• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 359
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 2
  • 2
  • Tagged with
  • 378
  • 378
  • 378
  • 151
  • 151
  • 148
  • 85
  • 78
  • 78
  • 78
  • 78
  • 59
  • 53
  • 53
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Multiplicidade de soluções para equação de quarta ordem / Multiplicity of solutions for fourth order equation

Monteiro, Evandro, 1982- 10 April 2011 (has links)
Orientador: Djairo Guedes de Figueiredo / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-18T23:11:17Z (GMT). No. of bitstreams: 1 Monteiro_Evandro_D.pdf: 681089 bytes, checksum: 5ec4729a2d7b386329193adf424f6b42 (MD5) Previous issue date: 2011 / Resumo: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital / Abstract: The complete abstract is available with the full electronic digital thesis or dissertations / Doutorado / Matematica / Doutor em Matemática
362

Sobre uma classe de sistemas elípticos hamiltonianos / On a class of hamiltonian elliptic systems

Cardoso, José Anderson Valença, 1980- 19 August 2018 (has links)
Orientador: Francisco Odair Vieira de Paiva / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T21:33:51Z (GMT). No. of bitstreams: 1 Cardoso_JoseAndersonValenca_D.pdf: 1655484 bytes, checksum: 6e4f6872240f3317db759e94789f5d34 (MD5) Previous issue date: 2012 / Resumo: Neste trabalho consideramos uma classe de Sistemas Elípticos Hamiltonianos. Esta classe de sistemas surge como modelo natural em áreas como Física e Biologia. Estudamos casos que envolvem crescimento crítico, arbitrário e crítico perturbado e analisamos questões relacionadas a existência, multiplicidade e propriedades de soluções. Os resultados são obtidos com o uso de métodos variacionais, a exemplo dos teoremas de min-max, aliados as propriedades das funções com simetria radial e ao princípio de concentração de compacidade / Abstract: In this work, we consider a class of Hamiltonian Elliptic Systems. This class of systems arise as a natural model in many areas such as Physics and Biology. We studied cases involving critical growth, arbitrary growth and perturbed critical growth and we also investigated questions related to the existence, multiplicity and properties of solutions. The results are obtained by using a variational approach, for instance, min-max theorems, combined with properties of radially symmetric functions and the concentration-compactness principle / Doutorado / Matematica / Doutor em Matemática
363

Análise matemática de dois modelos de interação fluido-estrutura utilizando as equações alpha-Navier-Stokes e campo de fases / Mathematical analysis of two models of fluid-structure interaction used the alpha-Navier-Stokes equations and phase field

Entringer, Ariane Piovezan, 1984- 21 August 2018 (has links)
Orientador: José Luiz Boldrini / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-21T14:27:32Z (GMT). No. of bitstreams: 1 Entringer_ArianePiovezan_D.pdf: 26392944 bytes, checksum: d4993ec89fdc9c9a41cd6fd1e6b28dd1 (MD5) Previous issue date: 2012 / Resumo: Neste trabalho analisaremos dois sistemas de equações diferenciais parciais não lineares de evolução associados a modelos de interação fluido-estrutura; esses sistemas foram obtidos utilizando as equações alfa-Navier-Stokes e a metodologia do campo de fases. O primeiro de tais sistemas modela um processo de mudanças de fases envolvendo solidificação e fusão de certos materiais e leva em conta tanto os fenômenos de condução do calor quanto o da convecção da fase não sólida. Esse sistema é formado pelo acoplamento das equações alfa-Navier-Stokes para fluidos viscosos incompressíveis com uma equação para a variável campo de fases, cujos valores determinam a fase do material (sólida, líquida ou mushy), e também com uma equação de balanço de energia interna, a qual determina a evolução da temperatura. O segundo sistema a ser estudado modela a dinâmica de vesículas em um fluido viscoso e incompressível. Tal sistema consiste do acoplamento das equações alfa-Navier-Stokes com uma equação para uma variável campo de fases, a qual neste caso determina a posição da membrana da vesícula que é deformada pela ação do fluido, bem como seu interior e exterior; esta última equação tem um termo descrevendo a interação do fluido com a membrana da vesícula. Para ambos os sistemas, provaremos a existência e a unicidade das soluções em espaços funcionais adequados / Abstract: In this work we analyze two systems of nonlinear evolution partial differential equations associated to models of fluid-structure interaction; such systems were obtained by using the alfa-Navier-Stokes equations and the phase field methodology. The first of such systems models a process of phase change involving solidification and fusion of certain materials and take in consideration both the phenomena of heat conduction and convection of the non-solid phase. Such a system is formed by coupling the alfa-Navier- Stokes equations for incompressible viscous fluids to an equation for the phase field variable whose values determine the phase of the material (solid, liquid or mushy), and also to an equation for the balance of internal energy, which determines the evolution of the temperature. The second system to be studied models the dynamics of vesicles in an incompressible viscous fluid. This system consists of the coupling of alfa-Navier- Stokes equation with an equation for the phase field variable, which in this case determines the position of vesicle membrane that is deformed by the action of the fluid, as well as it's interior and exterior; this last equation has a term describing the interaction of the fluid with the vesicle membrane. For both systems, we will prove the existence and uniqueness of solutions in suitable functional spaces. / Doutorado / Matematica / Doutora em Matemática
364

Problemas elípticos do tipo côncavo-convexo com crescimento crítico e condição de Neumann / Existence and multiplicity of solutions for the non-linear Schrodinger Equation in Rn

Malavazi, Mazílio Coronel, 1983- 14 January 2013 (has links)
Orientador: Francisco Odair Vieira de Paiva / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-21T19:28:36Z (GMT). No. of bitstreams: 1 Malavazi_MazilioCoronel_D.pdf: 1741221 bytes, checksum: becbc428943851a9a63bba6d406db3ca (MD5) Previous issue date: 2013 / Resumo: O resumo poderá ser visualizado no texto completo da tese digital / Abstract: The abstract is available with the full electronic document / Doutorado / Matematica / Doutor em Matemática
365

Existência e unicidade de soluções globais suaves para a equação quase-geostrófica crítica / Existence and uniqueness of smooth global solutions for the critical quasi-geostrophic equation

Moitinho, Valter Victor Cerqueira, 1991- 26 August 2018 (has links)
Orientador: Lucas Catão de Freitas Ferreira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T19:31:34Z (GMT). No. of bitstreams: 1 Moitinho_ValterVictorCerqueira_M.pdf: 1171427 bytes, checksum: 9207703fa3477244cb0e004220ae2827 (MD5) Previous issue date: 2015 / Resumo: Nesta dissertação, estudamos o problema de existência de soluções globais suaves para a equação quase-geostrófica em R2 (2DQG) com condições periódicas e no caso de valor crítico para a viscosidade fracionária. Esta equação aparece em estudos de alguns fluidos geofísicos que apresentam altas velocidades de rotação. De um ponto de vista dimensional, a equação é considerada um análogo em 2D das equações de Navier-Stokes em 3D. Primeiramente, estudamos a teoria de soluções fracas com dados iniciais em L2 via o método de Galerkin. Depois mostramos um princípio do máximo em espaços Lp e investigamos a regularidade de soluções para tempos pequenos e dados iniciais nos espaços de Sobolev Hs com s > 1. Finalmente, mostramos que a solução suave localmente no tempo de fato existe globalmente e é suave para todo tempo. Esta dissertação é baseada na Tese de Doutorado de Resnick [36] e no recente trabalho de Kiselev, Narazov e Volberg [33] / Abstract: In this dissertation, we study existence of smooth global solutions for the quasi-geostrophic equation in R2 (2DQG) with periodic conditions and critical value for the fractional viscosity. This equation appears in studies of some geophysical fluids that present high rotational speed. Dimensionally speaking, the equation is the analogue in 2D of the Navier-Stokes equations in 3D. First, we study the theory of weak solutions with initial data in L2 via the Galerkin method. After we show a maximum principle in Lp spaces and investigate regularity of solutions for small times and initial data in Sobolev spaces Hs with s > 1. Finally, we show that local-in-time smooth solutions are indeed global ones. This dissertation is based on the PhD thesis of Resnick [36] and recent work of Kiselev, Narazov e Volberg [33] / Mestrado / Matematica / Mestre em Matemática
366

Um estudo computacional de equações pseudo-parabólicas para mecânica dos fluidos e fenômenos de transporte em meios porosos / A computational study of pseudo-parabolic equations for fluid mechanics and transport phenomena in porous media

Vieira, Jardel, 1991- 27 August 2018 (has links)
Orientador: Eduardo Cardoso de Abreu / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T06:42:03Z (GMT). No. of bitstreams: 1 Vieira_Jardel_M.pdf: 2696940 bytes, checksum: 9517d68c44824f91bd411caf141d2ef1 (MD5) Previous issue date: 2015 / Resumo: O foco desta dissertação de mestrado consiste em um estudo computacional de equações pseudo-parabólicas em mecânica dos fluidos e fenômenos de transporte de fluidos em meios porosos. Serão considerados problemas de valor de contorno e inicial associados a duas classes de modelos de equações de evolução pseudo-parabólicas: um modelo de advecção-difusão com termo pseudo-parabólico que exibe um certo caráter dispersivo e um outro modelo pseudo-parabólico "puro", i.e., sem a presença do termo de advecção. O primeiro modelo se relaciona com a modelagem física do fluxo de duas fases incompressíveis em dinâmica de fluidos em meios porosos, onde são considerados modelos de pressão capilar dinâmica, ou seja, em que os efeitos dinâmicos são também incluídos na diferença de pressão entre as fases fluidas. Uma discussão sobre a relevância física em aplicações e da importância matemática do sistema governante de equações para pressão capilar dinâmica em fenômenos de transporte de fluidos em meios porosos é também feita de modo a indicar algum suporte à escolha dos métodos estudados para aproximação numérica dos modelos consideradores. Além disso, um conjunto de experimentos numéricos é apresentado e discutido para avaliar a qualidade das soluções obtidas do estudo proposto, bem como para justificar variações dos métodos numéricos estudados. Especificamente, para o modelo pseudo-parabólico puro, os resultados são comparados com soluções analíticas para o caso linear. Para o modelo pseudo-parabólico com o termo de advecção, é avaliado se os resultados dos métodos numéricos empregados concordam qualitativamente com resultados da literatura / Abstract: The focus of this work consists of a computational study of pseudo-parabolic equations in fluid mechanics and transport phenomena in porous media. For concreteness, we consider initial-boundary value problems related to two classes of systems of evolution pseudo-parabolic equations: a advection-diffusion model, which in turn the pseudo-parabolic term exhibits a certain dispersive character, and a second of "purely" pseudo-parabolic nature, i.e., without the presence of advection term. The first model relates to the modeling of incompressible two-phase flow in porous media, which in turn takes into account the nonlinear dynamic capillary pressure effects, where the dynamic effects are also included into the pressure difference between the fluid phases. Further, a discussion of the physical and mathematical relevance of the governing system of equations for dynamic capillary pressure in porous media fluid transport phenomena is also made in order to drive the choice of the numerical approximations for the differential models under investigation. Moreover, a set of numerical experiments are presented and discussed to address the quality of the obtained solutions proposed study, as well as to justify variations of the numerical methods studied. Specifically, to the purely pseudo-parabolic model, the results are compared along with analytical solutions with respect to a linear case. On the other hand, to the nonlinear pseudo-parabolic model with advection term, it is performed numerical experiments in order to account the correct qualitative behavior of the computed solutions against the available results discussed in the recent literature / Mestrado / Matematica Aplicada / Mestre em Matemática Aplicada
367

Validação numérica de estimativas analíticas aplicadas à combustão em meios porosos

Pereira, Weslley da Silva 23 March 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-01-13T12:34:27Z No. of bitstreams: 1 weslleydasilvapereira.pdf: 6406997 bytes, checksum: 17a5ee95515b6ad53c2e29db478c6e81 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-01-25T17:29:23Z (GMT) No. of bitstreams: 1 weslleydasilvapereira.pdf: 6406997 bytes, checksum: 17a5ee95515b6ad53c2e29db478c6e81 (MD5) / Made available in DSpace on 2016-01-25T17:29:23Z (GMT). No. of bitstreams: 1 weslleydasilvapereira.pdf: 6406997 bytes, checksum: 17a5ee95515b6ad53c2e29db478c6e81 (MD5) Previous issue date: 2015-03-23 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / É crescente o interesse na utilização de métodos térmicos para recuperação de óleo de média e alta viscosidade. Um desses métodos é a combustão in situ, que consiste na liberação de calor no interior do reservatório através da combustão do ar injetado. As componentes mais pesadas do óleo atuam como combustível para as reações exotérmicas e o calor gerado reduz a viscosidade do óleo, estimulando o fluxo em direção aos poços de produção. Os modelos matemáticos para este método de recuperação em geral são complexos. Portanto, a obtenção de soluções analíticas para tais modelos é inviável, sendo necessária a utilização de simulações computacionais. Diversos trabalhos apresentam estudos analíticos e numéricos de modelos unidimensionais para a combustão em meios porosos. Em trabalhos anteriores, estimativas analíticas para modelos unidimensionais foram obtidas. Neste trabalho, tais estimativas são ligeiramente generalizadas através da inclusão da pressão prevalecente. É proposto um modelo bidimensional para o processo de combustão in situ em meios porosos heterogêneos que considera pressão variável. Soluções numéricas são obtidas utilizando o método de elementos finitos para a discretização espacial, o esquema de diferenças finitas de Crank-Nicolson para discretização no tempo e o método de Newton para resolução das equações não lineares resultantes. Estimativas analíticas para a temperatura e velocidade da onda de combustão são obtidas através de um modelo unidimensional simplificado. Tais estimativas são validadas com sucesso para o modelo geral através das simulações. Uma outra simplificação unidimensional do modelo geral é simulada numericamente através de duas abordagens: a primeira é similar à utilizada para a solução do modelo geral; e a segunda é escrita como um problema de complementaridade. Os problemas de complementaridade não-linear são resolvidos pelo algoritmo FDA-NCP. As duas abordagens numéricas utilizadas são comparadas com uma estimativa analítica para a onda térmica e mostram bons resultados. / There is a growing interest in using thermal methods for the recovery of medium and high viscosity oil. One of these methods is the in-situ combustion, which consists in release heat within the reservoir through combustion of the injected air. The heavier oil components are used as fuel for exothermic reactions and the generated heat reduces the oil viscosity, stimulating the flow towards the production well. In general, the mathematical models for this recovery method are complex. Therefore, the analytical solutions for such models are impossible, requiring numerical simulations. Several works present analytical and numerical studies of one-dimensional models for combustion in porous media. In previous works analytical estimates for one dimensional models were obtained. Here these estimates are slightly generalized by including the prevailing pressure. We propose a two-dimensional model for the in-situ combustion process in heterogeneous porous media, considering variable pressure. Numerical results are obtained using the finite element method for spatial discretization, Crank-Nicolson finite difference scheme for time discretization and Newton’s method for the arising nonlinear equations. Analytical estimates for combustion wave speed and combustion wave temperature are obtained using one-dimensional simplified model. These estimates are successfully validated in the general model through the simulation results. Another one-dimensional simplification of the general model is numerically simulated by two approaches: the first is similar to the one previously described; and the second one is written as a complementarity problem. The arising nonlinear complementarity problems are solved by the FDA-NCP algorithm. Both numerical approaches are compared to the analytical estimate for the thermal wave, showing good agreement.
368

Restauração de imagens digitais com texturas utilizando técnicas de decomposição e equações diferenciais parciais

Casaca, Wallace Correa de Oliveira [UNESP] 25 February 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-02-25Bitstream added on 2014-06-13T19:06:36Z : No. of bitstreams: 1 casaca_wco_me_sjrp.pdf: 5215634 bytes, checksum: 291e2a21fdb4d46a11de22f18cc97f93 (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Neste trabalho propomos quatro novas abordagens para tratar o problema de restauração de imagens reais contendo texturas sob a perspectiva dos temas: reconstrução de regiões danificadas, remoção de objetos, e eliminação de ruídos. As duas primeiras abor dagens são designadas para recompor partes perdias ou remover objetos de uma imagem real a partir de formulações envolvendo decomposiçãode imagens e inpainting por exem- plar, enquanto que as duas últimas são empregadas para remover ruído, cujas formulações são baseadas em decomposição de três termos e equações diferenciais parciais não lineares. Resultados experimentais atestam a boa performace dos protótipos apresentados quando comparados à modelagens correlatas da literatura. / In this paper we propose four new approaches to address the problem of restoration of real images containing textures from the perspective of reconstruction of damaged areas, object removal, and denoising topics. The first two approaches are designed to reconstruct missing parts or to remove objects of a real image using formulations based on image de composition and exemplar based inpainting, while the last two other approaches are used to remove noise, whose formulations are based on decomposition of three terms and non- linear partial di®erential equations. Experimental results attest to the good performance of the presented prototypes when compared to modeling related in literature.
369

Simulação do escoamento miscível decorrente da injeção de ácido em um meio poroso com dissolução parcial do meio / Flow simulation of the acid injection in porous media with partial dissolution of the porous media

Lucimá Barros da Rocha 28 September 2007 (has links)
Formulamos um modelo simplificado para o estudo do processo de injeção de solvente em reservatórios de petróleo, onde o fluido injetado (um ácido) tem a capacidade de dissolver parcialmente a matriz sólida. Como hipóteses principais, consideramos que o solvente e o soluto (componente químico que constitui o meio poroso) são espécies totalmente miscíveis, a viscosidade da mistura solvente + soluto não varia com a concentração de soluto, há significativa transferência de massa entre as fases e a permeabilidade do meio poroso varia linearmente com a porosidade. O modelo é formado por duas Equações Diferenciais Parciais, uma do tipo Convecção-Difusão a outra é do tipo Convecção-Reação. Para resolução numérica, desenvolvemos uma metodologia que denominamos de EPEC (Explícita Porosidade e Explícita Concentração). Tal metodologia se baseia em um limitador de fluxo do tipo TVD e em diferenças finitas centradas de segunda ordem. Em adição, o EPEC emprega uma técnica de separação de operadores. Deste modo, em cada passo de tempo, realizamos inicialmente o cálculo explícito da porosidade seguido do cálculo explícito da concentração do solvente. Assim, obtemos um desacoplamento natural das equações que descrevem o problema. Resultados de simulações são apresentados para um meio poroso bidimensional, após sessenta dias de injeção de solvente. / We formulate a simplified Model to study the process of solvent injection in petroleum Reservoir, where the injected fluid (an acid) can partially dissolve a solid matrix. As prime hypotheses, we considered that solvent an soluble component are completely mixed, the viscosity of the fluid does not vary with the concentration of the soluble component, theres significant transfer of mass between the parts and, the permeability of media porous changes linearly with porosity. The model is formed by two Partial Differential Equation, one is convection-diffusion type and another is a convection-reaction type. The Numerical Resolution weve developed a method called EPEC (Explicit Porosity Explicit Concentration). Such methodology is based upon a Limiting of Flow of TVD type and, used Centered Finite Differences of second order. In addition, the EPEC use a operators separation technique. This way, every time, first we clearly calculate the porosity and then the concentration of solvent is calculated. Thus we obtain a natural decoupling of the equations that describe the problem. Simulation results are presented to a two dimensional media porous after sixty days of solvent injection.
370

DFLD-EXP: uma solução semi-analítica para a equação de advecção-dispersão / DFLD-EXP: a semi-analytic solution for the advection-dispersion equation

André da Silva Cardoso 29 February 2008 (has links)
A equação de advecção-dispersão possui grande importância na engenharia e nas ciências aplicadas. No entanto, como é bem conhecido, a obtenção de uma solução numérica apropriada para essa equação é um problema desafiador tanto para engenheiros como para matemáticos, físicos e outros profissionais que trabalham com a modelagem de fenômenos associados a ela. Muitos métodos numéricos desenvolvidos podem apresentar uma série de inconvenientes, tais como oscilações, dispersão e/ou dissipação numérica e instabilidade, além de serem inapropriados para determinadas condições de contorno. O presente trabalho apresenta e analisa a metodologia DFLD-exp, uma nova abordagem para a obtenção de soluções semi-analíticas da equação de advecção-dispersão, a qual utiliza um tipo particular de diferenças finitas para a discretização espacial juntamente com técnicas de exponencial de matrizes para a resolução temporal. Uma cuidadosa análise numérica mostra que a metodologia resultante é não-oscilatória, essencialmente não-dispersiva e não-dissipativa, e incondicionalmente estável. Resoluções de vários exemplos numéricos, através de um código desenvolvido em linguagem MATLAB, confirmam os resultados teóricos. / The advection-dispersion equation has been very important in engineering and the applied sciences. However, the obtainment of an appropriate numerical solution to that equation has been challenging problem to engineers, mathematicians, physicians and others that work in the modeling of phenomena associate to advection-dispersion equation. Many developed numerical methods may produce a succession of mistakes, just as oscillations, numerical dispersion and/or dissipation, instability and those methods also may be inappropriate to determined boundary conditions. The present work shows and analyses the DFLD-exp methodology, a new way to obtain semi-analytic solutions to advection-dispersion equation, that make use of a particular form of finite differencing to the spatial discretization with techniques of matrix exponential to the time solving. A detailed numerical analysis shows the methodology is non-oscillatory, essentially non-dispersive and non-dissipative, and unconditionally stable. Resolutions of any numerical examples, by a computational code developed in MATLAB language, confirm the theoretical results.

Page generated in 0.1015 seconds