Spelling suggestions: "subject:"estresse salina"" "subject:"stresse salina""
121 |
ModulaÃÃo bioquÃmica e molecular da aclimataÃÃo de plantas de sorgo à salinidade: controle do acÃmulo de Na+ mediado pelo Ãon NH4+ / Biochemical and molecular modulation of salt stress acclimation in sorghum plants: NH4+-mediated Na+ accumulation controlRafael de Souza Miranda 27 February 2015 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / A busca por estratÃgias de cultivo que possam contribuir para a aclimataÃÃo de plantas à salinidade à de fundamental importÃncia, pois, alÃm de possibilitar a identificaÃÃo de genes potenciais para guiar ensaios de modificaÃÃo genÃtica, permite selecionar cultivares com maior capacidade de crescer em solos com excesso de sais. A fim de testar a hipÃtese que a nutriÃÃo nitrogenada com NH4+ aumenta a tolerÃncia de plantas de Sorghum bicolor à salinidade, atravÃs da ativaÃÃo de mecanismos voltados ao controle da homeostase iÃnica, estabeleceram-se trÃs etapas experimentais. Na primeira delas, que objetivou definir a relaÃÃo entre as fontes de nitrogÃnio (N), NO3- e NH4+, que proporcionasse melhor crescimento das plantas sob salinidade, observou-se claramente que a nutriÃÃo somente com NH4+ (proporÃÃo NO3-/NH4+ de 0:100) foi mais vantajosa para o crescimento de S. bicolor sob salinidade que a nutriÃÃo apenas com NO3- ou com o regime misto desses dois Ãons, dado os maiores Ãndices de Ãrea foliar e massa seca da parte aÃrea. Verificou-se tambÃm que, sob estresse, as plantas nutridas somente com NH4+ acumularam menos Na+ nas folhas e nas raÃzes, influenciando positivamente a relaÃÃo K+/Na+, e apresentaram maiores teores de aminoÃcidos solÃveis, principalmente aqueles ricos em N (glutamina e asparagina), que contribuÃram para evitar a toxicidade do NH4+ e provavelmente para o ajustamento osmÃtico. AlÃm disso, enquanto plantas nutridas com proporÃÃes NO3-/NH4+ de 100:0, 75:25, 50:50 e 25:75 apresentaram taxas de assimilaÃÃo lÃquida de CO2 inalteradas ou reduzidas pela salinidade, plantas cultivadas somente com NH4+ (proporÃÃo 0:100) apresentaram incrementos nessa variÃvel, em reposta ao estresse. A segunda etapa teve como objetivo principal investigar se a tolerÃncia à salinidade mediada pelo NH4+ era resultante da regulaÃÃo efetiva dos processos relacionados à fotossÃntese. Nessa ocasiÃo, esse argumento foi refutado, pois a melhor eficiÃncia do fotossistema II sob estresse salino foi observada nas plantas cultivadas com a mesma proporÃÃo de NO3- e NH4+ (proporÃÃo 50:50). Nesse grupo de plantas, a reduÃÃo no quenching nÃo fotoquÃmico (NPQ) confirmou a maior eficiÃncia fotoquÃmica, dado o aumento na eficiÃncia quÃntica potencial (Fv/Fm) e efetiva (ΦPSII) do fotossistema II e a elevada taxa de transporte de elÃtrons (ETR). Esse fenÃmeno foi diretamente relacionado com os incrementos nos teores de clorofila b e de antocianinas. Por fim, na terceira etapa, objetivou-se elucidar os mecanismos envolvidos no controle do acÃmulo de Na+, sob salinidade, na cÃlula e na planta inteira, bem como identificar o papel da nutriÃÃo com NH4+ nesses processos. Em estudos com vesÃculas de membrana de raÃzes, verificou-se que plantas estressadas cultivadas somente com NH4+ apresentaram maior ativaÃÃo dos transportadores do tipo antiporte Na+/H+ (SOS1) de membrana plasmÃtica e, em menor proporÃÃo, do antiporte Na+/H+ (NHX) de tonoplasto, ao passo que o oposto foi observado nas plantas nutridas com NO3-. Esses dados sugerem que o cultivo somente com NO3- induziu o mecanismo de compartimentaÃÃo de Na+ no vacÃolo, como evidenciado pela anÃlise dos transcritos da famÃlia NHX, em que a expressÃo do gene SbNHX2 (principal isoforma expressa) nas raÃzes das plantas foi aumentada em quase todos os tempos analisados (24, 48, 120 e 240 horas apÃs exposiÃÃo ao NaCl). Mesmo assim, essa resposta nÃo foi suficiente para o controle do Na+, jà que a entrada contÃnua desse Ãon no xilema radicular afetou o influxo de K+ na seiva e limitou o acÃmulo de K+ nas folhas. Por outro lado, a nutriÃÃo somente com NH4+ ativou potencialmente mecanismos de controle do acÃmulo de Na+, uma vez que houve acionamento efetivo do efluxo de Na+ para o apoplasto via SOS1, que restringiu o carregamento desse Ãon no xilema e, consequentemente, limitou a acumulaÃÃo dele nos tecidos aÃreos. A formaÃÃo do gradiente de potencial eletroquÃmico, essencial para a atividade dos transportadores Na+/H+, foi modulada diferencialmente pela fonte de N. A atividade de bombeamento de prÃtons da H+-ATPase de membrana plasmÃtica (P-ATPase) foi estimulada em maior proporÃÃo pela presenÃa de NH4+, sem haver, contudo, aumento na atividade de hidrÃlise de ATP. Jà o aumento da translocaÃÃo de H+ pela P-ATPase em plantas estressadas cultivadas com NO3- foi diretamente relacionado ao incremento na hidrÃlise de ATP. Esses resultados sugerem que a disponibilidade de NH4+ aumentou a afinidade da P-ATPase por H+, pois houve melhor eficiÃncia de acoplamento H+/ATP, e isso tornou a enzima mais efetiva para transportar H+ com menos gasto de energia. AlÃm disso, esse aumento no bombeamento de prÃtons resultou em um maior potencial eletroquÃmico, e favoreceu diretamente a atividade do antiporte SOS1 de membrana plasmÃtica. Os nÃveis de transcritos dos genes SbPHA3 e SbPHA5 (principais isoformas expressas da famÃlia) foram aumentados nas plantas cultivadas somente com NO3-, nos tempos iniciais de exposiÃÃo ao estresse salino (12 e 24 h), enquanto que, nos cultivos somente com NH4+, essa resposta sà foi detectada apÃs 24 h. No vacÃolo, a principal bomba responsÃvel pela formaÃÃo do gradiente de H+ durante a exposiÃÃo ao estresse salino foi a H+-ATPase (V-ATPase), em comparaÃÃo à H+-PPiase. Nas plantas cultivadas somente com NO3-, observou-se uma melhor regulaÃÃo da V-ATPase, em associaÃÃo à atividade aumentada do antiporte NHX, enquanto que no cultivo com NH4+, a ativaÃÃo do transporte de H+ sob salinidade foi diretamente relacionada a incrementos na atividade de hidrÃlise de ATP da V-ATPase, bem como ao aumento da expressÃo dos transcritos do gene SbVHA2, ao longo de todo o perÃodo experimental. Essas observaÃÃes revelam que o NH4+, como fonte Ãnica de N, ativa mecanismos que envolvem uma regulaÃÃo coordenada, nas raÃzes, da atividade e da expressÃo gÃnica de bombas de H+ e transportadores Na+/H+ de membrana plasmÃtica e de tonoplasto, que culminam no controle do acÃmulo de Na+ na planta inteira e aumentam a tolerÃncia de S. bicolor ao estresse salino. / Over the last decades, several researchers have focused the development of cultivation strategies in order to improve the plantâs ability to withstand salinity. Understanding the plant salt tolerance is one of important trait to enhance productivity of crops in saline soils because it provides molecular basis for plant breeding, as well as allows identify plant species with a greater ability to grown in salinized areas. In order to test the hypothesis that nitrogen nutrition with NH4+ improves the salt tolerance in Sorghum bicolor plants, through the restrict control of ionic homeostasis, three experimental steps were established. In the first one, we investigated what would nitrogen regime, as NO3-:NH4+ ratio, contribute to the better growth of plants under salinity. Our data clearly showed that the nutrition with only NH4+ (NO3-/NH4+ at 0:100) was more advantageous for the growth of S. bicolor under salinity than the supply with solely NO3- or the mixed regimes, as evidenced by the higher leaf area and shoot dry mass. Under salinity, Na+ accumulation was severely limited in presence of NH4+ (0:100), which positively influenced on K+/Na+ homeostasis. In parallel, NH4+-fed plants displayed a substantial accumulation of N-rich amino acids (mainly glutamine and asparagine) in both tissues, which seems to be fundamental in alleviating the NH4+ toxicity. Furthermore, whereas plants treated with NO3-:NH4+ ratio of 100:0, 75:25, 50:50 and 25:75 ratios had their photosynthetic rates (A) unaltered or reduced by salinity, plants supplied with only NH4+ showed an increased CO2 assimilation in response to stress. During the second step, we evaluated if the better salt tolerance in NH4+ cultivated plants was due to an effective regulation of photosynthesis-related processes. This idea was rejected because of the most striking effects of nitrogen regime were observed in plants supplied with equal amounts of NO3-: NH4+ (50:50). Under salt stress, plants from 50:50 NO3-:NH4+ treatments displayed a lower non-photochemical quenching (NPQ) and an improved photosystem II maximum efficiency (Fv/Fm). Their superior performance was also indicated by a higher effective quantum yield of PSII (ΦPSII) and electron transport rate (ETR), as well as increased chlorophyll b and anthocyanins. Finally, at the third step, we supply S. bicolor plants with NO3- or NH4+ to investigate changes in pathways for control of Na+ accumulation, at cell and whole plant level, in response to 75 mM NaCl-stress. By using root membrane-enriched vesicles, it was found that a more pronounced plasma membrane Na+/H+ antiporter (SOS1) activity and low loading of Na+ in the xylem in the NH4+ treated plants, whereas a largest vacuolar Na+/H+ exchanger (NHX) activity was noticed by NO3- grown plants. These data suggest that the NO3- availability induced the compartmentalization of Na+ into the vacuole, as supported by the upregulation of SbNHX2 gene expression over time of NaCl exposure (12, 24, 48, 120 and 240 h). Nonetheless, it composed an inefficient pathway of Na+ control, since the incessant entrance of Na+ in the xylem sap impaired the K+ loading and limited the K+ accumulation in the shoot. On the other hand, the NH4+ supply potentially activated the mechanisms for control of Na+ accumulation, driving an effective efflux of Na+ out of the cell, via SOS1, restricting its loading in the xylem and thus limiting Na+ reach and accumulation in the aerial tissues. Surprisingly, we found that the generation of electrochemical potential gradient for Na+/H+ exchange activity is differentially modulated by the nitrogen source. The H+-pumping activity driven by plasma membrane H+-ATPase (P-ATPase) was greatly stimulated by the presence of NH4+ in growth medium, however, without an increase in ATP hydrolysis activity. Conversely, the improvement of P-ATPase-generated H+-pumping of NO3- fed stressed plants was directly related to the increase of ATP hydrolysis. These data show that the NH4+ availability enhances the H+/ATP coupling efficiency of P-ATPase, i. e. the enzyme displayed a high capacity of transport H+ across plasma membrane with low ATP consumption. Moreover, the bigger H+ translocation resulted in a greater electrochemical potential which in turn favored the SOS1 activity. The expression of SbPHA3 and SbPHA5 genes was upregulated in NO3- grown stressed plants at the beginning of salt exposure (12 and 24 h), whereas it was enhanced in NH4+ supplied stressed plants only after 24 h. At vacuole level, the H+-ATPase (V-ATPase) was the main proton pump responsive to salinity, as compared do H+-Pyrophosphatase (PPase). A better regulation between V-ATPase and NHX antiporter activities was noticed by plants from NO3- treatments. Under NH4+ supply, the increase of H+ pumping was directly associated to the improvement of ATP hydrolysis by V-ATPase, coupled to upregulation of SbVHA2 gene expression over time of salinity exposure. Taken together, our data reveal that the NH4+, as the only nitrogen source, activates an intricate regulation of Na+ control pathways, involving the existence of a robust regulation and systematic mechanism firstly on root cell and subsequently on whole plant in sorghum upon salinity. In conclusion, the NH4+ stimulated salt tolerance is resulted from a more active SOS1 protein and high efficiency of P- and V-ATPase in the roots, which help to efficient Na+ exclusion and counteract net Na+ accumulation in the cytosol, thus preventing the loading of Na+ in the xylem sap and its reach in the photosynthetic tissues.
|
122 |
Efeitos do perÃxido de hidrogÃnio sobre a germinaÃÃo e na aclimataÃÃo de plantas de milho à salinidade / Hydrogen peroxide effects on the germination and the acclimation of maize plants subjected to salinityFranklin AragÃo Gondim 03 March 2008 (has links)
AssociaÃÃo TÃcnico-CientÃfica Eng. Paulo de Frontin / nÃo hà / Este trabalho teve como objetivo avaliar os efeitos do perÃxido de hidrogÃnio (H2O2) sobre a germinaÃÃo e a aclimataÃÃo de plantas de milho ao estresse salino, estudando os mecanismos fisiolÃgicos e bioquÃmicos envolvidos. Nos experimentos, em nÃmero de trÃs, foi utilizado o hÃbrido triplo de milho (Zea mays L), o BRS 3003. No primeiro experimento, foram avaliados os efeitos do H2O2 na germinaÃÃo das sementes de milho; no segundo, foram avaliados os efeitos do prÃ-tratamento de embebiÃÃo das sementes de milho com H2O2 nas atividades das enzimas e isoenzimas antioxidativas e, no terceiro, foram avaliados os efeitos do prÃ-tratamento de sementes de milho com H2O2 sobre a aclimataÃÃo das plantas de milho à salinidade e os mecanismos possivelmente envolvidos. No primeiro experimento, o qual foi realizado em sala da germinaÃÃo, observou-se que o H2O2 na concentraÃÃo de 100 mM acelerou o processo de germinaÃÃo das sementes de milho, o mesmo nÃo ocorrendo na concentraÃÃo de 500 mM. No segundo experimento, o qual tambÃm foi realizado em sala de germinaÃÃo, observou-se que o prÃ-tratamento das sementes induziu forte aumento nas atividades das enzimas peroxidase do ascorbato (APX) e catalase (CAT), desde o tempo de embebiÃÃo de 30 h das sementes com H2O2. Jà com relaÃÃo à peroxidase do guaiacol (GPX), observou-se que a atividade dessa enzima foi menor nas sementes embebidas com H2O2 nos tempos de 12, 24, 30, 36 e 42 h, em relaÃÃo Ãquelas embebidas em Ãgua destilada (controle), porÃm, nas prÃ-tratadas por um tempo de 48 h nÃo foram observadas diferenÃas significativas entre os tratamentos. A dismutase do superÃxido (SOD), por sua vez, nÃo foi afetada pelo prÃ-tratamento das sementes, exceto no tratamento de embebiÃÃo das sementes com H2O2 por 24 h. Nas sementes, foi detectada apenas uma isoenzima de CAT e seis de SOD. O prÃ-tratamento das sementes nÃo provocou alteraÃÃes nessas isoformas, exceto com relaÃÃo à intensidade da banda de atividade da CAT visualizada no gel de poliacrilamida, que se mostrou muito superior Ãquela do controle, quando as sementes foram embebidas por 36 e 48 h com H2O2. à possÃvel que os aumentos nas atividades da APX e, especialmente, da CAT, tenham sido responsÃveis pela aceleraÃÃo do processo de germinaÃÃo. No terceiro experimento, o qual foi conduzido inicialmente em Sala de germinaÃÃo e, em seguida, em casa de vegetaÃÃo, foram utilizadas sementes de milho prÃtratadas por 36 h de embebiÃÃo em soluÃÃo de H2O2 a 100 mM ou em Ãgua destilada. Essas sementes foram postas para germinar em folhas de papel de filtro umedecidas com soluÃÃo nutritiva em presenÃa ou ausÃncia de NaCl a 80 mM em sala de germinaÃÃo. Decorridos seis dias, as plÃntulas foram transferidas para a casa de vegetaÃÃo e cultivadas hidroponicamente em presenÃa ou ausÃncia de NaCl a 80 mM, sendo feitas coletas das plantas aos 6, 11 e 16 dias de idade. Como resultado, observou-se que o prÃ-tratamento das sementes com H2O2 induziu a aclimataÃÃo das plantas à salinidade, reduzindo parcialmente os efeitos deletÃrios da salinidade na produÃÃo de matÃria e na Ãrea foliar. Esse resultado pode ser atribuÃdo, pelo menos em parte, a uma maior eficiÃncia do sistema antioxidativo das plantas oriundas de sementes prÃ-tratadas com H2O2. A CAT, que se mostrou a principal enzima eliminadora de H2O2, teve sua atividade
nas folhas fortemente reduzida pela salinidade, nas plantas com seis dias de idade, sendo este efeito totalmente revertido nas plantas provenientes de sementes prÃ-tratadas com H2O2. Por outro lado, nas raÃzes das plantas submetidas ao estresse salino, a atividade da SOD foi estimulada pelo prÃ-tratamento das sementes com H2O2, nos trÃs tempos de coleta. De modo geral, a salinidade reduziu os parÃmetros fotossintÃticos (condutÃncia estomÃtica, transpiraÃÃo, fotossÃntese e concentraÃÃo interna de CO2) e o prÃ-tratamento das sementes nÃo foi capaz de reverter esse efeito. NÃo foi possÃvel estabelecer-se uma correlaÃÃo precisa entre os teores de solutos orgÃnicos e o processo de aclimataÃÃo das plantas prÃ-tratadas com H2O2 à salinidade, em termos de ajustamento osmÃtico. No entanto, os menores valores da razÃo Na+/K+ nas raÃzes e, especialmente, nas folhas das plantas prÃ-tratadas e submetidas à salinidade, em relaÃÃo Ãquelas oriundas de sementes prÃ-tratadas com Ãgua (controle) e submetidas a esse mesmo tratamento, aos 16 dias de idade, pode tambÃm ter sido um fator responsÃvel, pelo menos em parte, pela aclimataÃÃo das plantas de milho à salinidade. / The aim of this work was to evaluate the effects of the hydrogen peroxide (H2O2) on germination and acclimation of maize plants subject to the saline stress, in order to better understand the physiological and biochemical mechanisms involved. In the three experiments the triple hybrid of maize (Zea mays L) BRS 3003 was used. In the first experiment, the effects of H2O2 on germination of the maize seeds were evaluated; in the second, the effects of pre-treating by soaking maize seeds in H2O2 solution on the activities of antioxidative enzymes and isoenzymes; and as, the effects of the pre-treatment of maize seeds with H2O2 on acclimation of the plants to salinity and the possible mechanisms involved with this process. In the first experiment, which was carried out in a growth room, H2O2 accelerated the germination rate of maize seeds at 100 mM, but, not at 500 mM. In the second experiment, also carried out in growth room, it was observed that the pre-treatment of the seeds induced a pronounced increase in the activities of the enzymes ascorbate peroxidase (APX) and catalase (CAT), after 30 h of soaking in H2O2. It was also observed that the activity of the Guaiacol peroxidase (GPX) was smaller in the seeds soaked in H2O2 for 12, 24, 30, 36 and 42 h, in relation to those soaked in distilled water (control). However, H2O2 treatment for 48 h showed no significant differences as compared with control. The superoxide dismutase (SOD) activity was not affected by the pre-treatment of the seeds, except for the 24 h treatment. In the seeds, it was detected only one isoform of CAT and six of SOD. The pre-treatment of the seeds did not cause great changes in those isoforms, except for the intensity of the band of activity of CAT visualized in the polyacrylamide gel, which was very superior to that of the control, when the seeds were soaked by 36 and 48 h with H2O2. The increases in the activities of APX and, especially, of CAT, could be associated with the acceleration of the germination process. In the third experiment, which was carried out initially at growth room and, later, at the glasshouse, maize seeds were pre-treated for 36 h by soaking in solution of H2O2 100 mM or in distilled water. Those seeds were germinated on filter paper moistened with nutrient solution in the presence or absence of NaCl 80 mM, in a growth room.
After six days, the seedling were transferred to the glasshouse and cultivated in trays containing only nutrient solution (control treatment) or nutrient solution with NaCl at 80 mM. Plants were harvest with 6, 11 and 16 days old. The results showed the pre-treatment of the seeds with H2O2
induced acclimation of the plants to the salinity. It decreased the deleterious effects of salt stress on the growth (biomass production and leaf area) of maize. This fact was associated with a higher efficiency of the antioxidative system of plants pre-treated with H2O2. CAT was the most important among the H2O2 scavenging enzymes in leaves, but, its activity was strongly reduced by salinity in plants 6 and 11 days old, however, this effect was totally reverted in the stressed plants originated from seeds pre-treated with H2O2. On the other hand, in the roots of plants submitted to saline stress, the activity of SOD was stimulated by the pre-treatment of the seeds with H2O2, in the three periods of harvest. In general, salinity reduced the photosynthetic parameters (stomatal conductance, net CO2 assimilation rate, transpiration and intracellular CO2 concentration) and the H2O2 pre-treatment of seeds was not capable to revert that effect. In terms of osmotic adjustment, the contents of organic solutes were not positively correlated to the process of acclimation to salt stress of the plants pre-treated with H2O2 to the salinity. However, the smallest values of the Na+/K+ ratio in roots and in leaves were found for the pre-treated plants submitted to salinity, when compared to those originated from of seeds pre-treated with water (control) and submitted to that same treatment, and it may also be a responsible factor for the acclimation of the maize plants to the salinity.
|
123 |
AlteraÃÃoes fisiolÃgicas e bioquÃmicas em plÃntulas de cajueiro anÃo-precoce submetidas à salinidade em duas condiÃÃes de cultivo / Physiological and biochemical changes in early-dwarf cashew seedlings subjected to salinity in two cultivation conditionsCarlos Eduardo Braga de Abreu 03 April 2007 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / O presente trabalho teve por objetivo estudar as respostas fisiolÃgicas e bioquÃmicas de plÃntulas de cajueiro anÃo-precoce (Anacardium occidentale L.) à salinidade em duas condiÃÃes ambientais de cultivo. Para isso, as plÃntulas foram cultivadas em vasos de polietileno contendo somente soluÃÃo nutritiva (tratamento controle) ou soluÃÃo nutritiva com NaCl a 50, 100, 150 e 200 mM (tratamentos salinos), sendo mantidas em duas condiÃÃes ambientais: casa de vegetaÃÃo e sala de germinaÃÃo. Os efeitos do estresse salino foram avaliados atravÃs de medidas de crescimento, trocas gasosas, teores de clorofila, potencial osmÃtico foliar e teores de solutos orgÃnicos (prolina, N-aminossolÃveis e carboidratos solÃveis) e inorgÃnicos (Na+, Cl- e K+) nas folhas e raÃzes. TambÃm foram estudadas as alteraÃÃes na expressÃo gÃnica com a salinidade, o que foi feito atravÃs da comparaÃÃo dos padrÃes eletroforÃticos 2D das proteÃnas de folhas e raÃzes. A salinidade reduziu o crescimento das plÃntulas em ambas as condiÃÃes ambientais de cultivo, sendo que nas plÃntulas da casa de vegetaÃÃo, a inibiÃÃo do crescimento foi mais acentuada do que naquelas da sala de germinaÃÃo. Este fato correlacionou-se com as maiores reduÃÃes na fotossÃntese lÃquida, na transpiraÃÃo e na condutÃncia estomÃtica das plÃntulas da casa de vegetaÃÃo em relaÃÃo Ãs da sala de germinaÃÃo. Nas duas condiÃÃes de cultivo, os efeitos inibitÃrios do NaCl foram mais conspÃcuos nas raÃzes do que na parte aÃrea. A salinidade nÃo causou grandes mudanÃas nas concentraÃÃes internas de CO2 das plÃntulas de cajueiro, sugerindo a participaÃÃo de fatores nÃo-estomÃticos na inibiÃÃo das taxas fotossintÃticas. Os teores foliares de clorofila a, b e total foram influenciados pela salinidade e pelas condiÃÃes de cultivo das plÃntulas, sendo que as da sala de germinaÃÃo apresentaram os maiores conteÃdos e as menores reduÃÃes desses pigmentos devido à salinidade. As leituras feitas com o medidor portÃtil de clorofila, SPAD-502, correlacionaram-se positivamente com os teores foliares de clorofila, expressos em g.cm-2, tanto nas plÃntulas da casa de vegetaÃÃo quanto nas da sala de germinaÃÃo. As maiores reduÃÃes no potencial osmÃtico e os maiores acÃmulos de Na+ e Cl- nas folhas pela salinidade, em relaÃÃo ao controle, foram observados nas plÃntulas da casa de vegetaÃÃo. Por outro lado, os teores de K+ nesse ÃrgÃo nÃo diferiram muito entre as duas condiÃÃes de cultivo empregadas. As raÃzes acumularam grandes quantidades de Na+ e Cl- em seus tecidos, as quais foram acompanhadas de grandes decrÃscimos nos teores de K+, em ambas as condiÃÃes de cultivo. Com o aumento da salinidade, os teores de prolina foram aumentados, principalmente nas folhas, sendo os maiores incrementos observados nas plÃntulas da casa de vegetaÃÃo. Os teores de carboidratos solÃveis foram aumentados e reduzidos, devido à salinidade, somente nas folhas das plÃntulas da sala de germinaÃÃo e nas raÃzes das plÃntulas da casa de vegetaÃÃo, respectivamente. Nas duas condiÃÃes de cultivo, a salinidade aumentou os teores de N-aminossolÃveis nas folhas e nas raÃzes das plÃntulas de cajueiro. O padrÃo de expressÃo gÃnica das folhas e das raÃzes foi alterado pelo estresse salino em ambas as condiÃÃes ambientais. A salinidade causou aumentos e diminuiÃÃes nas taxas de expressÃo de vÃrias proteÃnas, sendo que algumas desapareceram completamente e outras foram aparentemente sintetizadas de novo nas plÃntulas estressadas. As proteÃnas diferencialmente reguladas pelo estresse salino foram bastante diferentes nas duas condiÃÃes ambientais empregadas. Faz-se necessÃrio o seqÃenciamento e a identificaÃÃo dessas proteÃnas para que se possa especular sobre seus possÃveis papÃis no processo de aclimataÃÃo das plÃntulas de cajueiro Ãs condiÃÃes de salinidade. / Early-dwarf cashew seedlings (Anacardium occidentale L.) were used in order to investigate the physiological and biochemical changes induced by salt stress in two environmental conditions. The seedlings were cultivated in plastics pots containing only nutrient solution (control treatment) or nutrient solution with NaCl at 50, 100, 150 and 200 mM (saline treatment). They were kept in two environmental conditions: greenhouse and growth room. The effects of salinity on the growth, gas exchange, chlorophyll content, osmotic potential and organic (proline, soluble amino-N, soluble carbohydrates) and inorganic (Na+, Cl-, K+) solute contents from both leaves and roots were studied. Salt stress induced changes in gene expression were studied both in leaves and roots comparing 2D electrophoretic pattern. Salinity inhibited the growth of seedlings in both environmental conditions, being the reduction in seedlings growth in the greenhouse more conspicuous than those cultivated in the growth room. This fact was correlated with highest reductions in net photosynthetic rate, in transpiration and stomatal conductance of seedlings grown in the greenhouse when compared with those of growth room. In both cultivation conditions, the root growth was affected by NaCl than shoot growth. The salinity stress not caused great changes in CO2 internal concentration, suggesting that the inhibition of photosynthesis also may be attributed to non-stomatal factors. Leaf chlorophyll a, b and total contents were influenced by salinity and environmental conditions, being observed the highest contents and the lowest reductions of these pigments due to salinity in seedlings under growth room conditions. The readings of portable chlorophyll meter, SPAD-502, were positively correlated to leaf chlorophyll contents, expressed in g.cm-2, both in greenhouse and growth room conditions. In the salt stress conditions, the higher reductions of osmotic potential and higher Na+ and Cl- accumulations in leaves were observed in seedlings grown in the greenhouse. On the other hand, leaves K+ contents did not differ much among the cultivation conditions used. The roots accumulated greater amounts of Na+ and Cl- in their tissues, which were accompanied of great decreases in the K+ contents in both cultivation conditions. Proline content increased with the increase in salt stress especially in leaves, being the greater increases observed in seedlings cultivated in the greenhouse. The soluble carbohydrates contents were increased and decreased, due to salinity, only in leaves of seedlings of growth room and roots of those grown in the greenhouse, respectively. In both cultivation conditions, salinity increased the leaf and root soluble amino-N contents of cashew seedlings. The gene expression patterns both leaves and roots were altered by salt stress, in both environmental conditions. Salinity induced increases and decreases in expression of various proteins, being that some proteins disappeared completely and other were apparently synthesized de novo in the seedlings stressed. The proteins differentially regulated by salt stress were enough different among the environmental conditions used. Future studies should be focused on sequencing and identification of proteins whose rate of synthesis varied as a result of salinity, in order to better characterize their possible roles in the process of acclimation of cashew seedlings to salinity conditions
|
Page generated in 0.0588 seconds