• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 60
  • 37
  • 10
  • 6
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 319
  • 105
  • 80
  • 68
  • 60
  • 54
  • 54
  • 50
  • 50
  • 46
  • 42
  • 40
  • 34
  • 33
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Modeling and Experimental Validation of Radiative Heat Transfer in Porous Nanocomposites as Selective Emitters for Low Temperature Thermophotovoltaic Systems

Aljarrah, Mohannad T. 15 December 2009 (has links)
No description available.
92

Effect Of Germanium Doping On Erbium Sensitization In The Erbium Doped Silicon Rich Silica Material System

Ruhge, Forrest 01 January 2006 (has links)
The continued size reduction in electronic integrated circuits has lead to a demand for on-chip high-bandwidth and low loss communication channels. Optical interconnects are considered an essential addition to the silicon electronics platform. A major challenge in the field of integrated Si photonics is the development of cost effective silicon compatible light sources. This thesis investigates the sensitization of group IV doped silica films emitting at 1.535μm for applications as silicon compatible light sources. Thin erbium-doped silica films containing excess silicon and germanium were deposited using a multi-gun sputter system. The composition of the deposited materials was verified by Rutherford Backscattering Spectrometry. Samples from each deposition were annealed in a controlled atmosphere tube furnace at temperatures between 500ºC and 1100ºC for 30 minutes. The photoluminescence spectra from the visible to the near-infrared region were acquired while pumping either near or far from the Er3+ absorption lines. Under both excitation conditions all samples annealed at temperatures below 1000ºC show clear emission at 1.535μm from Er3+ ions in the host material. In the current literature this is attributed to exciton mediated excitation of the Er3+. By contrast, in these studies indirect excitation was observed for samples annealed at temperatures well below the onset of nanocrystal nucleation and growth (between 500ºC and 1000ºC), suggesting excitation via small clusters or lattice defects. These findings could have significant implications in the further development of group IV sensitized silicon compatible gain media.
93

Silicon-sensitized Erbium Excitation In Silicon-rich Silica For Integrated Photonics

Savchyn, Oleksandr 01 January 2010 (has links)
It is widely accepted that the continued increase of processor performance requires at least partial replacement of electronic interconnects with their photonic counterparts. The implementation of optical interconnects requires the realization of a silicon-based light source, which is challenging task due to the low emission efficiency of silicon. One of the main approaches to address this challenge is the use of doping of silicon based matrices with optical centers, including erbium ions. Erbium ions incorporated in various hosts assume the trivalent state (Er3+) and demonstrate a transition at 1.54 μm, coinciding with optical transmission windows in both silicon and silica. Due to the low absorption cross-section and discrete energy levels of the Er3+ ion, indirect excitation is necessary. In late 90s it was demonstrated that the incorporation of excess silicon in erbium-doped silica results in strong erbium sensitization, leading to an increase of the effective absorption cross-section by orders of magnitude. The sensitization was considered to occur via silicon nanocrystals that formed at high annealing temperatures. While a large increase of the absorption cross-section was demonstrated, the incorporation of Si nanocrystals was found to result in a low concentration of excited erbium, as well as silicon related free-carrier absorption. The focus of this dissertation is the investigation of the nature of the sensitization mechanism of erbium in silicon-rich silica. The results presented in the dissertation demonstrate that erbium in silicon-rich silica is predominantly excited by silicon-excess-related luminescence centers, as opposed to the commonly considered silicon nanocrystals. This is a remarkable conclusion that changes the view on the exact origin of erbium sensitization, and that resolves several technical challenges that exist for nanocrystal-based sensitization. The work shows that the density of indirectly excited erbium ions is significantly larger in samples without silicon iii nanocrystals (annealed at T < 1000°C) as opposed to samples with silicon nanocrystals (annealed at T > 1000°C). The density of indirectly excited erbium ions, defining the maximum achievable gain, was demonstrated to be approximately excitation wavelength independent, while the effective erbium absorption cross-section was shown to significantly depend on the excitation wavelength. The excitation mechanism of erbium by luminescence centers was shown to be fast ( < 30 ns) and capable of erbium sensitization to different energy levels. This multilevel nature of erbium excitation was demonstrated to result in two different mechanisms of the excitation of the first excited state of erbium: fast ( < 30 ns) direct excitation by the luminescence centers, and slow ( > 2.3 μs) excitation due to the relaxation of erbium ions excited into higher energy levels to the first excited state. Based on photoluminescence studies conducted in the temperature range 15 - 300K it was shown that the relaxation efficiency of erbium from the second excited state to the first excited state (responsible for the slow excitation mechanism) is temperature independent and approaches unity. The relative stability of the optical properties demonstrated in the temperature range 20 - 200°C, implies that relatively stable optical gain can be achieved under realistic on-chip operating conditions. The optimum Si excess concentration corresponding to the highest density of sensitized Er3+ ions is shown to be relatively insensitive to the presence of Si nanocrystals and is ~ 14.5 at.% and ~ 11.5 at.% for samples without and with Si nanocrystals respectively. The presented results and conclusions have significant implications for silicon photonics and the industrial application of Er doped SiO2. The work shows that in order to sensitize erbium ions in silicon-rich silica there is no need for the presence of silicon nanocrystals, and consequently lower fabrication temperatures can be used. More importantly, the results strongly iv suggest that higher gain values can be acquired in samples annealed at lower temperature (without silicon nanocrystals) as compared to samples annealed at high temperatures (with silicon nanocrystals). In addition, the maximum gain is predicted to be relatively independent of excitation wavelength, significantly relaxing the requirements on the pump source. Based on the experimental results it is predicted that relatively stable performance of erbium-doped siliconrich silica is possible up to typical processor operating temperatures of ~ 80 - 90°C making it a viable material for on-chip devices. The results suggest that low temperature annealed erbiumdoped silicon-rich silica is a preferable material for on-chip photonic devices as compared with its high temperature annealed counterpart.
94

The Development Of Scalable Pump Techniques For Gg Iag Fiber Lasers And Passive Athermalization Techniques For Solid State Laser

Hageman, William 01 January 2010 (has links)
This dissertation consists of two parts: research pertaining to the development of scalable pump techniques for gain guided index-antiguided fiber lasers and research relating to the development of passive athermalization schemes for solid state lasers. The first section primarily details the development of a side pump scheme that allows for power scaling of gain-guided index anti-guided fibers. While these fibers have been demonstrated in past research, none have used a pump technology capable of pumping with the efficiencies, uniformity, and necessary length to allow for scaling of the fiber lasers to high output powers. The side pumped scheme developed in this section demonstrates a 6 W output power fiber laser with room for improvement in efficiency and beam quality. The second section details work done on the development of technologies for passively athermalizing the output of solid state laser systems. Techniques for passively removing the dependence of laser output power/energy on the operating temperature of the laser system promise to reduce the weight, power consumption, and cost of fielded laser systems. Methods for achieving passive athermalization are discussed, as well as prior research in laser athermalization, background theory, enabling technologies, and experimental results. This work provides the basis for continued research of passive athermalization and the eventual demonstration of this technology.
95

Photonic Applications of Rare Earth Doped TEOS Based Silica Thin Films and Waveguides

Hudgins, Robert Anthony 30 June 2003 (has links)
No description available.
96

OPTICAL STORAGE IN ERBIUM DOPED GALLIUM NITRIDE USING FOCUSED ION BEAM NANOFABRICATION

Lee, Boon Kwee 11 October 2001 (has links)
No description available.
97

ELECTROLUMINESCENT DEVICES FABRICATED ON ERBIUM DOPED GaN

GARTER, MICHAEL JAMES 11 October 2001 (has links)
No description available.
98

Coupled Luminescence Centres in Erbium-Doped Silicon Rich Silicon Oxide Thin Films Deposited by ECR-PECVD

Earl Blakie, Darren 08 1900 (has links)
Silicon has been the mainstay of the microelectroncs industry for over four decades. There is no material which can match the balance it affords between cost-benefit, mass consumability, process versatility, and nano-scale electron device performance. It is, therefore, the logical (and perhaps inevitable) platform for the development of integrated opto-electronics - a technology that is being aggressively developed to meet the next generation of bandwidth demands that are already beginning to strain interconnect architectures all the way down to the intra-chip level. While silicon-based materials already provide a variety of passive optical functionalities, the success of a genuine silicon-based optoelectronics will depend upon the ability of engineers to overcome those limitations in the optical properties of bulk silicon that occur at critical junctions in device requirements (eg. modulator and laser). Such solutions must not render the device processing incompatible with CMOS, for then the "silicon advantage" is lost. Achieving reliable and efficient electroluminescence in silicon remains the most intractable of these problems to date. Reliability problems in recently developed light emitting devices operating near a wavelength of 1.54 f..Lm, based on the thermally induced formation of silicon nano-clusters in erbium-doped silicon rich silicon oxide thin films, has reinforced the need for a further understanding of the luminescence mechanisms in this material. Indeed, the efficient and stable sensitized photoluminescence from Er3+ ions (near the telecom wavelength), embedded in an oxide matrix, based on a quasi-resonant energy transfer from nanostructured silicon, has the potential to make possible compact waveguide amplifiers and thin film electroluminescence. This thesis represents a study into the luminescence mechanisms in erbium-doped silicon oxide (SiOx, x~2) thin films grown by electron cyclotron resonance plasma enhanced chemical vapour deposition. Importantly, the film growth relies on in-situ erbium doping through the cracking of a volatile organalanthanide Er(tmhd)3 source. Rutherford backscattering spectroscopy has been used to map the film composition space generated from an ECR-PECVD parameter subspace consisting of precursor gas flow rates and the erbium precursor temperature. The response of the film photoluminescence spectra in both visible and infrared bands consistenly reveals three classes of luminescence centres, whose relative ability to emit light is shown in this study to exhibit a considerable degree of variability through the control of the film composition, subsequent thermal anneal temperature, duration, and process ambient. These three classes consist of optically active Er3 + ions, silicon nano-clusters phase separated during thermal annealing, and oxide-based defects (which may additionally include organic chromophores). The latter two of these species show the ability to sensitize the Er3 + luminescence. In fact, sensitization by intrinsically luminescent defects is a rarely studied phenomenon, which seems to be an important phenomenon in the present films owing to a potentially unique Er incorporation complex. To further investigate the ability of the oxide defects in this regard, an optimally luminescent film has been subject to a damaging ion irradiation to induce a photoluminescence quenching. The subsequent recovery of this luminescence with stepwise isochronous annealing has been correlated with Doppler broadening positron annihilation spectroscopy measurements made with a slow positron beam. Irradiation to a sufficiently high fluence has demonstrated a unique ability to de-couple luminescent sensitizers and Er3+ ions, producing enhanced blue and violet emissions. / Thesis / Master of Science (MS)
99

Étude expérimentale et thermodynamique du système Zr-Er-H / Experimental and thermodynamic study of the system Zr-Er-H

Mascaro, Aurore 12 November 2012 (has links)
Ce travail de thèse s'inscrit dans le cadre du développement d'une solution innovante d'empoisonnement neutronique homogène, par insertion d'erbium, au cœur des gaines de combustible en alliage de zirconium utilisées dans les réacteurs à eau pressurisée. Dans cette étude réalisée par le CEA, la géométrie envisagée est une gaine triplex constituée d'un liner interne faiblement enrichi en erbium, compris entre deux couches d'alliage industriel base zirconium. Dans le cœur du réacteur, l'eau se dissocie à la surface de la gaine. Il est donc intéressant d'évaluer les interactions potentielles entre l'hydrogène et l'alliage Zr-Er du liner. Cela nécessite de connaître le système ternaire Er-H-Zr ainsi que les systèmes binaires associés. Ceci peut être obtenu par détermination expérimentale et grâce à la modélisation thermodynamique. Les deux techniques ont été utilisées au cours de cette thèse. Les systèmes binaires Er-Zr et H-Zr ont été déterminés expérimentalement et modélisés dans la littérature. Le système binaire Er-H en revanche était très mal connu. Nous avons étudié ce système expérimentalement. Il a ensuite été modélisé avec l'approche Calphad. Nous obtenons une nouvelle évaluation du système binaire Er-H, avec des limites de phases différentes de ce qui avait été proposé précédemment. Dans le but de déterminer les limites des domaines de phases et de mettre en évidence l'éventuelle existence d'un composé ternaire dans le système ternaire Er-H-Zr, une étude expérimentale a été menée. Une technique originale a été utilisée : le dosage chimique des éléments d'alliage a été fait par ERDA combinée à la RBS. Cette étude nous a permis de proposer une coupe isotherme expérimentale à 350°C de ce système ternaire. Concernant la modélisation, les trois systèmes binaires ont été rendus compatibles dans le but de calculer le diagramme de phases ternaire par projection des binaires. Le calcul obtenu est en bon accord avec la coupe isotherme expérimentale. Enfin, par le biais de campagnes d'essais de traction, nous avons évalué l'impact de l'ajout d'erbium et/ou d'hydrogène sur le comportement mécanique du zirconium de pureté industrielle. Nous avons ainsi mis en évidence un effet durcissant de l'erbium et de l'hydrogène sans pour autant que ces effets soient corrélés. Aucun de ces résultats n'est rédhibitoire pour l'utilisation de cet alliage Er-Zr en tant que liner dans le concept triplex / This work at CEA is being achieved in the framework of the development of an innovating concept including the neutronic solid burnable poison, such as erbium, inside the cladding of pressurized water reactors. These new claddings are constituted by a liner of a zirconium base alloy slightly enriched in erbium between two liners of industrial zirconium alloys. Into the reactor core, the water dissociates at the surface of the cladding. So it is interesting to evaluate the interactions between the hydrogen released and the Zr-Er alloy. To do so, the Er-H-Zr ternary system has to be determined such similarly to its associated binaries. This can be done by experimental determination and by thermodynamic modelling. Both techniques were used in this work. Er-Zr and H-Zr have already been studied experimentally and modelled, but the Er-H binary system is almost unknown. So, we studied it experimentally. Then, it has been modelled using the Calphad method. We obtain a new evaluation of the Er-H binary system with phases limits rather different than what has been proposed in the literature. In order to determine the phase limits and, the potential existence of a ternary compound in the Er-H-Zr ternary system, an experimental study has been carried out. An original technique has been used to obtain the chemical compositions: ERDA combined with RBS. In this study, we propose a new isothermal section at 350°C of the Er H-Zr ternary system. About the modelling, the compatibility of the three modelled binaries has been checked in order to optimize the ternary system by the projection of the three binaries. The calculation obtained is in good agreement with the experimental isothermal section at 350°C determined in our work. Finally, uniaxial tensile test campaigns have been conducted to evaluate the impact of erbium and/or hydrogen on the mechanical properties of an industrial zirconium pure alloy. We evidenced a hardening effect of erbium and hydrogen but these effects are not correlated. None of these results is prohibitive for the use of this Er Zr alloy as a liner in the triplex concept
100

Etude par modélisation des nanoparticules formées par séparation de phase dans les verres dopés terres rares / Study by modelling of nanoparticles trained by separation of phase in doped glasses rare earths

Bidault, Xavier 07 December 2015 (has links)
Les fibres optiques dont on façonne la réponse spectrale incorporent des ions luminescents, des ions de terres rares (TR), dans des nanoparticules (NP) formées in situ dans un verre de silice par séparation de phase. Cette ingénierie nécessite de comprendre le lien entre la composition des NP et l’environnement des TR.En Dynamique Moléculaire, les potentiels interatomiques existants pèchent à reproduire la séparation de phase observée expérimentalement. Le mélange xMgO-(1-x)SiO2 présente un domaine où coexistent deux phases mixtes, riche en Mg ou en Si. Une telle séparation de phase ne se modélise qu’avec un potentiel interatomique prenant en compte la ionicité des liaisons, réalisé ici par l’ajustement des charges des Oxygène selon l’environnement local. Ce modèle adaptatif, transférable, permet de suivre pour la 1ère fois la formation de NP amorphes de quelques nm. Mixtes et riches en Mg, elles se séparent d’une matrice riche en Si.Le dopage TR (Er3+ ou Eu3+) montre que leur voisinage dépend de la taille des NP les contenant : plus les NP sont grosses, plus les fractions de TR et de Mg augmentent. Ce voisinage riche en Mg permet à ces TR d’augmenter leur coordinence en Oxygène et elles n’ont plus besoin de s’agréger entre elles pour satisfaire cette tendance naturelle.Une simulation de l’étirage à chaud d’un verre de silice confirme l’existence d’une anisotropie dans la fibre optique, venant de l’orientation persistante des petits anneaux de silice, et se manifeste par une anisotropie élastique. Les effets que ces conditions extrêmes induisent sur les NP seront étudiés ultérieurement.La mise en œuvre d'un modèle de champ cristallin corrélera les modifications de l'environnement des TR avec leur réponse spectrale. / Optical fibers with tailored spectral response are doped with luminescent ions, rare-earth ions (re), embedded in nanoparticles (np) formed in situ in silica glass through a phase separation process. This engineering requires to understand the relation between the np composition and the re environment. In molecular dynamics, the existing interatomic potentials fail to reproduce the phase separation as experimentally observed. The system xmgo-(1-x)sio2 exhibits a domain inside of which two mixed phases coexist, mg-rich either si-rich. Such a phase separation can only be modeled by an interatomic potential that takes into account bond ionicity, and the transferability isEnabled here by the adaptation of oxygen charges according to the local environment. This adaptive model allows for the 1st time to track the formation of amorphous np of few nanometers. Mixed and mg-rich, they separate from a si-rich matrix. The re doping (er3+ or eu3+) shows that re environment depends on the size of the containing np: the bigger it is, the more the proportions of embedded re and mg increase. Thus, this mg-rich environment enables re ions to increase their oxygen coordination and to no more aggregate to each other to satisfy this natural trend. A simulation of the high-temperature drawing of silica-glass confirms the existence of an anisotropy in optical fiber, explained by the persistent orientation that small silica rings acquire in this fiber, and manifests itself by an elastic anisotropy. The nontrivial effects induced on np by these extreme conditions of temperature and stress can be studied later. The crystal-field model can be used to correlate the changes of the re environment with their spectral response.

Page generated in 0.029 seconds