Spelling suggestions: "subject:"espaces dess modules"" "subject:"espaces deus modules""
21 |
Algèbres de Hall cohomologiques et variétés de Nakajima associées a des courbes / Cohomological Hall algebras and Nakajima varieties associated to curvesMinets, Alexandre 03 September 2018 (has links)
Pour toute courbe projective lisse C et théorie homologique orientée de Borel-Moore libre A, on construit un produit associatif de type Hall sur les A-groupes du champ de modules des faisceaux de Higgs de torsion sur C.On montre que l'algèbre AHa0C qu'on obtient admet une présentation de battage naturelle, qui est fidèle dans le cas où A est l'homologie de Borel-Moore usuelle.On introduit de plus les espaces de modules des triplets stables M(d,n), fortement inspirés par les variétés de carquois de Nakajima.Ces espaces de modules sont des variétés lisses symplectiques, et admettent une autre caractérisation comme les espaces de modules de faisceaux sans torsion stables encadrés sur P(T*C)$.De plus, on munit leurs A-groupes avec une action de AHa0C, qui généralise les opérateurs de modification ponctuelle de Nakajima sur l'homologie des schémas de Hilbert de T*C. / For a smooth projective curve C and a free oriented Borel-Moore homology theory A, we construct a Hall-like associative product on the A-theory of the moduli stack of Higgs torsion sheaves on C.We show that the resulting algebra AHa0C admits a natural shuffle presentation, and prove it is faithful when A is replaced with usual Borel-Moore homology groups.We also introduce moduli spaces of stable triples M(d,n), heavily inspired by Nakajima quiver varieties.These moduli spaces are shown to be smooth symplectic varieties, which admit another characterization as moduli of framed stable torsion-free sheaves on P(T*C).Moreover, we equip their A-theory with an AHa0C-action, which generalizes Nakajima's raising operators on the homology of Hilbert schemes of points on T*C.
|
22 |
Groupes de Grothendieck-Teichmüller et inertie champêtre des espaces de modules de courbes de genre zéro et unCollas, Benjamin 23 September 2011 (has links) (PDF)
Cette thèse traite de la théorie de Grothendieck-Teichmüller et des espaces de modules de courbes à points marqués non-ordonnés, plus particulièrement des différents types d'inertie présents dans leurs groupes fondamentaux géométriques. On étend l'action connue du groupe de Galois absolu sur l'inertie divisorielle à l'infini en une action ayant les mêmes propriétés sur l'inertie champêtre en genre zéro, et sur toute la torsion profinie d'ordre premier en genre zéro et un. En fait, nous montrons que ce dernier résultat est valable non seulement pour le groupe de Galois absolu mais pour un nouveau groupe de Grothendieck-Teichmüller GS issu de conditions de torsion en genre zéro, dont on montre qu'il agit sur les full mapping class groups de genre quelconque. On établit ce résultat en adaptant un principe cohomologique de J. P. Serre pour réduire, dans certains cas, la torsion d'un groupe profini à celle d'un groupe discret. On utilise cette théorie pour établir que, dans les cas des genre zéro et un, la torsion profinie d'ordre premier est conjugée à la torsion discrète. Ceci permet d'expliciter l'action du groupe GS sur la torsion profine d'ordre premier.
|
23 |
Motifs de Tate mixtes et éclatements à la MacPherson-Procesi ; Une application aux valeurs zêta multiples motiviquesSoudères, Ismaël 07 December 2009 (has links) (PDF)
Dans cette thèse, on étudie liens étroits qui existent entre les valeurs zêta multiples et la géométrie des espaces de modules de courbes en genre 0. En particulier, on y montre comment les deux produits de mélanges (shuffle et stuffle) des valeurs zêta multiples reflètent le comportement de certaines applications d'oubli entre espaces de modules courbes. Un des objectifs de mon travail a été de comprendre comment ces produits de mélange existent dans le cadre des motifs de Tate mixtes attachés aux espaces de module de courbes. On rappellera, dans un premier temps, les définitions et les propriétés des deux produits de mélange. Ensuite, on fera le lien avec la géométrie des espaces de modules de courbes. Puis, après quelques rappels sur les motifs encadrés, on montrera comment effectuer le passage aux motifs de Tate mixtes pour le produit shuffle dans le cadre des valeurs zêta multiples motiviques de Goncharov et Manin. Enfin, le dernier chapitre est consacré au stuffle motivique. Après avoir adapté un théorème de Y. Hu sur les successions d'éclatements à la situation des motifs de Tate mixtes, on construira une famille de variétés. À partir de là, on définira une nouvelles versions des valeurs zêta multiples motiviques. Pour parvenir à cette construction, on étudiera, entre autres, l'intersection d'hypersurfaces particulières et la structure de Hodge mixte de certains groupes de cohomologie relative. On obtient alors une forme de relation stuffle pour les motifs de Tate mixtes encadrés ces nouvelles valeur zêta motiviques dont on déduit les relations de stuffle pour les MZV motiviques de Goncharov et Manin.
|
24 |
Surfaces des espaces homogènes de dimension 3Cartier, Sébastien 15 September 2011 (has links) (PDF)
Ce mémoire porte sur l'étude des surfaces minimales et de courbure moyenne constante dans les espaces homogènes de dimension 3. Nous établissons les formules de Sym-Bobenko pour les surfaces de courbure moyenne constante 1/2 de H^2xR et minimales du groupe de Heisenberg, et donnons des exemples de construction de telles immersions par la méthode DPW. Nous montrons également que des propriétés de symétrie passent aux correspondances de type surfaces sœurs et cousines, ce qui entraîne l'existence de graphes entiers de courbure moyenne constante 1/2 à bout vertical dans H^2xR qui ne sont pas de révolution. Nous reprenons ensuite l'étude des bouts verticaux d'immersions de courbure moyenne constante 1/2 dans H^2xR. Nous munissons une famille de graphes entiers d'une structure de variété lisse et en déduisons un analogue pour H^2xR d'un théorème de A. E. Treibergs pour l'espace de Minkowski. Nous nous intéressons également aux déformations des anneaux de révolution. Une conséquence directe est l'existence d'anneaux immergés qui ne sont pas de révolution. Nous construisons notamment des anneaux dont les bouts n'ont pas le même axe. Enfin, nous décrivons les invariants de Nœther correspondant aux isométries des espaces homogènes pour les surfaces minimales et de courbure moyenne constante. Nous utilisons le formalisme de la géométrie de contact qui permet l'écriture de formules explicites en toute généralité, et nous étudions l'évolution des formes de Nœther sous l'action des isométries des espaces homogènes. Nous calculons ces invariants dans le cas des anneaux déformés de H^2xR, et dans celui des anneaux horizontaux du groupe de Heisenberg
|
25 |
Courbes intégrales : transcendance et géométrie / Integral curves : transcendence and geometryJardim da Fonseca, Tiago 12 December 2017 (has links)
Cette thèse est consacrée à l'étude de quelques questions soulévées par le théorème de Nesterenko sur l'indépendance algébrique de valeurs des séries d'Eisentein E₂, E₄, E₆. Elle est divisée en deux parties.Dans la première partie, constituée des deux premiers chapitres, on généralise les équations différentielles algébriques satisfaites par les séries d'Eisenstein qui se trouvent dans le coeur de la méthode de Nesterenko, les équations de Ramanujan. Ces généralisations, appélées 'équations de Ramanujan supérieures', sont obtenues géométriquement à partir de champs de vecteurs définis, de manière naturelle, sur certains espaces de modules de variétés abéliennes. Afin de justifier l'intérêt des équations de Ramanujan supérieures en théorie de transcendance, on montre aussi que les valeurs d'une solution particulière remarquable de ces équations sont liées aux 'périodes' de variétés abéliennes.Dans la deuxième partie (troisième chapitre), on étudie la méthode de Nesterenko per se. On établit un énoncé géométrique, contenant le théorème de Nesterenko, sur la transcendance de valeurs d'applications holomorphes d'un disque vers une variété quasi-projective sur $overline{mathbf{Q}}$ définies comme des courbes intégrales d'un champ de vecteurs. Ces applications doivent aussi satisfaire une propriété d'intégralité, ainsi qu'une condition de croissance et une forme renforcée de la densité de Zariski, conditions qui sont naturelles pour des courbes intégrales de champs de vecteurs. / This thesis is devoted to the study of some questions motivated by Nesterenko's theorem on the algebraic independence of values of Eisenstein series E₂, E₄, E₆. It is divided in two parts.In the first part, comprising the first two chapiters, we generalize the algebraic differential equations satisfied by Eisenstein series that lie in the heart of Nesterenko's method, the Ramanujan equations. These generalizations, called 'higher Ramanujan equations', are obtained geometrically from vector fields naturally defined on certain moduli spaces of abelian varieties. In order to justify the interest of the higher Ramanujan equations in Transcendence Theory, we also show that values of a remarkable particular solution of these equations are related to 'periods' of abelian varieties.In the second part (third chapter), we study Nesterenko's method per se. We establish a geometric statement, containing the theorem of Nesterenko, on the transcendence of values of holomorphic maps from a disk to a quasi-projective variety over $overline{mathbf{Q}}$ defined as integral curves of some vector field. These maps are required to satisfy some integrality property, besides a growth condition and a strong form of Zariski-density that are natural for integral curves of algebraic vector fields.
|
26 |
Surfaces des espaces homogènes de dimension 3 / Surfaces in 3-dimensional homogeneous spacesCartier, Sébastien 15 September 2011 (has links)
Ce mémoire porte sur l'étude des surfaces minimales et de courbure moyenne constante dans les espaces homogènes de dimension 3. Nous établissons les formules de Sym-Bobenko pour les surfaces de courbure moyenne constante 1/2 de H^2xR et minimales du groupe de Heisenberg, et donnons des exemples de construction de telles immersions par la méthode DPW. Nous montrons également que des propriétés de symétrie passent aux correspondances de type surfaces sœurs et cousines, ce qui entraîne l'existence de graphes entiers de courbure moyenne constante 1/2 à bout vertical dans H^2xR qui ne sont pas de révolution. Nous reprenons ensuite l'étude des bouts verticaux d'immersions de courbure moyenne constante 1/2 dans H^2xR. Nous munissons une famille de graphes entiers d'une structure de variété lisse et en déduisons un analogue pour H^2xR d'un théorème de A. E. Treibergs pour l'espace de Minkowski. Nous nous intéressons également aux déformations des anneaux de révolution. Une conséquence directe est l'existence d'anneaux immergés qui ne sont pas de révolution. Nous construisons notamment des anneaux dont les bouts n'ont pas le même axe. Enfin, nous décrivons les invariants de Nœther correspondant aux isométries des espaces homogènes pour les surfaces minimales et de courbure moyenne constante. Nous utilisons le formalisme de la géométrie de contact qui permet l'écriture de formules explicites en toute généralité, et nous étudions l'évolution des formes de Nœther sous l'action des isométries des espaces homogènes. Nous calculons ces invariants dans le cas des anneaux déformés de H^2xR, et dans celui des anneaux horizontaux du groupe de Heisenberg / The present dissertation deals with the study of minimal and constant mean curvature surfaces in 3-dimensional homogeneous spaces. In a first part, we establish Sym-Bobenko formulæ for constant mean curvature 1/2 surfaces in H^2xR and minimal surfaces in the Heisenberg group, and give examples of construction of such immersions using the DPW method. We also show that certain symmetry properties are shared by sister or cousin surfaces, which implies the existence non rotational entire graphs of constant mean curvature 1/2 in H^2xR with a vertical end.In a second part, we treat in more details the study of vertical ends of constant mean curvature 1/2 immersions in H^2xR. We endow a particular family entire graphs with a structure of smooth manifold and deduce an analogue in H^2xR to a theorem by A. E. Treibergs in the Minkowski space. We are also interested in deforming rotational annuli. A direct consequence is the existence of immersed non rotational annuli, and in particular we construct annuli with ends that do not have the same axis. Finally, we describe the Nœther invariants corresponding to isometries of the ambient homogeneous space for minimal and constant mean curvature surfaces. To do so, we use the formalism of contact geometry which allows general and explicit formulæ. We then study the evolution of Nœther form under the action of isometries in homogeneous spaces. We compute these invariants in the case of deformed annuli in H^2xR, and in the case of horizontal annuli in Heisenberg group
|
27 |
Déformations des applications harmoniques torduesSpinaci, Marco 25 November 2013 (has links) (PDF)
On étudie les déformations des applications harmoniques $f$ tordues par rapport à une représentation. Après avoir construit une application harmonique tordue "universelle", on donne une construction de toute déformations du premier ordre de $f$ en termes de la théorie de Hodge ; on applique ce résultat à l'espace de modules des représentations réductives d'un groupe de Kähler, pour démontrer que les points critiques de la fonctionnelle de l'énergie $E$ coïncident avec les représentations de monodromie des variations complexes de structures de Hodge. Ensuite, on procède aux déformations du second ordre, où des obstructions surviennent ; on enquête sur l'existence de ces déformations et on donne une méthode pour les construire. En appliquant ce résultat à la fonctionnelle de l'énergie comme ci-dessus, on démontre (pour n'importe quel groupe de présentation finie) que la fonctionnelle de l'énergie est strictement pluri sous-harmonique sur l'espace des modules des représentations. En assumant de plus que le groupe soit de Kähler, on étudie les valeurs propres de la matrice hessienne de $E$ aux points critiques.
|
28 |
Déformations des applications harmoniques tordues / Deformations of twisted harmonic mapsSpinaci, Marco 25 November 2013 (has links)
On étudie les déformations des applications harmoniques $f$ tordues par rapport à une représentation. Après avoir construit une application harmonique tordue "universelle", on donne une construction de toute déformations du premier ordre de $f$ en termes de la théorie de Hodge ; on applique ce résultat à l'espace de modules des représentations réductives d'un groupe de Kähler, pour démontrer que les points critiques de la fonctionnelle de l'énergie $E$ coïncident avec les représentations de monodromie des variations complexes de structures de Hodge. Ensuite, on procède aux déformations du second ordre, où des obstructions surviennent ; on enquête sur l'existence de ces déformations et on donne une méthode pour le construire. En appliquant ce résultat à la fonctionnelle de l'énergie comme ci-dessus, on démontre (pour n'importe quel groupe de présentation finie) que la fonctionnelle de l'énergie est strictement pluri sous-harmonique sur l'espace des modules des représentations. En assumant de plus que le groupe soit de Kähler, on étudie les valeurs propres de la matrice hessienne de $E$ dans les points critiques. / We study the deformations of twisted harmonic maps $f$ with respect to a representation. After constructing a continuous ``universal'' twisted harmonic map, we give a construction of every first order deformation of $f$ in terms of Hodge theory; we apply this result to the moduli space of reductive representations of a K\"ahler group, to show that the critical points of the energy functional $E$ coincide with the monodromy representations of polarized complex variations of Hodge structure. We then proceed to second order deformations, where obstructions arise; we investigate the existence of such deformations, and give a method for constructing them, as well. Applying this to the energy functional as above, we prove (for every finitely presented group) that the energy functional is strictly pluri sub-harmonic on the moduli space of representations; assuming furthermore that the group is Kähler, we study the eigenvalues of the Hessian of $E$ at critical points.
|
29 |
Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds / Automorphismes non-symplectiques des variétés symplectiques holomorphesCattaneo, Alberto 18 December 2018 (has links)
Nous allons étudier les automorphismes des variétés symplectiques holomorphes irréductibles de type K3^[n], c'est-à-dire des variétés équivalentes par déformation au schéma de Hilbert de n points sur une surface K3, pour n > 1.Dans la première partie de la thèse, nous classifions les automorphismes du schéma de Hilbert de n points sur une surface K3 projective générique, dont le réseau de Picard est engendré par un fibré ample. Nous montrons que le groupe des automorphismes est soit trivial soit engendré par une involution non-symplectique et nous déterminons des conditions numériques et géométriques pour l’existence de l’involution.Dans la deuxième partie, nous étudions les automorphismes non-symplectiques d’ordre premier des variétés de type K3^[n]. Nous déterminons les propriétés du réseau invariant de l'automorphisme et de son complément orthogonal dans le deuxième réseau de cohomologie de la variété et nous classifions leurs classes d’isométrie. Dans le cas des involutions, e des automorphismes d’ordre premier impair pour n = 3, 4, nous montrons que toutes les actions en cohomologie dans notre classification sont réalisées par un automorphism non-symplectique sur une variété de type K3^[n]. Nous construisons explicitement l’immense majorité de ces automorphismes et, en particulier, nous présentons la construction d’un nouvel automorphisme d’ordre trois sur une famille de dimension dix de variétés de Lehn-Lehn-Sorger-van Straten de type K3^[4]. Pour n < 6, nous étudions aussi les espaces de modules de dimension maximal des variétés de type K3^[n] munies d’une involution non-symplectique. / We study automorphisms of irreducible holomorphic symplectic manifolds of type K3^[n], i.e. manifolds which are deformation equivalent to the Hilbert scheme of n points on a K3 surface, for some n > 1. In the first part of the thesis we describe the automorphism group of the Hilbert scheme of n points on a generic projective K3 surface, i.e. a K3 surface whose Picard lattice is generated by a single ample line bundle. We show that, if it is not trivial, the automorphism group is generated by a non-symplectic involution, whose existence depends on some arithmetic conditions involving the number of points n and the polarization of the surface. We also determine necessary and sufficient conditions on the Picard lattice of the Hilbert scheme for the existence of the involution.In the second part of the thesis we study non-symplectic automorphisms of prime order on manifolds of type K3^[n]. We investigate the properties of the invariant lattice and its orthogonal complement inside the second cohomology lattice of the manifold, providing a classification of their isometry classes. We then approach the problem of constructing examples (or at least proving the existence) of manifolds of type K3^[n] with a non-symplectic automorphism inducing on cohomology each specific action in our classification. In the case of involutions, and of automorphisms of odd prime order for n=3,4, we are able to realize all possible cases. In order to do so, we present a new non-symplectic automorphism of order three on a ten-dimensional family of Lehn-Lehn-Sorger-van Straten eightfolds of type K3^[4]. Finally, for n < 6 we describe deformation families of large dimension of manifolds of type K3^[n] equipped with a non-symplectic involution.
|
Page generated in 0.0944 seconds