21 |
[en] THE ROLE OF DIAGRAMS IN EUCLIDEAN / [pt] O PAPEL DOS DIAGRAMAS NA GEOMETRIA EUCLIDEANABRUNO RAFAELO LOPES VAZ 04 April 2011 (has links)
[pt] O objetivo deste trabalho é argumentar em favor de uma nova
interpretação para o papel dos diagramas nas demonstrações da geometria
euclideana. À luz de trabalhos recentes acerca do tema, pretende-se promover,
em particular, uma nova avaliação daquele que é considerado o primeiro sistema
dedutivo rigoroso na história da matemática: a geometria de Euclides,
sistematizada nos seus Elementos. Com efeito, a utilização dos diagramas como
partes essenciais das demonstrações neste sistema fez com que, na
modernidade, tal sistema fosse considerado um exemplo de sistema informal, no
qual as demonstrações são meros esboços do que seriam verdadeiras
demonstrações. Estas, de acordo com a concepção de demonstração que se
tornou comum na modernidade, devem ser compostas exclusivamente de
fórmulas, as quais podem ser derivadas umas das outras apenas com base em
regras lógicas ou princípios explícitos de antemão. Uma vez que tal concepção
tornou-se dominante, por conta de diversos fatores nem sempre interligados, os
diagramas que faziam parte das demonstrações euclideanas passaram a ser
vistos como uma das principais causas de uma alegada falta de rigor por parte
das mesmas. Para devolver às demonstrações matemáticas o rigor que lhes é
necessário, autores como Hilbert e Pasch propuseram reconstruções formais da
obra de Euclides, nas quais as demonstrações prescindem totalmente dos
diagramas. No presente trabalho pretende-se reconstruir a seqüência de eventos
que levou ao declínio das representações diagramáticas em geometria, bem
como mostrar que é possível uma interpretação da obra de Euclides que leve em
conta a participação dos diagramas nas demonstrações, sem que com isso as
demonstrações sejam deficientes em termos de rigor. Serão rebatidas as críticas
dos que defendem a concepção de demonstração acima mencionada, e, assim,
será requerida uma revisão de tal postura - visando tanto a adoção de uma
concepção mais abrangente de demonstração, quanto uma interpretação da
geometria euclideana que faça mais justiça ao seu sucesso. / [en] The main concern of this work is to argue for new interpretations regarding
the role of the diagrams in Euclidean geometry. Taking into account recent
works on the subject, the goal here is to present alternative ways to evaluate the
system which is considered the first rigorous deductive system in the history of
mathematics: Euclid`s Elements. In fact, the use of diagrams as parts of its
demonstrations has been considered as a flaw of that formal system. According
to the standard conception of demonstration in modern times, a demonstration
must be a chain of formulae, each of them being either a principle (accepted
without demonstration) or a formula that follows from some principle by logical
inference. As this conception became influent, the diagrams in Euclidean
geometry turned out to be seen as one of the main reasons for an alleged lack of
rigor of its demonstrations. In face of this, authors like Pasch and Hilbert worked
on a formalization of Euclidean geometry in modern fashion, i.e., suppressing the
diagrams from its demonstrations. The present work aims at a reconstruction of
the main events which led to the decline of diagrammatic representations in
geometry. It will be shown that an alternative view is possible. This view takes
into account the importance of diagrams for the demonstrations without denying
their deductive rigor. It will be argued against the conception of demonstration
mentioned above, and for a revision of such conception in order to achieve a
broader and fairer conception of Euclidean geometry.
|
22 |
Projektivní pohled na rovinnou euklidovskou geometrii / Projective perspective on planar euclidean geometryŘada, Jakub January 2019 (has links)
In this thesis we study projective perspective on planar euclidean geometry. First we take an euclidean construction and transform it into the projective language. Then we discover and show principles of this transformation. We show equivalence between complex points I, J and some euclidean structures. Moreover we study conics, triangles, polygons and circles. We build this thesis on examples. 1
|
23 |
Preservice Secondary School Mathematics Teachers' Current Notions of Proof in Euclidean GeometryRatliff, Michael 01 August 2011 (has links)
Much research has been conducted in the past 25 years related to the teaching and learning of proof in Euclidean geometry. However, very little research has been done focused on preservice secondary school mathematics teachers’ notions of proof in Euclidean geometry. Thus, this qualitative study was exploratory in nature, consisting of four case studies focused on identifying preservice secondary school mathematics teachers’ current notions of proof in Euclidean geometry, a starting point for improving the teaching and learning of proof in Euclidean geometry.
The unit of analysis (i.e., participant) in each case study was a preservice mathematics teacher. The case studies were parallel as each participant was presented with the same Euclidean geometry content in independent interview sessions. The content consisted of six Euclidean geometry statements and a Euclidean geometry problem appropriate for a secondary school Euclidean geometry course. For five of the six Euclidean geometry statements, three justifications for each statement were presented for discussion. For the sixth Euclidean geometry statement and the Euclidean geometry problem, participants constructed justifications for discussion.
A case record for each case study was constructed from an analysis of data generated from interview sessions, including anecdotal notes from the playback of the recorded interviews, the review of the interview transcripts, document analyses of both previous geometry course documents and any documents generated by participants via assigned Euclidean geometry tasks, and participant emails. After the four case records were completed, a cross-case analysis was conducted to identify themes that traverse the individual cases.
From the analyses, participants’ current notions of proof in Euclidean geometry were somewhat diverse, yet suggested that an integration of justifications consisting of empirical and deductive evidence for Euclidean geometry statements could improve both the teaching and learning of Euclidean geometry.
|
24 |
On Axioms and Images in the History of MathematicsPejlare, Johanna January 2007 (has links)
This dissertation deals with aspects of axiomatization, intuition and visualization in the history of mathematics. Particular focus is put on the end of the 19th century, before David Hilbert's (1862–1943) work on the axiomatization of Euclidean geometry. The thesis consists of three papers. In the first paper the Swedish mathematician Torsten Brodén (1857–1931) and his work on the foundations of Euclidean geometry from 1890 and 1912, is studied. A thorough analysis of his foundational work is made as well as an investigation into his general view on science and mathematics. Furthermore, his thoughts on geometry and its nature and what consequences his view has for how he proceeds in developing the axiomatic system, is studied. In the second paper different aspects of visualizations in mathematics are investigated. In particular, it is argued that the meaning of a visualization is not revealed by the visualization and that a visualization can be problematic to a person if this person, due to a limited knowledge or limited experience, has a simplified view of what the picture represents. A historical study considers the discussion on the role of intuition in mathematics which followed in the wake of Karl Weierstrass' (1815–1897) construction of a nowhere differentiable function in 1872. In the third paper certain aspects of the thinking of the two scientists Felix Klein (1849–1925) and Heinrich Hertz (1857–1894) are studied. It is investigated how Klein and Hertz related to the idea of naïve images and visual thinking shortly before the development of modern axiomatics. Klein in several of his writings emphasized his belief that intuition plays an important part in mathematics. Hertz argued that we form images in our mind when we experience the world, but these images may contain elements that do not exist in nature.
|
25 |
Από τις προσπάθειες για απόδειξη του 5ου Αιτήματος του Ευκλείδη στις μη ευκλείδειες γεωμετρίεςΔημόπουλος, Άγγελος 09 October 2014 (has links)
Το περίφημο Ευκλείδειο Αίτημα (5ο αίτημα), όπως διατυπώνεται στα Στοιχεία του Ευκλείδη, απασχόλησε τον μαθηματικό κόσμο για περίπου 2000 χρόνια. Ξεκινώντας λοιπόν από το βιβλίο που αποτέλεσε ορόσημο για τη μαθηματική σκέψη, αναφερόμαστε σε ορισμένες αδυναμίες (κυρίως στο βαθμό αυστηρότητας) που έχουν επισημάνει σε αυτό οι κριτικοί και στεκόμαστε στο εξής γεγονός: Ο Ευκλείδης δεν έδωσε αποδείξεις για ορισμένες ιδέες και δηλώσεις του. Επειδή όμως αυτές οι δηλώσεις ήταν απαραίτητες για τις περαιτέρω μελέτες του τις έθεσε ως αληθινές. Η ιδέα ότι ορισμένες προτάσεις, μέσα στο πλαίσιο μιας θεωρίας, θα πρέπει να λαμβάνονται ως αληθινές χωρίς απόδειξη, είναι πολύ αρχαιότερη του Ευκλείδη. Ήδη ο Αριστοτέλης είχε εκθέσει στα «Αναλυτικά» του, μια θεωρητική επεξεργασία αυτής της αναγκαιότητας. Ο Ευκλείδης ακολουθεί την παγιωμένη αυτή τακτική προτάσσοντας τα πέντε αιτήματά του στο πρώτο βιβλίο των Στοιχείων του.
Πολλές προσπάθειες απόδειξης του 5ου αιτήματος έγιναν από σεβαστό αριθμό μαθηματικών. Όμως η εμφάνιση απόδειξης στο πρόβλημα δεν φαινόταν να «επιθυμεί» να έρθει στο φως. Έτσι, και ενώ είχε περάσει ένα αρκετά μεγάλο χρονικό διάστημα, τελικά μέσα από την άρνηση του ίδιου του 5ου αιτήματος ήρθαν στο προσκήνιο οι Μη Ευκλείδειες Γεωμετρίες. Η άρνηση του 5ου αιτήματος οδήγησε στην άποψη πως είναι δυνατή η ύπαρξη μίας Γεωμετρίας ανεξάρτητης από το 5ο αίτημα θέτοντας έτσι τη βάση για την ανάπτυξη μίας νέας λογικά συνεπούς θεωρίας, η οποία έμελε να εκφράζει πιο πιστά αυτό που πράγματι συμβαίνει γενικά στη φύση και όχι σε μια ειδική περιοχή της .
Σε πρώτο στάδιο, για να παρουσιάσουμε μία πλήρη ιστορική αναδρομή, χρησιμοποιούμε ως "σημείο εκκίνησης" τα χρόνια που προηγήθηκαν της συγγραφής των Στοιχείων. Μέσω αυτής της αναδρομής στόχος μας είναι να αναδειχθούν τόσο η φύση, όσο και ο σημαντικός ρόλος του Ευκλείδειου αιτήματος στη μαθηματική εξέλιξη. Στην καταγραφή αυτή, είναι δυνατό να συναντήσει κανείς πληροφορίες για το κλίμα που ευνόησε τη συγγραφή των Στοιχείων, ιδιαίτερα χαρακτηριστικά του συγγραφέα τους, αλλά και του ίδιου του έργου, μέσα από μία γενική θεώρηση που στόχο έχει πάντα την βαθύτερη κατανόηση του 5ου αιτήματος.
Στη συνέχεια και έχοντας εξετάσει εν συντομία τα ιδιαίτερα αλλά και τα βασικά χαρακτηριστικά των Στοιχείων και του συγγραφέα τους μεταβαίνουμε στο βασικό θέμα της εργασίας. Πρόκειται, αρχικά, για την έκθεση των πέντε αιτημάτων, ενώ ακολουθεί η εκτενής παρουσίαση του 5ου αιτήματος. Βασικό αντικείμενο μελέτης μας σε αυτό το στάδιο είναι οι διαφορετικές διατυπώσεις που χρησιμοποιήθηκαν για να καταγραφεί το ίδιο ακριβώς θέμα, καθώς επίσης και οι ποικίλες προσπάθειες απόδειξής του. Παρουσιάζουμε ορισμένες από τις βασικότερες αποδείξεις του 5ου αιτήματος, τα δυνατά σημεία τους αλλά και τις αδυναμίες/ σφάλματα που επισημάνθηκαν από τους μελετητές.
Το δέκατο ένατο αιώνα, οι μαθηματικοί άλλαξαν τακτική και επιχείρησαν να δείξουν ότι το 5ο αίτημα έπεται από τα άλλα τέσσερα: για να το κάνουν αυτό, πήραν τα τέσσερα αξιώματα και την άρνηση του 5ου και προσπάθησαν να εντοπίσουν τυχόν αντιφάσεις. Μόνο που αντί για αντιφάσεις, ανακάλυψαν μια καινούρια, διαφορετική, εσωτερικά συνεπή γεωμετρία. Το βασικότερο βήμα προς την ανακάλυψη των μη Ευκλείδειων γεωμετριών έγινε με την άρνηση του 5ου αιτήματος. Η καινούρια ιδέα που ήρθε στο προσκήνιο πρότεινε ουσιαστικά την αντικατάσταση του 5ου αιτήματος από την άρνησή του.
Επομένως, εάν επιχειρούσαμε να καταγράψουμε το περιεχόμενο της εργασίας συνοπτικά θα καταλήγαμε στα εξής: Πρόκειται για μία ιστορική αναδρομή που έχει βασικό της θέμα, αρχικά την παρουσίαση του Ευκλείδειου αιτήματος, έπειτα τις προσπάθειες απόδειξής του και τέλος την ανακάλυψη των Μη Ευκλείδειων Γεωμετριών μέσω της άρνησής του. / --
|
26 |
Διδακτικές διαστάσεις των μοντέλων των μη ευκλείδειων γεωμετριών στα πλαίσια της πανεπιστημιακής εκπαίδευσηςΚαίσαρη, Μαρία 13 January 2015 (has links)
Η παρούσα διδακτορική διατριβή εστιάζεται στο πρόβλημα της “μετάβασης” από την δευτεροβάθμια εκπαίδευση στην τριτοβάθμια προτείνοντας την σύνδεση των Στοιχειωδών με τα Ανώτερα Μαθηματικά. Η σύνδεση αυτή επιχειρείται να γίνει μέσω κατάλληλα επιλεγμένων θεμάτων και οι μη-Ευκλείδειες Γεωμετρίες αποτελούν ένα ελκυστικό αντικείμενο για έρευνα στο παραπάνω πλαίσιο. Η διατριβή αυτή, αφορά τις μη Ευκλείδειες Γεωμετρίες και τα μοντέλα τους και ιδιαίτερα την Ελλειπτική Γεωμετρία: καθώς αυτή μοντελοποιείται πάνω στη σφαίρα, θα μπορούσε να αποτελέσει τη “γέφυρα” για το πέρασμα από την Ευκλείδεια στις μη-Ευκλείδειες Γεωμετρίες. Γίνεται μια σύντομη ιστορική αναδρομή από την ανακάλυψη των μη Ευκλείδειων Γεωμετριών μέχρι την αξιωματική θεμελίωση του Hilbert. Περισσότερη έμφαση δίνεται στα μοντέλα των μη Ευκλειδείων και προτείνεται μια κατηγοριοποίηση αυτών για παιδαγωγικούς σκοπούς καθώς και ένα μοντέλο της Ελλειπτικής Γεωμετρίας για πιθανή διδακτική χρήση.
Επίσης αναλύεται ένα νέο θεωρητικό πλαίσιο έρευνας για την διδακτική της γεωμετρίας και στην συνέχεια θα περιγραφεί η ερευνητική μεθοδολογία και το κυρίως διδακτικό πείραμα. Στο διδακτικό πείραμα, στο οποίο βασίζεται η διατριβή αυτή, συμμετείχαν φοιτητές του Μαθηματικού Τμήματος του Πανεπιστημίου Πατρών οι οποίοι ασχολήθηκαν, μεταξύ άλλων, με ζητήματα όπως: η συντομότερη διαδρομή μεταξύ δύο σημείων πάνω στην επιφάνεια της σφαίρας και η κατασκευή μοντέλου της Ελλειπτικής Γεωμετρίας. / In this thesis, we investigate university students' interaction in an attempt to construct a model of elliptic geometry. In order to study the several ways in which geometrical meaning is produced through context and practices, we introduce three different types of use of geometrical concepts, namely as (1) elements of representation of spatial experience, (2) objects of traditional school practice, and (3) constituents of an abstract mathematical theory. The analysis of students' dialog according to this framework reveals how students develop their ability to communicate mathematically and negotiate their meanings. Students with a different use of geometrical concepts were able to interact and understand their peers.
|
27 |
Os problemas clássicos da Grécia antiga /Pinto, Luis Paulo. January 2015 (has links)
Orientador: Clotilzio Moreira dos Santos / Banca: Tatiana Miguel Rodrigues / Banca: Tatiana Bertoldi Carlos / Resumo: Na Grécia Antiga, os sábios buscaram a resolução de problemas que se baseavam na construção geométrica utilizando exclusivamente dois instrumentos: a régua não graduada e o compasso. Alguns desses problemas se tornaram clássicos por exigirem, dentro do desenvolvimento da Matemática, grandes esforços para se chegar a uma solução. São eles: a duplicação de um cubo, determinando o lado de um cubo, cujo volume é o dobro do volume de um outro cubo dado, a trisseção de um ângulo, que é dividir um ângulo em três partes iguais ou três ângulos de medidas exatamente iguais e a quadratura de um círculo, que consiste em construir um quadrado com área igual à de um círculo dado. Neste trabalho apresentaremos algumas construções geométricas com régua não graduada e compasso, algumas soluções encontradas que não estavam de acordo com as regras estabelecidas e desenvolveremos a fundamentação algébrica que demonstra a insolubilidade dos três problemas clássicos citados / Abstract: In ancient Greece, the sages sought to solve problems that were based on geometric construction using only two instruments: non-graduated ruler and compass. Some of these problems have become classics because they require within the development of Mathematics, great efforts to reach a solution. They are: the duplication of the cube, the side of a cube whose volume is twice the volume of a given cube; the trisseção of an angle, which is to divide an angle into three equal parts or three measures angles exactly equal and the squaring of a circle, which consists of constructing a square with the same area as a given circle. In this work we present some geometric constructions with non-graded ruler and compass, some solutions that were not in accordance with the rules laid down and develop the algebraic reasoning which demonstrates the insolubility of the three classic problems cited / Mestre
|
28 |
Os problemas clássicos da Grécia antigaPinto, Luis Paulo [UNESP] 07 August 2015 (has links) (PDF)
Made available in DSpace on 2016-04-01T17:54:41Z (GMT). No. of bitstreams: 0
Previous issue date: 2015-08-07. Added 1 bitstream(s) on 2016-04-01T18:00:22Z : No. of bitstreams: 1
000860278.pdf: 2071280 bytes, checksum: 63adcc6e7dc4ad964bd3e3c783e1b479 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Na Grécia Antiga, os sábios buscaram a resolução de problemas que se baseavam na construção geométrica utilizando exclusivamente dois instrumentos: a régua não graduada e o compasso. Alguns desses problemas se tornaram clássicos por exigirem, dentro do desenvolvimento da Matemática, grandes esforços para se chegar a uma solução. São eles: a duplicação de um cubo, determinando o lado de um cubo, cujo volume é o dobro do volume de um outro cubo dado, a trisseção de um ângulo, que é dividir um ângulo em três partes iguais ou três ângulos de medidas exatamente iguais e a quadratura de um círculo, que consiste em construir um quadrado com área igual à de um círculo dado. Neste trabalho apresentaremos algumas construções geométricas com régua não graduada e compasso, algumas soluções encontradas que não estavam de acordo com as regras estabelecidas e desenvolveremos a fundamentação algébrica que demonstra a insolubilidade dos três problemas clássicos citados / In ancient Greece, the sages sought to solve problems that were based on geometric construction using only two instruments: non-graduated ruler and compass. Some of these problems have become classics because they require within the development of Mathematics, great efforts to reach a solution. They are: the duplication of the cube, the side of a cube whose volume is twice the volume of a given cube; the trisseção of an angle, which is to divide an angle into three equal parts or three measures angles exactly equal and the squaring of a circle, which consists of constructing a square with the same area as a given circle. In this work we present some geometric constructions with non-graded ruler and compass, some solutions that were not in accordance with the rules laid down and develop the algebraic reasoning which demonstrates the insolubility of the three classic problems cited
|
29 |
Sobre pavimentações do plano euclidianoSilva, Rafael Necchi [UNESP] 26 September 2014 (has links) (PDF)
Made available in DSpace on 2015-04-09T12:28:28Z (GMT). No. of bitstreams: 0
Previous issue date: 2014-09-26Bitstream added on 2015-04-09T12:47:21Z : No. of bitstreams: 1
000809498.pdf: 726656 bytes, checksum: f24cda6d4b245e885697d29d1560b568 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Este trabalho tem o propósito de desenvolver e auxiliar o estudo sobre pavimentações no Plano Euclidiano, mostrando diversos tipos de pavimentações e algumas aplicações. Analisamos algumas classes de políıgonos convexos e não convexos para que possamos entender melhor o porquê eles são ou não aceitáveis na pavimentação. O objetivo central do trabalho é aplicar o estudo da pavimentação em sala de aula, onde é mostrado maneiras diferentes para aprendizagem em diferentes faixas etárias / This work has the purpose to develop and assist the study about tessellations in Euclidean Plane, showing various types of paving and some applications. We analyze some classes of convex polygons and not convex so we can better understand why they are or not acceptable in paving. The central objective in this work is the application the study of paving in the classroom, where it is shown different ways to learning at different ages
|
30 |
Uma abordagem sobre geometria não-euclidiana para o ensino fundamental / An approach to non-euclidean geometry for elementary educationToledo, Maíra Lopes 23 February 2018 (has links)
Submitted by Maíra Lopes Toledo null (mazinha_999@hotmail.com) on 2018-03-08T15:49:02Z
No. of bitstreams: 1
Dissertação Maíra atualizada.pdf: 2465527 bytes, checksum: d7b0862b59bce2568933fbcb4d192628 (MD5) / Approved for entry into archive by Maria Marlene Zaniboni null (zaniboni@bauru.unesp.br) on 2018-03-08T19:51:19Z (GMT) No. of bitstreams: 1
toledo_ml_me_bauru.pdf: 2465527 bytes, checksum: d7b0862b59bce2568933fbcb4d192628 (MD5) / Made available in DSpace on 2018-03-08T19:51:19Z (GMT). No. of bitstreams: 1
toledo_ml_me_bauru.pdf: 2465527 bytes, checksum: d7b0862b59bce2568933fbcb4d192628 (MD5)
Previous issue date: 2108-02-23 / O objetivo desta dissertação é apresentar a Geometria do Taxi e a Geometria Esférica, que fazem parte da Geometria Não-Euclidiana, para alunos que cursam o Ensino Fundamental. O tema será tratado nessa dissertação de forma teórica, usando definição de distância na Geometria euclidiana, na Geometria do Taxi e distância na Geometria Esférica. A partir destas definições apresentaremos conceitos como círculos e triângulos, os quais estão presentes na Geometria Euclidiana, irão compará-los na Geometrias do Taxi e Esférica. A metodologia do trabalho constituirá na indução do aluno ao questionamento dos postulados de Euclides, com enfoque no Quinto Postulado, sobre as paralelas, através de atividades em sala de aula que exijam os conceitos aprendidos nas Geometrias do Taxi e Esférica. Os resultados mostraram que os alunos associaram de maneira positiva os conceitos matemáticos ensinados em sala de aula com sua realidade social, tornando o ensino de Matemática mais dinâmico e atrativo. / This thesis aims is to present the theories: Taxicab Geometry and Spherical Geometry, which are part of non-Euclidean Geometry, a mathematical concept, taught for elementary school students of the Elementary School. The content of this dissertation will be explained theoretically using the definition of distances Euclidean Geometry, in the Taxi Geometry and the Spherical Geometry. This study will introduce fundamental academic concepts with are part of Euclidean Geometry, as circles and triangles, and compare with Taxicab Geometry and Spherical Geometry. The methodology is composed to induce the students to ask questions about the “Postulates of Euclides”, specially the fifth one, about parallels through classroom activities that require concepts of Taxicab Geometry and Spherical Geometry. The results have been shown that the students associate very well mathematical concepts with their social reality, and that the Mathematic teaching have became more dynamic and attractive for those students.
|
Page generated in 0.0148 seconds