment. Despite of high communication cost imposed by the use of multiple GPUs, the approaches and techniques used in this work to implement parallel versions of the simulator proved to be very effective in their purpose of reducing the simulation time.
360

Emprego de GPGPUs para acelerar simulações do sistema humano inato

Rocha, Pedro Augusto Ferreira 27 August 2012 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-03-02T17:47:54Z No. of bitstreams: 1 pedroaugustoferreirarocha.pdf: 4715587 bytes, checksum: dfef00badf9cc3d7c79c1b4c62d3abfd (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-03-06T19:58:07Z (GMT) No. of bitstreams: 1 pedroaugustoferreirarocha.pdf: 4715587 bytes, checksum: dfef00badf9cc3d7c79c1b4c62d3abfd (MD5) / Made available in DSpace on 2017-03-06T19:58:07Z (GMT). No. of bitstreams: 1 pedroaugustoferreirarocha.pdf: 4715587 bytes, checksum: dfef00badf9cc3d7c79c1b4c62d3abfd (MD5) Previous issue date: 2012-08-27 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Dois mecanismos são utilizados pelo Sistema Imunológico Humano (SIH) para defender o organismo contra doenças causadas pelos mais distintos agentes patogênicos: o sistema inato e o sistema adaptativo. O primeiro é composto por células e substâncias químicas que utilizam um mecanismo genérico de defesa para prevenir ou limitar infecções ocasionadas pela maioria dos patógenos. Já o segundo mecanismo é ativado pelo primeiro, baseando-se na habilidade de reconhecer e de recordar agentes patogênicos específicos, colaborando para a montagem de um ataque mais potente a cada vez que o mesmo patógeno é encontrado. Apesar de ser muito estudado, muitas questões sobre o funcionamento do SIH ainda estão em aberto em virtude de sua complexidade e do grande número de interações, nos mais diversos níveis, entre seus distintos componentes. Neste sentido, ferramentas computacionais podem se constituir em um poderoso ferramental para auxiliar nas pesquisas sobre o tema. O presente trabalho está inserido neste escopo, dividindo-se em duas partes. Na primeira parte, o trabalho apresenta os resultados de uma análise de sensibilidade em um modelo matemático-computacional que simula a resposta imunológica inata ao lipopolissacarídeo (LPS), com o objetivo de encontrar os parâmetros mais sensíveis deste modelo. Além disto, a segunda parte do trabalho propõe uma adaptação do modelo original para um modelo tridimensional. As simulações realizadas nas duas partes do trabalho mostraram-se computacionalmente caras, demandando longos períodos de tempo para serem concluídas. Assim, GPGPUs (General Purpose Graphics Processing Units) foram utilizadas para reduzir os tempos de execução. O uso de GPGPUs permitiu que acelerações de 276 vezes para a análise de sensibilidade massiva e de 87 vezes para a computação do modelo em três dimensões fossem obtidas. / Two mechanisms are used by the Humman Immune System (HIS) to protect the body against diseases caused by distinct pathogens: the innate and the adaptive immune system. The first one is composed of cells and chemicals that use a generic mechanism of defense to prevent or limit infections caused by most pathogens. The second mechanism is activated by the first one. It has the ability to recognize and remember specific pathogens, contributing to the assembly of a more powerful attack each time the same pathogen is encountered again. Despite being widely studied, many questions about the functioning of the HIS are still open because of its complexity and the large number of interactions of its components on distinct levels. In this sense, computational tools are a powerful instrument to assist researchers on this field of study. This work is inserted in this scope and it is split into two parts. In the first part, this work presents the results of a sensitivity analysis on a mathematical-computational model that simulates the innate immune response to lipopolysaccharide (LPS). The main objective of the sensitivity analysis was to find the most sensitive parameters of the mathematical model. The second part of this work proposes the extension of the original model to a three-dimensional one. The simulations in the two parts of the work proved to be computationally expensive, requiring long periods of time to complete. Thus, GPGPUs (General Purpose Graphics Processing Units) were used to reduce execution times. The use of GPGPUs allowed speedups of 276 times for sensitivity analysis, when compared to the sequential one, and of 87 times for computations using the three dimensions model.

Page generated in 0.0909 seconds