Spelling suggestions: "subject:"aquation dde schrödinger none linéaire"" "subject:"aquation dde schrödinger noun linéaire""
1 |
Couplage entre auto-focalisation et diffusion Brillouin stimulée pour une impulsion laser nanoseconde dans la siliceMauger, Sarah 29 September 2011 (has links) (PDF)
Dans le cadre des études sur l'endommagement laser liées au projet Mégajoule, nous analysons le couplage entre l'auto-focalisation induite par effet Kerr et la rétrodiffusion Brillouin stimulée pour des impulsions de durée nanoseconde se propageant dans des échantillons de silice. L'influence de la puissance d'entrée, des modulations de phase ou d'amplitude ainsi que la forme spatiale du faisceau sur la dynamique de filamentation est discutée. Nous montrons qu'une modulation d'amplitude appropriée divisant l'impulsion incidente en train d'impulsions de l'ordre de la dizaine de picosecondes supprime l'effet Brillouin pour toute puissance incidente mais réduit notablement la puissance laser disponible. A l'inverse, des impulsions modulées en phase avec une largeur spectrale comparable peuvent subir de la filamentation multiple et une auto-focalisation à distance plus courte causées par des instabilités modulationnelles. Nous démontrons cependant l'existence d'une largeur spectrale critique à partir de laquelle la rétrodiffusion peut être radicalement inhibée par une modulation de phase, même pour des fortes puissances. Cette observation reste valide pour des faisceaux de forme carrée avec des profils spatiaux plus larges, qui s'auto-focalisent beaucoup plus rapidement et se brisent en filaments multiples sur de courtes distances. L'inclusion de la génération de plasma pour limiter la croissance des ondes pompe et Stokes est finalement abordée.
|
2 |
Grandes déviations pour des équations de Schrödinger non linéaires stochastiques et applicationsGautier, Eric 09 December 2005 (has links) (PDF)
Dans cette thèse nous étudions l'asymptotique de petits bruits pour des perturbations aléatoires d'équations de Schrödinger non linéaires. Les bruits sont Gaussiens, la plupart du temps blancs en temps et toujours colorés en espace, additifs ou multiplicatifs. Un évènement de grandes déviations est un évènement où le système diffère significativement du système déterministe. Lorsque le bruit tend vers zéro, la probabilité d'un tel évènement rare tend vers zéro sur une échelle logarithmique avec pour vitesse l'amplitude du bruit. Nous prouvons des principes de grandes d´eviations trajectoriels. Dans ce cas le facteur multiplicatif de la vitesse, le taux, est relié à un problème de contrôle optimal. Les résultats sont appliqués aux temps d'explosion. Nous étudions ensuite l'asymptotique de petits bruits des queues de la masse et de la position du signal dans une "limite bruit blanc". Les fluctuations de ces quantités sont les causes principales d'erreur de transmission par solitons dans les fibres optiques. Nous considérons également le problème des temps moyens et des points de sortie d'un voisinage de zéro pour des équations faiblement amorties. Enfin, nous présentons un principe de grandes déviations et un théorème de support pour des bruits Gaussiens fractionnaires additifs.
|
3 |
Propagation non-linéaire de paquets d'onde. / Nonlinear propagation of wave packets.Hari, Lysianne 25 September 2014 (has links)
Les résultats présentés dans cette thèse concernent l'étude, dans la limite semi-classique, de systèmes d'équations de Schrödinger non-linéaires couplées. Selon le potentiel considéré, le système peut, ou non, présenterun couplage linéaire, en plus de celui induit par le terme non-linéaire. Dans ce manuscrit, c'est la propagation d'états cohérents -états localisés dans l'espace des phases, et que l'on va faire vivre dans un niveau d'énergie donné - qui va nous intéresser.Dans le cadre linéaire, plusieurs situations ont été étudiées, certaines préservant l'adiabaticité,et d'autres la brisant, faisant apparaître des transitions entre les niveaux d'énergie.Le rôle de la non-linéarité et l'interaction de ses effets avec un éventuel couplage linéaire sur ces phénomènes est une questionimportante pour comprendre des systèmes qui entrent en jeu dans des problèmes très actuels en physique quantique.Dans un premier temps, le potentiel pris en compte aura des valeurs propres bien séparées par un trou spectral,et nous montrerons un théorème adiabatique pour une non-linéarité qui présente un exposant critique pour le paramètre semi-classique devant la non-linéarité. Un point de vue équivalent est de considérer des données petites de l'ordre d'une puissance positive du paramètre semi-classique.Il s'agit d'un résultat analogue à celui de Carles et Fermanian-Kammerer mais dans un cadre sur-critique L^2.Dans un deuxième temps, nous considèrerons, pour le cas unidimensionnel, un potentiel explicite de taille 2 X 2,qui présente un croisement évité :les deux valeurs propres sont séparées par un paramètre delta - paramètre adiabatique -qui va tendre vers zéro lorsque le paramètre semi-classique va tendre vers zéro. Nous montrerons alors que des transitions entre les modes ont lieu.Il s'agit ici d'une version non-linéaire des travaux d'Hagedorn et Joyeoù une telle transition est démontrée pour des systèmes linéaires. / This thesis is devoted to the study of coupled nonlinear Schrödinger equations in the semi-classical limit.Depending on the potential we consider, the system can present a linear coupling, in addition to the nonlinear one.We will focus on the propagation of coherent states that will be polarized along a given eigenvector of the potential.In the linear setting, several situations have been analyzed; some of them lead to adiabatic theorems whereas the others implytransitions between energy levels. When one adds a nonlinearity, understanding nonlinear effects onthe propagation and the competition between them and the linear coupling becomes a very interesting issue.We first consider a potential with eigenvalues that present a spectral gap and will prove an adiabatic theoremfor a critical nonlinearity in the semi-classical sense. This is a L^2-supercritical result,similar to the one proved by Carles and Fermanian-Kammerer for the one-dimensional case, which is L^2-subcritical.The second part of the thesis deals with an explicit 2 X 2 potential that presents an avoided crossing point :the minimal gap between its eigenvalues becomes smaller as the semiclassical parameter tends to zero. We will prove that this system exhibits transitions between the modes. This result is a nonlinear version of the study performed by Hagedorn and Joye in the linear case.
|
4 |
Couplage entre auto-focalisation et diffusion Brillouin stimulée pour une impulsion laser nanoseconde dans la silice / Coupling between self-focusing and stimulated Brillouin scattering for nanosecond laser pulses in silicaMauger, Sarah 29 September 2011 (has links)
Dans le cadre des études sur l’endommagement laser liées au projet Mégajoule, nous analysons le couplage entre l’auto-focalisation induite par effet Kerr et la rétrodiffusion Brillouin stimulée pour des impulsions de durée nanoseconde se propageant dans des échantillons de silice. L’influence de la puissance d’entrée, des modulations de phase ou d’amplitude ainsi que la forme spatiale du faisceau sur la dynamique de filamentation est discutée. Nous montrons qu’une modulation d’amplitude appropriée divisant l’impulsion incidente en train d’impulsions de l’ordre de la dizaine de picosecondes supprime l’effet Brillouin pour toute puissance incidente mais réduit notablement la puissance laser disponible. A l’inverse, des impulsions modulées en phase avec une largeur spectrale comparable peuvent subir de la filamentation multiple et une auto-focalisation à distance plus courte causées par des instabilités modulationnelles. Nous démontrons cependant l’existence d’une largeur spectrale critique à partir de laquelle la rétrodiffusion peut être radicalement inhibée par une modulation de phase, même pour des fortes puissances. Cette observation reste valide pour des faisceaux de forme carrée avec des profils spatiaux plus larges, qui s’auto-focalisent beaucoup plus rapidement et se brisent en filaments multiples sur de courtes distances. L’inclusion de la génération de plasma pour limiter la croissance des ondes pompe et Stokes est finalement abordée. / As part of the studies on laser damage linked to the Megajoule project, we analyze the coupling between the Kerr induce self-focusing and the stimulated Brillouin backscattering pour nanosecond optical pulses propagating in silica samples. The influence of the incident power, phase or amplitude modulations as well as the spatial profile of the pulse of the filamentation dynamic is discussed. We show that an appropriate amplitude modulation dividing the incident pulse in pulse trains of picosecond durations suppresses the Brillouin effect for any incident power but noticeably reduces the available average laser power. On the contrary, phase modulated pulses with a comparable spectral width can undergo multiple filamentation and self-focusing at a shorter distance, caused by modulational instabilities. We demonstrate however the existence of a critical spectral bandwidth from which the backscattering can be radically inhibited by a phase modulation, even for high powers. This conclusion remains valid for spatially broader squared pulses, which self-focus earlier and break into multiple filaments at shorter distances. The inclusion of plasma generation to limit the growth of pump and Stokes waves is finally addressed.
|
5 |
Modélisation et analyse de systèmes d'équations de Schrödinger non linéaires / Modeling and analysis of systems of nonlinear Schrödinger equationsDestyl, Edes 28 September 2018 (has links)
Les travaux de cette thèse portent sur la modélisation et l’étude numérique dessystèmes couplés de deux équations de Schrödinger non linéaires. Dans un premiertemps, nous considérons un système de deux équations de Schrödinger non linéairesPT −symétrique qui modélise des phénomèmes de fibre optique biréfringent. Lecomportement de la solution est étudié dans certains espaces comme l’espace de SobolevH1. De plus, l’étude numérique du modèle est faite afin de valider les résultatsanalytiques et, montre clairement le comportement qualitatif de la solution dansles espaces choisis. Pour ce même modèle en dimension supérieure, des conditionssuffisantes sont établies pour que la solution explose en temps fini pour certainesnon linéarités et pour le cas général de la non linéarité focalisante, nous faisonsl’étude numérique du modéle et nous présentons certains cas d’explosion de la solutionen temps fini et aussi des solutions du modèle qui existent tout le temps.D’autre part, nous adressons un nouveau modèle d’équations discrètes de Schrödingernon linéaires PT -symétrique. Un tel modèle décrit la dynamique d’une chaînede pendules faiblement couplés près d’une résonance entre une force paramétriqueet la fréquence linéaire des pendules. En vue d’étudier la stabilité des pendules, desconditions suffisantes ont été établies sur les paramètres du modèle pour que la solutiond’équilibre zéro soit linéairement et non linéairement stable. Des expériencesnumériques sont présentées pour valider les résultats analytiques et pour caractériserla déstabilisation de la chaîne de pendules couplés dans la région d’instabilité. / The works of this thesis concern the modeling and the numerical study of thesystems of two coupled nonlinear Schrödinger equations. At first, we considered aparity-time-symmetric system of the two coupled nonlinear Schrödinger (NLS) equationsthat modeled phenomenons in birefringent nonlinear optical fiber. We studythe behavior of the solution in some spaces like the Sobolev space H1. And we studythe numerical aspect of the model which clearly shows the behavior of the solutionin the chosen space. For the same model in higher dimension, we establish sufficientconditions for the initial conditions to blow up in finite time for some nonlinearityand for others we do the numerical study of the model and we present some casesof blowing up of the solution in finite time and also of the solutions of the modelthat exist all the time. On the other hand, we address a new model of discrete nonlinearSchrödinger equations PT -symmetric. A such model describes dynamics inthe chain of weakly coupled pendula pairs near the resonance between the parametricallydriven force and the linear frequency of each pendulum. In order to studythe stability of the pendulums, we establish sufficient conditions on the parametersof the model so that the equilibrium solution is stable. Numerical experiments arepresented to validate the analytical results and to characterize the unstabilizationof the coupled pendulum chain in the region of instability.
|
6 |
Fay's identity in the theory of integrable systems / L'identité de Fay en théorie des systèmes intégrablesKalla, Caroline 27 June 2011 (has links)
Un outil puissant dans le cadre des solutions algébro-géométriques des équations intégrables est l'identité de Fay sur des surfaces de Riemann compactes. Cette relation généralise une identité bien connue pour la fonction birapport dans le plan complexe. Elle permet d'établir des relations entre les fonctions theta et leurs dérivées. Cela offre une approche complémentaire aux solutions algébro-géométriques des équations intégrables avec certains avantages par rapport à l'utilisation des fonctions de Baker-Akhiezer. Cette méthode a été appliquée avec succès par Mumford et al. aux équations Korteweg-de Vries, Kadomtsev-Petviashvili et sine-Gordon. Selon cette approche, nous construisons des solutions algébro-géométriques des équations de Camassa-Holm et de Dym, ainsi que des solutions de l'équation de Schrödinger non linéaire à plusieurs composantes et des équations de Davey-Stewartson. Les limites solitoniques de ces solutions sont étudiées lorsque le genre de la surface de Riemann associée tombe à zéro. De plus, nous présentons une évaluation numérique des solutions algébro-géométriques des équations intégrables lorsque la surface de Riemann associée est réelle. / Fay's identity on Riemann surfaces is a powerful tool in the context of algebro-geometric solutions to integrable equations. This relation generalizes a well-known identity for the cross-ratio function in the complex plane. It allows to establish relations between theta functions and their derivatives. This offers a complementary approach to algebro-geometric solutions of integrable equations with certain advantages with respect to the use of Baker-Akhiezer functions. It has been successfully applied by Mumford et al. to the Korteweg-de Vries, Kadomtsev-Petviashvili and sine-Gordon equations. Following this approach, we construct algebro-geometric solutions to the Camassa-Holm and Dym type equations, as well as solutions to the multi-component nonlinear Schrödinger equation and the Davey-Stewartson equations. Solitonic limits of these solutions are investigated when the genus of the associated Riemann surface drops to zero. Moreover, we present a numerical evaluation of algebro-geometric solutions of integrable equations when the associated Riemann surface is real.
|
Page generated in 0.1535 seconds