• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 1
  • Tagged with
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ableitung von Blattflächenindex und Bedeckungsgrad aus Fernerkundungsdaten für das Erosionsmodell EROSION 3D

Klisch, Anja January 2003 (has links)
In den letzten Jahren wurden relativ komplexe Erosionsmodelle entwickelt, deren Teilprozesse immer mehr auf physikalisch begründeten Ansätzen beruhen. Damit verbunden ist eine höhere Anzahl aktueller Eingangsparameter, deren Bestimmung im Feld arbeits- und kostenaufwendig ist. Zudem werden die Parameter punktuell, also an bestimmten Stellen und nicht flächenhaft wie bei der Fernerkundung, erfasst. <br /> <br /> Im Rahmen dieser Arbeit wird gezeigt, wie Satellitendaten als relativ kostengünstige Ergänzung oder Alternative zur konventionellen Parametererhebung genutzt werden können. Dazu werden beispielhaft der Blattflächenindex (LAI) und der Bedeckungsgrad für das physikalisch begründete Erosionsmodell EROSION 3D abgeleitet. Im Mittelpunkt des Interesses steht dabei das Aufzeigen von existierenden Methoden, die die Basis für eine operationelle Bereitstellung solcher Größen nicht nur für Erosions- sondern allgemein für Prozessmodelle darstellen. Als Untersuchungsgebiet dient das primär landwirtschaftlich genutzte Einzugsgebiet des Mehltheuer Baches, das sich im Sächsischen Lößgefilde befindet und für das Simulationsrechnungen mit konventionell erhobenen Eingangsparametern für 29 Niederschlagsereignisse im Jahr 1999 vorliegen [MICHAEL et al. 2000].<br /> <br /> Die Fernerkundungsdatengrundlage bilden Landsat-5-TM-Daten vom 13.03.1999, 30.04.1999 und 19.07.1999. Da die Vegetationsparameter für alle Niederschlagsereignisse vorliegen sollen, werden sie basierend auf der Entwicklung des LAI zeitlich interpoliert. Dazu erfolgt zunächst die Ableitung des LAI für alle vorhandenen Fruchtarten nach den semi-empirischen Modellen von CLEVERS [1986] und BARET & GUYOT [1991] mit aus der Literatur entnommenen Koeffizienten. Des Weiteren wird eine Methode untersucht, nach der die Koeffizienten für das Clevers-Modell aus den TM-Daten und einem vereinfachten Wachstumsmodell bestimmt werden. Der Bedeckungsgrad wird nach ROSS [1981] aus dem LAI ermittelt. Die zeitliche Interpolation des LAI wird durch die schlagbezogene Anpassung eines vereinfachten Wachstumsmodells umgesetzt, das dem hydrologischen Modell SWIM [KRYSANOVA et al. 1999] entstammt und in das durchschnittliche Tagestemperaturen eingehen. Mit den genannten Methoden bleiben abgestorbene Pflanzenteile unberücksichtigt. Im Vergleich zur konventionellen terrestrischen Parametererhebung ermöglichen sie eine differenziertere Abbildung räumlicher Variabilitäten und des zeitlichen Verlaufes der Vegetationsparameter.<br /> <br /> Die Simulationsrechnungen werden sowohl mit den direkten Bedeckungsgraden aus den TM-Daten (pixelbezogen) als auch mit den zeitlich interpolierten Bedeckungsgraden für alle Ereignisse (schlagbezogen) durchgeführt. Bei beiden Vorgehensweisen wird im Vergleich zur bisherigen Abschätzung eine Verbesserung der räumlichen Verteilung der Parameter und somit eine räumliche Umverteilung von Erosions- und Depositionsflächen erreicht. Für die im Untersuchungsgebiet vorliegende räumliche Heterogenität (z. B. Schlaggröße) bieten Landsat-TM-Daten eine ausreichend genaue räumliche Auflösung. Damit wird nachgewiesen, dass die satellitengestützte Fernerkundung im Rahmen dieser Untersuchungen sinnvoll einsetzbar ist. Für eine operationelle Bereitstellung der Parameter mit einem vertretbaren Aufwand ist es erforderlich, die Methoden weiter zu validieren und möglichst weitestgehend zu automatisieren. / Soil erosion models become increasingly more complex and contain physically based components, resulting in changing requirements for their input parameters. The spatial and temporal dynamics of erosions forcing parameters thus produce high requirements on data availability (costs and manpower). Due to this fact, the use of complex erosion models for extensive regions is strongly limited by the high in-situ expense. Moreover, conventional measurement procedures provide parameters at certain points, while remote sensing is a two-dimensional retrieval method.<br /> <br /> This thesis demonstrates, how satellite data can be used as a cost-effective supplementation or alternative to conventional measurement procedures. Leaf area index (LAI) and soil cover percentage are examplarily derived for the EROSION 3D physically based soil erosion model. The main objective of this study is to summarise existing retrieval methods in order to operationally provide such paramaters for soil erosion models or for process models in general. The methods are applied to a catchment in the loess region in Saxony (Germany), that predominantly is agriculturally used. For comparison, simulations based on conventionally estimated parameters for 29 rainstorm events are available [MICHAEL et al. 2000]. <br /> <br /> The remote sensing parameters are derived from Landsat 5 TM data on the following dates: 13.03.1999, 30.04.1999, 19.07.1999. To get temporally continuous data for all events, they are interpolated between the acquisition dates based on the LAI development. Therefore, LAI is firstly calculated for all occurring crops by means of the semi-empirical models of CLEVERS [1986] and BARET & GUYOT [1991]. The coefficients appropriated to these models are taken from literature. Furthermore, a method is investigated that enables coefficient estimation for the Clevers model from Landsat data combined with a simplified growth model. Next, soil cover percentage is derived from LAI after ROSS [1981]. The LAI interpolation is performed by the simplified crop growth model from the SWIM hydrological model [Krysanova et al. 1999]. It has to be mentioned, that plant residue remains unconsidered by the used methods. In comparison to conventional measurement procedures, these methods supply a differentiated mapping of the spatial variability and temporal behaviour regarding the vegetation parameters.<br /> <br /> The simulations with EROSION 3D are carried out for the remotely sensed soil cover percentages, that are retrieved in two ways. Soil cover is directly derived from the remote sensing data for each pixel at the acquisition dates as well as estimated by means of the interpolation for each field on all rainstorm events. In comparison to conventionally determined soil cover, both methods provide an improved spatial allocation of this parameter and thus, a spatial reallocation of erosion and deposition areas. The used Landsat Data provide an adequate spatial resolution suitable for the spatial heterogeneity given in the test area (e. g. field size). These results show that satellite based remote sensing can be reasonably used within the scope of these investigations. In the future, operational retrieval of such remotely sensed parameters necessitates the validation of the proposed methods and in general the automation of involved sub-processes to the greatest possible extent
2

Berechnung von Schneeschmelze und Wintererosion im Kleineinzugsgebiet „Schäfertal“ mit dem Modell Erosion 3D/Winter Version

Fritz, Heiko 10 December 2010 (has links) (PDF)
Für das Modell Erosion 3D wird derzeit an der TU Bergakademie Freiberg ein Wintermodul entwickelt. Mit diesem soll es möglich werden, den aus der Schneeschmelze resultierenden Oberflächenabfluß und dessen Sedimentgehalt zu modellieren. Ziel dieser Studienarbeit ist es, zum einen die Schneedecke im „Schäfertal“ zu charakterisieren und zum anderen das Modell Erosion 3D/Winter Version zu überprüfen. Das Ergebnis der Auswertung von gemessener Lufttemperatur, Schneehöhe und dazugehörigem Wasseräquivalent hat ergeben, das selbst in Kleineinzugsgebieten wie dem Schäfertal die Schneedecke eine sehr große Heterogenität aufweißt. Diese Heterogenität nimmt mit zunehmendem Alter der Schneedecke zu. Bei der Ausführung des Modells Erosion 3D/Winter Version muß zu Beginn der Modellierung ein Schneeschmelzfaktor eingegeben werden. Eine empirische Bestimmung ergab, daß ein Schneeschmelzfaktor mit dem Wert 1 für das „Schäfertal“ die besten Simulationsergebnisse liefert. Weiterhin muß festgelegt werden, ob die Böden im Untersuchungsgebiet zum Zeitpunkt der Modellierung gefroren oder nicht gefroren sind. Diese Entscheidung ist problematisch: Einerseits wird selten die Bodentemperatur gemessen, die nicht zwangsläufig mit der Lufttemperatur korreliert. Anderseits befindet sich im Untersuchungsgebiet nur ein Lufttemperaturmesspunkt. Somit ist es schwierig eine exakte Verteilung des Parameters zu erhalten, insbesondere da es eine starke Gliederung in Nord- und Südhanglagen gibt. In Anlehnung an die große Heterogenität der Schneedecke kann davon ausgegangen werden, daß es falsch ist anzunehmen, daß im gesamten Untersuchungsgebiet über den Modellierzeitraum gleiche Bedingungen vorliegen (gefrorene bzw. nicht gefrorene Böden). Somit wird der große Einfluß des Bodenfrostes nicht optimal in dieser Modellversion beachtet. Für die Überprüfung des Modells Erosion 3D/Winter Version wurde zunächst eine Sensitivitätsanalyse durchgeführt, um das Verhalten der Modellergebnisse gegenüber der Lagerungsdichte, dem Erosionswiderstand und der Rauhigkeit herauszufinden. Diese Sensitivitätsanalyse ergab, daß bei den Parametern Erosionswiderstand und Rauhigkeit die Annahme „Bodenfrost“ keinen Einfluß auf das Ergebnis der Modellierung hat. Einen großen Einfluß hat die Annahme „Bodenfrost“ allerdings bei Betrachtung der Lagerungsdichte die im Programm Erosion 3D/Winter Version ein zentraler Parametern ist. Gefrorene Böden überspringen das Infiltrationsmodul, somit ist deren Sensitivität wegen fehlender Infiltration Null. Ohne Bodenfrost ist der Parameter durch seine hohe Sensitivität wie schon im E3D sehr bedeutend. Die Ablation der Schneedecke wird von Erosion 3D/Winter Version sehr gut berechnet, doch bei der Akkumulation von Schnee treten bei der verwendeten Version Fehler auf, denn das simulierte Wasseräquivalent ist um einiges höher als das gemessene. Aus diesem Grund war es nicht möglich das Programm für das Schäfertal zu validieren.
3

Infiltration in teilweise gefrorene Böden

Fritz, Heiko 10 December 2010 (has links) (PDF)
In der vorliegenden Arbeit wurden Doppelringinfiltrationsexperimente an teilweise gefro­renen Böden durchgeführt. Diese Experimente wurden anschließend mit den zwei computer­ge­stützten Modellen, Erosion 3D / Winter und COUP, nachgestellt, um die Frage zu beantworten, ob es möglich ist, die Infiltration in teilweise gefrorene Böden vorherzusagen. Die Doppelringinfiltrationsexperimente wurden auf einem ackerbaulich genutzten Lehm­boden mit geringer Lagerungsdichte und Bodenfeuchten im Bereich der Feld­kapa­zität, an der nördlichen Grenze des hydrologischen Untersuchungsgebietes „Schäfertal“ durch­ge­führt. Drei Experimente erfolgten bei teilweise gefrorenen und ein Experiment bei unge­frorenem Boden. Bei diesen Experimenten wurde herausgefunden, dass die Endinfiltrationsrate des gefro­renen Bodens mit 7·10-5 m/s gleich der Endinfiltrationsrate des ungefrorenen Bodens war. Während bei dem Infiltrationsexperiment mit ungefrorenem Boden die Endinfiltrations­rate bereits nach 10 bis 20 min erreicht war, wurden bei den Experimenten mit gefrorenen Böden aufgrund der zusätzlichen Sättigung des kryoturbativen Sekundärporenvolumens mehr Zeit benötigt. Zu den im Boden ablaufenden Prozessen bei Zugabe von Infiltrationswasser (Tem­pe­ratur­veränderung, Gefrier- und Auftauprozesse, Veränderung der Porosität) besteht noch Klärungsbedarf. Der für die Modellierung wichtige Eingabeparameter der Anfangsbodenfeuchte konnte bei winterlichen Bedingungen nicht genau bestimmt werden. Gravimetrische Boden­feuchtebestimmungen liefern aufgrund des Eintrags von zusätzlichen Eis- und Schnee-Wasser zu hohe Werte. TDR- und Watermark-Messungen unterschätzen hingegen die Bodenfeuchten, weil sie nur den Anteil des flüssigen Wassers berücksichtigen. Mit Erosion 3D / Winter konnten die Ergebnisse der Infiltrationsexperimente, unter der Voraussetzung, dass die effektive gesättigte hydraulische Leitfähigkeit des ungefrorenen Bodens exakt bekannt war, sehr gut nachgestellt werden. Eine Modellierung der Infiltration in einen teilweise gefrorenen Boden ist damit, zumindest für den untersuchten Boden und die betrachteten meteorologischen Bedingungen, möglich. Das COUP - Modell lieferte dagegen völlig andere Ergebnisse, weil von einem Ein­frieren des infiltrierten Wassers bei negativen Temperaturen ausgegangen wird. Eine Verbesserung der Infiltrationsbeschreibungen könnte hier wahrscheinlich durch die Vorgabe einer größeren Anzahl von Eingabeparametern, die die natürliche Situation besser repräsentieren als die für die Modellierung verwendeten Daten, erfolgen.
4

Berechnung von Schneeschmelze und Wintererosion im Kleineinzugsgebiet „Schäfertal“ mit dem Modell Erosion 3D/Winter Version

Fritz, Heiko 20 November 2001 (has links)
Für das Modell Erosion 3D wird derzeit an der TU Bergakademie Freiberg ein Wintermodul entwickelt. Mit diesem soll es möglich werden, den aus der Schneeschmelze resultierenden Oberflächenabfluß und dessen Sedimentgehalt zu modellieren. Ziel dieser Studienarbeit ist es, zum einen die Schneedecke im „Schäfertal“ zu charakterisieren und zum anderen das Modell Erosion 3D/Winter Version zu überprüfen. Das Ergebnis der Auswertung von gemessener Lufttemperatur, Schneehöhe und dazugehörigem Wasseräquivalent hat ergeben, das selbst in Kleineinzugsgebieten wie dem Schäfertal die Schneedecke eine sehr große Heterogenität aufweißt. Diese Heterogenität nimmt mit zunehmendem Alter der Schneedecke zu. Bei der Ausführung des Modells Erosion 3D/Winter Version muß zu Beginn der Modellierung ein Schneeschmelzfaktor eingegeben werden. Eine empirische Bestimmung ergab, daß ein Schneeschmelzfaktor mit dem Wert 1 für das „Schäfertal“ die besten Simulationsergebnisse liefert. Weiterhin muß festgelegt werden, ob die Böden im Untersuchungsgebiet zum Zeitpunkt der Modellierung gefroren oder nicht gefroren sind. Diese Entscheidung ist problematisch: Einerseits wird selten die Bodentemperatur gemessen, die nicht zwangsläufig mit der Lufttemperatur korreliert. Anderseits befindet sich im Untersuchungsgebiet nur ein Lufttemperaturmesspunkt. Somit ist es schwierig eine exakte Verteilung des Parameters zu erhalten, insbesondere da es eine starke Gliederung in Nord- und Südhanglagen gibt. In Anlehnung an die große Heterogenität der Schneedecke kann davon ausgegangen werden, daß es falsch ist anzunehmen, daß im gesamten Untersuchungsgebiet über den Modellierzeitraum gleiche Bedingungen vorliegen (gefrorene bzw. nicht gefrorene Böden). Somit wird der große Einfluß des Bodenfrostes nicht optimal in dieser Modellversion beachtet. Für die Überprüfung des Modells Erosion 3D/Winter Version wurde zunächst eine Sensitivitätsanalyse durchgeführt, um das Verhalten der Modellergebnisse gegenüber der Lagerungsdichte, dem Erosionswiderstand und der Rauhigkeit herauszufinden. Diese Sensitivitätsanalyse ergab, daß bei den Parametern Erosionswiderstand und Rauhigkeit die Annahme „Bodenfrost“ keinen Einfluß auf das Ergebnis der Modellierung hat. Einen großen Einfluß hat die Annahme „Bodenfrost“ allerdings bei Betrachtung der Lagerungsdichte die im Programm Erosion 3D/Winter Version ein zentraler Parametern ist. Gefrorene Böden überspringen das Infiltrationsmodul, somit ist deren Sensitivität wegen fehlender Infiltration Null. Ohne Bodenfrost ist der Parameter durch seine hohe Sensitivität wie schon im E3D sehr bedeutend. Die Ablation der Schneedecke wird von Erosion 3D/Winter Version sehr gut berechnet, doch bei der Akkumulation von Schnee treten bei der verwendeten Version Fehler auf, denn das simulierte Wasseräquivalent ist um einiges höher als das gemessene. Aus diesem Grund war es nicht möglich das Programm für das Schäfertal zu validieren.:Abbildungsverzeichnis iii Tabellenverzeichnis iv 1 Einleitung und Zielsetzung 1 2 Charakterisierung des Untersuchungsgebietes „Schäfertal“ 4 2.1 Lage und Charakterisierung 4 2.2 Pedologie 6 2.3 Klima 7 2.4 Landnutzung 8 3 Charakterisierung von Schneeperioden im Untersuchungsgebiet im Hinblick auf ihre zeitliche und räumliche Dynamik 11 3.1 Datengrundlage 11 3.2 Zeitliche Dynamik der Schneeschmelze 13 3.2.1 Ergebnisdarstellung und Interpretation 13 3.3 Räumliche Dynamik 15 3.3.1 Ergebnisdarstellung 15 3.3.2 Interpretation 21 4 Model Erosion 3D mit Wintermodul 24 4.1 Das Modell Erosion 3D 24 4.2 Erweiterung des Modells Erosion 3D durch das Wintermodul 25 4.3 Parametersetzung für die räumlichen Daten 27 4.4 Aufbereitung der zeitlichen Daten 32 5 Überprüfung der Funktion des Modells Erosion 3D/Winter Version 34 5.1 Methodische Vorgehensweise 34 5.2 Überprüfung des Schneeschmelzfaktors mit gemessenen Werten 34 5.2.1 Ergebnisdarstellung und Interpretation 34 5.3 Überprüfung der Sensitivität ausgewählter Bodenparameter 35 5.3.1 Methodische Vorgehensweise 36 5.3.2 Ergebnisdarstellung und Interpretation 36 5.3.3 Vergleich der Sensitivitätsparameter 38 5.4 Optimierung der Februarbodenparameterdatei für das „Schäfertal“ 40 5.4.1 Datenaufnahme für den Sedimentaustrag 40 5.4.2 Vergleich gemessener Daten mit simulierten Daten 41 5.4.3 Änderung der Februarbodenparameterdatei 43 5.5 Modellierung der dritten Schneeperiode 43 6 Zusammenfassung 46 Literaturverzeichnis 48 Anhang 50
5

Infiltration in teilweise gefrorene Böden: Experimente und Modellrechnungen

Fritz, Heiko 01 September 2004 (has links)
In der vorliegenden Arbeit wurden Doppelringinfiltrationsexperimente an teilweise gefro­renen Böden durchgeführt. Diese Experimente wurden anschließend mit den zwei computer­ge­stützten Modellen, Erosion 3D / Winter und COUP, nachgestellt, um die Frage zu beantworten, ob es möglich ist, die Infiltration in teilweise gefrorene Böden vorherzusagen. Die Doppelringinfiltrationsexperimente wurden auf einem ackerbaulich genutzten Lehm­boden mit geringer Lagerungsdichte und Bodenfeuchten im Bereich der Feld­kapa­zität, an der nördlichen Grenze des hydrologischen Untersuchungsgebietes „Schäfertal“ durch­ge­führt. Drei Experimente erfolgten bei teilweise gefrorenen und ein Experiment bei unge­frorenem Boden. Bei diesen Experimenten wurde herausgefunden, dass die Endinfiltrationsrate des gefro­renen Bodens mit 7·10-5 m/s gleich der Endinfiltrationsrate des ungefrorenen Bodens war. Während bei dem Infiltrationsexperiment mit ungefrorenem Boden die Endinfiltrations­rate bereits nach 10 bis 20 min erreicht war, wurden bei den Experimenten mit gefrorenen Böden aufgrund der zusätzlichen Sättigung des kryoturbativen Sekundärporenvolumens mehr Zeit benötigt. Zu den im Boden ablaufenden Prozessen bei Zugabe von Infiltrationswasser (Tem­pe­ratur­veränderung, Gefrier- und Auftauprozesse, Veränderung der Porosität) besteht noch Klärungsbedarf. Der für die Modellierung wichtige Eingabeparameter der Anfangsbodenfeuchte konnte bei winterlichen Bedingungen nicht genau bestimmt werden. Gravimetrische Boden­feuchtebestimmungen liefern aufgrund des Eintrags von zusätzlichen Eis- und Schnee-Wasser zu hohe Werte. TDR- und Watermark-Messungen unterschätzen hingegen die Bodenfeuchten, weil sie nur den Anteil des flüssigen Wassers berücksichtigen. Mit Erosion 3D / Winter konnten die Ergebnisse der Infiltrationsexperimente, unter der Voraussetzung, dass die effektive gesättigte hydraulische Leitfähigkeit des ungefrorenen Bodens exakt bekannt war, sehr gut nachgestellt werden. Eine Modellierung der Infiltration in einen teilweise gefrorenen Boden ist damit, zumindest für den untersuchten Boden und die betrachteten meteorologischen Bedingungen, möglich. Das COUP - Modell lieferte dagegen völlig andere Ergebnisse, weil von einem Ein­frieren des infiltrierten Wassers bei negativen Temperaturen ausgegangen wird. Eine Verbesserung der Infiltrationsbeschreibungen könnte hier wahrscheinlich durch die Vorgabe einer größeren Anzahl von Eingabeparametern, die die natürliche Situation besser repräsentieren als die für die Modellierung verwendeten Daten, erfolgen.
6

Improving the predictive capability of the soil erosion modeling tool EROSION-3D: From observation data to validation

Lenz, Jonas 16 May 2023 (has links)
Ziel dieser Arbeit ist die Verbesserung der Vorhersagekraft des Bodenerosionsmodelierungs-werkzeugs EROSION-3D, welche oftmals durch die Identifizierung der werkzeugspezifischen Parameter Skinfaktor und Erosionswiderstand limitiert ist. Als drei Betrachtungsebenen der Arbeit werden 1. Beobachtungsdaten, 2. die Fähigkeit von EROSION-3D zur Beschreibung der Beobachtungsdaten und 3. die Vorhersagekraft des Werkzeugs untersucht. Aufzeichnungen verschiedener Beregnungsversuche wurden maschinenlesbar zusammengefasst. Daran wurde EROSION-3D mit den bisher üblichen sowie Monte-Carlo Methoden kalibriert. Anhand beschreibender Daten der Beregnungsversuche wurden Vorhersagemethoden zur Schätzung der modellspezifischen Parameter entwickelt und hinsichtlich der Parameterwerte und damit modellierter Abfluss-/Abtragswerte validiert. Die Ergebnisse zeigen, dass verbesserte Vorhersagen mit den neuen Schätzmethoden möglich sind, aber auch Möglichkeiten zur Verbesserung der Modellstruktur bestehen.
7

Prozessbasierte Modellierung von Erosion, Deposition und partikelgebundenem Nähr- und Schadstofftransport in der Einzugsgebiets- und Regionalskala

Schindewolf, Marcus 20 April 2012 (has links) (PDF)
The process based soil erosion simulation model EROSION 3D is applied on regional scale for the federal state of Saxony/Germany. This survey is aimed on modeling soil loss, sediment transport, deposition resp. the input of particle attached nutrient and pollutant input into surface water bodies for 10years storm event and three land use scenarios. The available region-wide geo-data were preprocessed to be used in the parameterization interface DPROC. This software has been extended to parameterize large areas as well as small catchments. The basis of parameterization is a relational data base consisting of measured or estimated specific model soil parameters. These values have been derived by heavy rainfall simulation experiments below field conditions. The data base has been extended by the new results, which cover different soil tillage practices. The new experiments were conducted with a newly developed methodology. The experimental results show a significant relation of soil loss from the mechanical impact due to soil tillage. Only the non-tillage practice is able to protect soils efficiently from erosional soil losses. In order to describe particle attached nutrient and pollutant transport, soil samples were analyzed determining the element content of different particle fractions. The regional scale simulations identify the Saxonian Loess Belt as hotspot of soil erosion. However considerable amounts can also be expected in certain areas of the low mountain range. Particle attached element inputs into surface water bodies correspond to main sediment delivery areas. The amounts of erosional soil losses could be reduced to 90 % in case of consequently and area-wide transformation to conservation tillage practices. The calculated phosphorous inputs into surface waters on catchment scale are proofed to be valid. Compared to empirical based phosphorous and heavy metal yields the results in this study exceed this findings by a wide range. The differences are caused by lacking an event based consideration, which disregards system maximal impacts. Since erosion is an exclusive non continuous process, those maximal impacts are highly relevant and have to be considered in case of planning and execution of erosion and water protection concepts. / In der vorliegenden Arbeit wird das prozessbasierte Erosionsprognosemodell EROSION 3D flächendeckend auf regionaler Ebene für den Freistaat Sachsen angewendet. Ziel der Untersuchungen ist es, Bodenabtrag, Sedimenttransport und -deposition bzw. den Eintrag partikelgebundener Nähr- und Schadstoffe in Oberflächengewässer für ein 10jähriges Starkniederschlagsereignis und drei verschiedene Landnutzungsszenarien zu beschreiben. Dazu wurden im Vorfeld verfügbare Geo-Basisdaten so aufbereitet, dass sie für die semiautomatische Parametrisierung mit der Software DPROC verwendet werden können. Diese Software wurde so erweitert, dass sowohl größere Einzugsgebiete als auch einzelne Teileinzugsgebiete parametrisiert werden können. Grundlage der Parametrisierung bildet eine relationale Datenbank, die auf Messwerten bzw. davon abgeleiteten Schätzwerten aus Starkregenexperimenten unter Feldbedingungen basiert. Der vorhandene Datenfundus wurde durch neue Ergebnisse zu verschiedenen Verfahren der ackerbaulichen Bodenbearbeitung mittels neu entwickelter Methodik korrigiert und erweitert. Die experimentellen Ergebnisse zeigen eine deutliche Abhängigkeit des Feststoffaustrages von der Eingriffsintensität bei der Bodenbearbeitung. Dabei ist die Direktsaat die einzige Bewirtschaftungsform, die den Boden effektiv vor Erosion schützt. Um den selektiven partikelgebundenen Nähr- und Schadstofftransport prozessbasiert abzuschätzen, wurden die Stoffgehalte für die Partikelfraktionen Sand, Schluff und Ton an Bodenproben bestimmt. Die regionalskalierten Simulationen identifizieren die sächsische Lössregion als Schwerpunkt der Bodenerosion in Sachsen. Beträchtliche Bodenabträge sind darüber hinaus in den sächsischen Mittelgebirgen zu erwarten. Partikelgebundene Stoffeinträge in Oberflächengewässer verteilen sich in Abhängigkeit von den Sedimentliefergebieten. Die Bodenumlagerungsprozesse einschließlich der damit verbundenen partikelgebundenen Stoffeinträge lassen sich bei konsequenter Umstellung auf konservierende Bewirtschaftungsmethoden entsprechend den Modellergebnissen um mehr als 90 % reduzieren. Im Rahmen der Modellvalidierung konnte die Zuverlässigkeit der berechneten Phosphorausträge auf Einzugsgebietsebene belegt werden. Verglichen mit empirisch basierten mittleren jährlichen Abschätzungen sind die in dieser Arbeit berechneten ereignisbezogenen Phosphor- und Schwermetallausträge um ein Vielfaches höher. Zurückzuführen sind diese Unterschiede vor allem darauf, dass bei den rein empirischen Ansätzen, die maximale Belastungsspitzen unberücksichtigt bleiben. Da Erosion stets ein diskontinuierlicher Prozess ist, sind diese Belastungsspitzen im höchsten Maße relevant und bei der Planung und Durchführung von Erosions- und Gewässerschutzkonzepten unbedingt zu berücksichtigen.
8

Prozessbasierte Modellierung von Erosion, Deposition und partikelgebundenem Nähr- und Schadstofftransport in der Einzugsgebiets- und Regionalskala

Schindewolf, Marcus 27 January 2012 (has links)
The process based soil erosion simulation model EROSION 3D is applied on regional scale for the federal state of Saxony/Germany. This survey is aimed on modeling soil loss, sediment transport, deposition resp. the input of particle attached nutrient and pollutant input into surface water bodies for 10years storm event and three land use scenarios. The available region-wide geo-data were preprocessed to be used in the parameterization interface DPROC. This software has been extended to parameterize large areas as well as small catchments. The basis of parameterization is a relational data base consisting of measured or estimated specific model soil parameters. These values have been derived by heavy rainfall simulation experiments below field conditions. The data base has been extended by the new results, which cover different soil tillage practices. The new experiments were conducted with a newly developed methodology. The experimental results show a significant relation of soil loss from the mechanical impact due to soil tillage. Only the non-tillage practice is able to protect soils efficiently from erosional soil losses. In order to describe particle attached nutrient and pollutant transport, soil samples were analyzed determining the element content of different particle fractions. The regional scale simulations identify the Saxonian Loess Belt as hotspot of soil erosion. However considerable amounts can also be expected in certain areas of the low mountain range. Particle attached element inputs into surface water bodies correspond to main sediment delivery areas. The amounts of erosional soil losses could be reduced to 90 % in case of consequently and area-wide transformation to conservation tillage practices. The calculated phosphorous inputs into surface waters on catchment scale are proofed to be valid. Compared to empirical based phosphorous and heavy metal yields the results in this study exceed this findings by a wide range. The differences are caused by lacking an event based consideration, which disregards system maximal impacts. Since erosion is an exclusive non continuous process, those maximal impacts are highly relevant and have to be considered in case of planning and execution of erosion and water protection concepts.:Inhaltsverzeichnis I Abbildungsverzeichnis V Tabellenverzeichnis IX Abkürzungsverzeichnis XI Symbole und Einheiten XIII Zusammenfassung XV Abstract XVI 1 Einleitung 1 1.1 Motivation 1 1.2 Aufbau der Arbeit 4 1.3 Stand der Forschung 6 1.3.1 Prozesse und Skalen der Bodenerosion 6 1.3.2 Einflussgrößen der Bodenerosion 8 1.3.3 Erosionsschäden 13 1.3.4 Gesetzliche Regelungen zum Erosionsschutz 15 1.3.5 Erosionsmodellierung 16 1.3.6 Niederschlagssimulationen zur Parametererfassung 25 1.3.7 Kornfraktionsspezifische Verteilung partikelgebundener Nähr- und Schadstoffe 27 2 Material und Methoden 30 2.1 Untersuchungsgebiet 30 2.1.1 Allgemeine Charakteristik 30 2.1.2 Flächennutzung 31 2.1.3 Boden und Relief 31 2.1.4 Gewässer 33 2.1.5 Klima 34 2.1.6 Planungsebenen 34 2.2 Simulationsmodell EROSION 3D 36 2.2.1 Modellgrundlagen 36 2.2.2 Modellalgorithmen 39 2.2.3 Modellparameter 48 2.3 Parametrisierungsinterface DPROC 50 2.3.1 Programmgrundlagen 50 2.3.2 Datenbank 51 2.3.3 Flächenauswahl und Datenzuschnitt 53 2.4 Experimentelle Untersuchungen 56 2.4.1 Untersuchungsstandorte 56 2.4.2 Durchführung von Erosionsexperimenten mit Starkregensimulation 59 2.4.3 Parameterableitung 62 2.4.4 Korrektur- und Erweiterung der DPROC-Datenbank 65 2.5 Ermittlung der Phosphor- und Schwermetalleinträge in Oberflächengewässer 68 2.5.1 Regionalisierung und Validierung amtlicher Datenquellen 68 2.5.2 Probenahmen und Laboranalysen 68 2.5.3 Bestimmung der kornfraktionsspezifischen Phosphor- und Schwermetallgehalte 70 2.5.4 Ermittlung der Phosphor- und Schwermetalleinträge in Oberflächengewässer unter Verwendung der Simulationsergebnisse 71 2.6 Statistische Auswertung der experimentellen Daten 73 2.7 GIS-Daten und Datenaufbereitung 74 2.7.1 Reliefdaten 74 2.7.2 Bodendaten 75 2.7.3 Landnutzung und Bodenbearbeitung 75 2.7.4 Niederschlagsdaten 77 2.7.5 Andere Flächendaten 78 2.8 Simulationsrechnungen 79 2.8.1 Aufteilung in Untereinheiten 79 2.8.2 Szenarien 79 2.9 Risikoabschätzung 81 2.9.1 Landwirtschaftliche Nutzflächen 81 2.9.2 Oberflächengewässer 82 2.10 Modellvalidierung 84 2.10.1 Gebietsauswahl und Gebietscharakteristik 84 2.10.2 Datengrundlagen der Modellvalidierung 85 2.10.3 Modellparametrisierung 86 3 Ergebnisse 90 3.1 Experimentelle Ergebnisse 90 3.1.1 Starkregensimulationen 90 3.1.2 Ableitung sachsenweiter kornfraktionsspezifischer Stoffgehalte 91 3.2 Ergebnisse aus GIS-Operationen 98 3.2.1 Reliefdaten 98 3.2.2 Landnutzungsdaten 98 3.2.3 Andere GIS-Daten 99 3.3 Ergebnisse aus Simulationsrechnungen 105 3.3.1 Landwirtschaftliche Nutzflächen 105 3.3.2 Oberflächengewässer 112 3.4 Ergebnisse zur Modellvalidierung 126 3.4.1 Aus Messdaten abgeleitete Ergebnisse 126 3.4.2 Simulationsrechnungen zur Modellvalidierung 130 4 Diskussion 132 4.1 Experimentelle Ergebnisse 132 4.1.1 Messdaten 132 4.1.2 Abgeleitete Daten 135 4.1.3 Zusammenfassende Bewertung der experimentellen Daten 141 4.1.4 Kornfraktionsspezifische Stoffgehalte und -verteilungen 142 4.2 GIS-Daten 145 4.2.1 Reliefdaten 145 4.2.2 Bodendaten 145 4.2.3 Landnutzungsdaten 146 4.2.4 Regionalisierte Stoffgehalte 147 4.3 Weiterentwicklung und Korrektur der DPROC-Datenbank 149 4.4 Modellvalidierung 153 4.5 Simulationsrechnungen 156 4.5.1 Bodenabtrag und Deposition 156 4.5.2 Sediment- und partikelgebundener Stofftransport 163 5 Schlussfolgerung 170 6 Literatur 176 Anhang II A I Erosionsmodelle i A II DPROC-Übersetzungstabellen ii A III GIS-Daten viii A IV Interpolierte Oberboden-Schwermetallgehalte xii A V Daten der Starkregensimulationen xix A VI Elementgehalte der Bodenproben lxi A VII Simulationsrechnungen lxxi / In der vorliegenden Arbeit wird das prozessbasierte Erosionsprognosemodell EROSION 3D flächendeckend auf regionaler Ebene für den Freistaat Sachsen angewendet. Ziel der Untersuchungen ist es, Bodenabtrag, Sedimenttransport und -deposition bzw. den Eintrag partikelgebundener Nähr- und Schadstoffe in Oberflächengewässer für ein 10jähriges Starkniederschlagsereignis und drei verschiedene Landnutzungsszenarien zu beschreiben. Dazu wurden im Vorfeld verfügbare Geo-Basisdaten so aufbereitet, dass sie für die semiautomatische Parametrisierung mit der Software DPROC verwendet werden können. Diese Software wurde so erweitert, dass sowohl größere Einzugsgebiete als auch einzelne Teileinzugsgebiete parametrisiert werden können. Grundlage der Parametrisierung bildet eine relationale Datenbank, die auf Messwerten bzw. davon abgeleiteten Schätzwerten aus Starkregenexperimenten unter Feldbedingungen basiert. Der vorhandene Datenfundus wurde durch neue Ergebnisse zu verschiedenen Verfahren der ackerbaulichen Bodenbearbeitung mittels neu entwickelter Methodik korrigiert und erweitert. Die experimentellen Ergebnisse zeigen eine deutliche Abhängigkeit des Feststoffaustrages von der Eingriffsintensität bei der Bodenbearbeitung. Dabei ist die Direktsaat die einzige Bewirtschaftungsform, die den Boden effektiv vor Erosion schützt. Um den selektiven partikelgebundenen Nähr- und Schadstofftransport prozessbasiert abzuschätzen, wurden die Stoffgehalte für die Partikelfraktionen Sand, Schluff und Ton an Bodenproben bestimmt. Die regionalskalierten Simulationen identifizieren die sächsische Lössregion als Schwerpunkt der Bodenerosion in Sachsen. Beträchtliche Bodenabträge sind darüber hinaus in den sächsischen Mittelgebirgen zu erwarten. Partikelgebundene Stoffeinträge in Oberflächengewässer verteilen sich in Abhängigkeit von den Sedimentliefergebieten. Die Bodenumlagerungsprozesse einschließlich der damit verbundenen partikelgebundenen Stoffeinträge lassen sich bei konsequenter Umstellung auf konservierende Bewirtschaftungsmethoden entsprechend den Modellergebnissen um mehr als 90 % reduzieren. Im Rahmen der Modellvalidierung konnte die Zuverlässigkeit der berechneten Phosphorausträge auf Einzugsgebietsebene belegt werden. Verglichen mit empirisch basierten mittleren jährlichen Abschätzungen sind die in dieser Arbeit berechneten ereignisbezogenen Phosphor- und Schwermetallausträge um ein Vielfaches höher. Zurückzuführen sind diese Unterschiede vor allem darauf, dass bei den rein empirischen Ansätzen, die maximale Belastungsspitzen unberücksichtigt bleiben. Da Erosion stets ein diskontinuierlicher Prozess ist, sind diese Belastungsspitzen im höchsten Maße relevant und bei der Planung und Durchführung von Erosions- und Gewässerschutzkonzepten unbedingt zu berücksichtigen.:Inhaltsverzeichnis I Abbildungsverzeichnis V Tabellenverzeichnis IX Abkürzungsverzeichnis XI Symbole und Einheiten XIII Zusammenfassung XV Abstract XVI 1 Einleitung 1 1.1 Motivation 1 1.2 Aufbau der Arbeit 4 1.3 Stand der Forschung 6 1.3.1 Prozesse und Skalen der Bodenerosion 6 1.3.2 Einflussgrößen der Bodenerosion 8 1.3.3 Erosionsschäden 13 1.3.4 Gesetzliche Regelungen zum Erosionsschutz 15 1.3.5 Erosionsmodellierung 16 1.3.6 Niederschlagssimulationen zur Parametererfassung 25 1.3.7 Kornfraktionsspezifische Verteilung partikelgebundener Nähr- und Schadstoffe 27 2 Material und Methoden 30 2.1 Untersuchungsgebiet 30 2.1.1 Allgemeine Charakteristik 30 2.1.2 Flächennutzung 31 2.1.3 Boden und Relief 31 2.1.4 Gewässer 33 2.1.5 Klima 34 2.1.6 Planungsebenen 34 2.2 Simulationsmodell EROSION 3D 36 2.2.1 Modellgrundlagen 36 2.2.2 Modellalgorithmen 39 2.2.3 Modellparameter 48 2.3 Parametrisierungsinterface DPROC 50 2.3.1 Programmgrundlagen 50 2.3.2 Datenbank 51 2.3.3 Flächenauswahl und Datenzuschnitt 53 2.4 Experimentelle Untersuchungen 56 2.4.1 Untersuchungsstandorte 56 2.4.2 Durchführung von Erosionsexperimenten mit Starkregensimulation 59 2.4.3 Parameterableitung 62 2.4.4 Korrektur- und Erweiterung der DPROC-Datenbank 65 2.5 Ermittlung der Phosphor- und Schwermetalleinträge in Oberflächengewässer 68 2.5.1 Regionalisierung und Validierung amtlicher Datenquellen 68 2.5.2 Probenahmen und Laboranalysen 68 2.5.3 Bestimmung der kornfraktionsspezifischen Phosphor- und Schwermetallgehalte 70 2.5.4 Ermittlung der Phosphor- und Schwermetalleinträge in Oberflächengewässer unter Verwendung der Simulationsergebnisse 71 2.6 Statistische Auswertung der experimentellen Daten 73 2.7 GIS-Daten und Datenaufbereitung 74 2.7.1 Reliefdaten 74 2.7.2 Bodendaten 75 2.7.3 Landnutzung und Bodenbearbeitung 75 2.7.4 Niederschlagsdaten 77 2.7.5 Andere Flächendaten 78 2.8 Simulationsrechnungen 79 2.8.1 Aufteilung in Untereinheiten 79 2.8.2 Szenarien 79 2.9 Risikoabschätzung 81 2.9.1 Landwirtschaftliche Nutzflächen 81 2.9.2 Oberflächengewässer 82 2.10 Modellvalidierung 84 2.10.1 Gebietsauswahl und Gebietscharakteristik 84 2.10.2 Datengrundlagen der Modellvalidierung 85 2.10.3 Modellparametrisierung 86 3 Ergebnisse 90 3.1 Experimentelle Ergebnisse 90 3.1.1 Starkregensimulationen 90 3.1.2 Ableitung sachsenweiter kornfraktionsspezifischer Stoffgehalte 91 3.2 Ergebnisse aus GIS-Operationen 98 3.2.1 Reliefdaten 98 3.2.2 Landnutzungsdaten 98 3.2.3 Andere GIS-Daten 99 3.3 Ergebnisse aus Simulationsrechnungen 105 3.3.1 Landwirtschaftliche Nutzflächen 105 3.3.2 Oberflächengewässer 112 3.4 Ergebnisse zur Modellvalidierung 126 3.4.1 Aus Messdaten abgeleitete Ergebnisse 126 3.4.2 Simulationsrechnungen zur Modellvalidierung 130 4 Diskussion 132 4.1 Experimentelle Ergebnisse 132 4.1.1 Messdaten 132 4.1.2 Abgeleitete Daten 135 4.1.3 Zusammenfassende Bewertung der experimentellen Daten 141 4.1.4 Kornfraktionsspezifische Stoffgehalte und -verteilungen 142 4.2 GIS-Daten 145 4.2.1 Reliefdaten 145 4.2.2 Bodendaten 145 4.2.3 Landnutzungsdaten 146 4.2.4 Regionalisierte Stoffgehalte 147 4.3 Weiterentwicklung und Korrektur der DPROC-Datenbank 149 4.4 Modellvalidierung 153 4.5 Simulationsrechnungen 156 4.5.1 Bodenabtrag und Deposition 156 4.5.2 Sediment- und partikelgebundener Stofftransport 163 5 Schlussfolgerung 170 6 Literatur 176 Anhang II A I Erosionsmodelle i A II DPROC-Übersetzungstabellen ii A III GIS-Daten viii A IV Interpolierte Oberboden-Schwermetallgehalte xii A V Daten der Starkregensimulationen xix A VI Elementgehalte der Bodenproben lxi A VII Simulationsrechnungen lxxi
9

Untersuchung der Wirkung verschiedener Landnutzungen auf Oberflächenabfluss und Bodenerosion mit einem Simulationsmodell

Seidel, Nicole 24 July 2009 (has links) (PDF)
Im Rahmen der Umsetzung der EU Wasserrahmenrichtlinie sind Maßnahmepläne gefordert, welche den Stoffeintrag in Oberflächengewässer minimieren. Da der Sedimenteintrag an das Vorhandensein von Oberflächenabfluss gebunden ist, müssen beide Prozesse im Zusammenhang betrachtet werden. Für die Einschätzung der Wirksamkeit ist eine quantitative Bewertung dieser Maßnahmen notwendig. Dafür sind Modellrechnungen ein unerlässliches Hilfsmittel. In der vorliegenden Arbeit wurde das Modell EROSION 3D als geeignetes Instrument zur Quantifizierung des Landnutzungs- und Bewirtschaftungseinflusses auf den Wasserrückhalt in der Fläche und den Sedimenteintrag in Gewässer, angewendet. Das Modell ermöglichte zudem eine Abbildung von Erosion und Abfluss in einer hohen räumlichen Auflösung (5 m Rasterweite). Die Ergebnisse der vorliegenden Arbeit haben bestätigt, dass die Landnutzung Einfluss auf den Oberflächenabfluss und insbesondere auf den Sedimenteintrag in Gewässer nimmt. Maßnahmen wie eine Erhöhung des Wald- sowie Grünland / Direktsaatanteils wirken sich reduzierend auf den Oberflächenabfluss und die Bodenerosion aus. Es hat sich gezeigt, dass der Landnutzungseinfluss mit zunehmender Abflusswirksamkeit eines Starkregenereignisses und zunehmender Anfangsbodenfeuchte sinkt. Während sich im Falle des 5 jährigen Extremereignisses der Abflussbeiwert zwischen vollständiger Bewaldung des UG Oberreichenbach und realem Nutzungszustandes (konventionelle Bewirtschaftung der Ackerflächen) um 100 % unterscheidet, liegt der Unterschied beim Hochwasserereignis vom August 2002 zwischen beiden nur noch bei ca. 20 %. Hingegen bleibt die Wirkung der Landnutzung auf die Bodenerosion auch bei Starkregenereignissen hoher Abflusswirksamkeit erhalten. Für das lössgeprägte Untersuchungsgebiet Klatschbach konnte bestätigt werden, dass eine konservierende Bewirtschaftung im Vergleich zur konventionellen Variante zu einer signifikanten Abflussminderung führt. In Bezug auf den Erosionsschutz ist die konservierende Bewirtschaftung für beide Untersuchungsgebiete als sehr geeignete Maßnahme einzuschätzen, da hierdurch eine Reduzierung des Sedimenteintrages um etwa 95 % erreicht werden kann. Als noch wirksamer für den Hochwasser- und Erosionsschutz erwies sich eine Umstellung der Bewirtschaftung auf Grünland oder Direktsaat. Selbst bei einem 100 jährigen Extremereignis und hoher Anfangsbodenfeuchte wurden für beide Untersuchungsgebiete Abflussminderungen von mindestens 17 % und Minderungen des Bodenabtrages von mehr als 98 % im Vergleich zur konventionellen Variante berechnet.
10

Modellgestützte Bewertung und Optimierung landschaftsbezogener Planungen unter besonderer Berücksichtigung des Erosionsschutzes

Schob-Adam, Annekatrin 19 February 2014 (has links) (PDF)
Die Planung geeigneter Maßnahmen zu Verminderung des Bodenabtrags ist gebunden an eine möglichst präzise Ermittlung von Erosions- und Depositionsflächen, die Lokalisierung des Oberflächenabflusses und die Erfassung möglicher Eintrittspunkte des erodierten Bodens in Fließ- und Stillgewässer (siehe auch DUTTMANN 1999). Dazu stehen verschiedene Instrumente zur Verfügung. Neben den klassischen Methoden wie Kartierungen von Erosionsformen sowie deren Verteilung oder Messungen zur Quantifizierung von Bodenab- und aufträgen kommt der Anwendung von Modellen eine deutlich steigende Bedeutung zu. Dazu stehen einerseits empirische Modelle und andererseits prozessorientierte physikalisch basierte Modelle zur Verfügung. Bedingt durch den damit verbundenen Aufwand wurde bisher auf einen Einsatz dieser Modelle im Rahmen der planerischen Praxis weitgehend verzichtet. Mit der Anwendung des physikalisch basierten Erosionsmodells EROSION 3D wurde die Anwendbarkeit des Modells als Instrument in der Planungspraxis untersucht. Dazu wurde geprüft, ob der Ist-Zustand der Flächen dargestellt und die Planung von Maßnahmen präzisiert und objektiviert wurden kann. Diese Zielstellung wurde an drei, in verschiedenen Regionen Sachsens gelegenen Fallbeispielen mit verschiedenen planerischen Zielstellungen untersucht. Alle Untersuchungsgebiete befinden sich in überwiegend agrarisch geprägten Landschaften, da mit dem gewählten Modell vorrangig erosive Prozesse auf ackerbaulich genutzten Standorten dargestellt werden. Das erste Fallbeispiel untersucht, inwieweit die Funktion des Bodens als Archiv der Natur- und Kulturgeschichte auf Ackerflächen gewährleistet wurde und welche Maßnahmen zum Schutz dieser Bodenfunktion beitragen können. Archäologische Bodendenkmäler auf landwirtschaftlich genutzten Flächen unterliegen durch die deutliche Intensivierung der landwirtschaftlichen Bodenbearbeitung einer zunehmenden Gefährdung. Als Vorgehensweise wurde hier zuerst die graduelle Gefährdung der archäologischen Bodendenkmäler auf mesoskaliger Ebene bestimmt. Dazu erfolgt die Ermittlung der potentiellen Erosionsgefährdung. Anschließend für mehrere Hot-Spot-Flächen auf der Ebene des Kleineinzugsgebietes (chorische Ebene) eine hochaufgelöste Prüfung des derzeitigen Zustandes der Flächen und die Ableitung und Prüfung von Schutzmaßnahmen unter der Annahme von mehreren Landschaftsszenarien durchgeführt. Das zweite Fallbeispiel betrachtet den Einsatz des Erosionsmodells im Rahmen des Artenschutzes am Beispiel der Flussperlmuschel (Margaritifera margaritifera). Die Flussperlmuscheln sind durch Sediment- und Stoffeinträge in Fließgewässer extrem in ihrem Bestand gefährdet. Mit Hilfe der Modellierungsszenarien wurde untersucht, ob Stoffeintragspfade aus landwirtschaftlich genutzten Flächen und Sedimentübertrittspunkte in Gewässer nachvollziehbar ermittelt werden. Die Erwartung wurde durch den Modelleinsatz bestätigt. Auf Basis des Ist-Zustandes wurden anschließend Maßnahmenvorschläge erarbeitet, die zur Minimierung der Gewässereutrophierung und damit zum Schutz der Flussperlmuschel beitragen. Fallbeispiel 3 untersucht im Untersuchungsgebiet Baderitzer Stausee vorliegende umweltrelevante Planungen hinsichtlich ihrer Aussagen zum Erosionsschutz und den möglichen Einsatz von Erosionsmodellierungen auf dieser Planungsebene. Dazu wurde für dieses Fallbeispiel ein optimiertes Szenario mit der Fokussierung auf den Erosionsschutz entwickelt. Zusammenfassend wird festgestellt, dass das Modell EROSION 3D den unterschiedlichen Planungsansprüchen der drei ausgewählten Fallbeispiele gerecht werden konnte und ein weiterer Einsatz des Modells im Rahmen umweltrelevanter Maßnahmen sehr gut vorstellbar ist. Dazu bedarf es neben der noch zu beantwortenden Frage nach dem Finanzierungskonzept vor allem der Mitarbeit und kompetenten Beratung der Entscheidungsträger durch die Planer und Planerinnen. / The planning of suitable measurements for reducing soil erosion is linked to a possible precise calculation of size of erosion and deposition, the localization of the overland flow and the side identification of any possible signs of eroded soil in flowing and in slack water (DUTTMANN 1999). A number of different instruments are available. Additionally to the classical methods, such as, field mapping the erosion forms, as well as, the allocation or measurements for the quantification of soil erosion and application, it also increases the importance of models. On the one side there are the empirical models and on the other the process orientated physical models. Due to the amount of work involved in using such models in the real world, they have been mainly ignored. Under the use of physical based erosion models EROSION 3D the use of these models as instruments of planning practice has been examined. The actual condition of the areas has also been produced and to see if the planning of measurements can be precise and objective. This aim has been examined in three different regions in Saxony in case studies each with different methods of planning. All examination areas were located in mainly agricultural countrysides and examined mainly with chosen model of erosion process concerning agronomic used locations. The first case study examined to what extent the function the soil as archive the nature and cultural history on agronomic areas had been allowed for and which measurements for the protection of these soil functions can make a contribution. Archaeological sites on used agricultural areas are exposed to greater danger due to the increased use of soil cultivation. First the potential erosion danger of archaeological sites on a mesoskalig level with subsequent gradual erosion levels was calculated. Finally for several hot spot areas followed a detailed examination of the current condition of the areas and the diversion and examination of protection measurements concerning several countryside scenarios. The second case study looked at the application of erosion models in the framework of wildlife conservation with the example choosen of freshwater pearl mussel (Margaritifera margaritifera). The freshwater pearl mussels are extremely endangered in their population as they are in the sediment and element inputs in flowing water. The examination looked comprehensibly at the help of element input ways on countryside areas and loose sediment in waters. Based on the actual situation a number of measurement suggestions were prepared for the reduction of water eutrophication and add to the protection of the freshwater pearl mussel. Case study 3 looked at the examination point Baderitzer Stausee the actual status of the countryside planning and the possible use of erosion models as possible methods of these planning levels. To what extent the existing plans for erosion protection in these planning procedures had been taken into account up to now.

Page generated in 0.0728 seconds