Spelling suggestions: "subject:"expansion 4points"" "subject:"expansion 5points""
1 |
Load transfer mechanism in rigid pavementKhoury, Issam Semaan. January 1993 (has links)
Thesis (M.S.)--Ohio University, August, 1993. / Title from PDF t.p.
|
2 |
Influence of precast concrete panel surface condition on behavior of composite bridge decks at skewed expansion jointsDonnelly, Kristen Shawn, January 1900 (has links) (PDF)
Thesis (M.S. in Engineering)--University of Texas at Austin, 2009. / Title from PDF title page (University of Texas Digital Repository, viewed on Aug. 10, 2009). Includes bibliographical references (leaves 119-120).
|
3 |
FATIGUE PERFORMANCE OF A HYBRID CFRP/STEEL SPLICE DETAIL FOR MODULAR BRIDGE EXPANSION JOINTSArcovio, STEFANO 24 July 2013 (has links)
As traffic demand on bridges increases, loading cycles on critical components will increase, reducing their service life. Modular bridge expansion joints, which are imperative to allowing the bridge superstructure to move, are susceptible to fatigue damage at their field splice. These splices are used to connect segments of the total joint, during staged construction. Current splice designs are either bolted or welded connections, which allow stress concentrations to induce pre-mature fatigue failure. This thesis examines the use of a hybrid FRP/steel design under fatigue loading for use as a splice detail.
The splice detail consists of steel plates bolted to steel beam webs and CFRP pultruded plates adhesively bonded to the underside of the steel beam flanges. Two different moduli of CFRP were examined: Normal Modulus and Ultra High Modulus. Two beams of each modulus were tested under static conditions and six under constant amplitude fatigue loading. A testing rig was used to simulate similar bending moments experienced in bridge joints.
In the static tests, slippage of the web plates caused considerable stiffness loss and the slippage load varied drastically between CFRP moduli. For the fatigue tests, the intention was to reach two million cycles at the different constant load ranges. Stiffness degradation was noticed during the fatigue process, and was likely due to bolt pre-tension loss and/or plastic deformation of the adhesive. Specimens that reached two million cycles were monotonically loaded to failure. Once the CFRP had failed, a secondary mechanism was observed for reserve load capacity.
Simple beam mechanics were used to create prediction models for the initial spliced beam stiffness and peak CFRP load. Flexural and shear deformations of the spliced system were considered for beam stiffness. For the CFRP failure load prediction, a design peak strain in the CFRP was used to account for shear lag effects in the material and variability of the splice detail. While the model was inaccurate for beam stiffness, it provided a good approximate of the peak CFRP load. Based on the presented test data, the Normal Modulus CFRP hybrid splice detail showed better fatigue performance than conventional steel connection details. / Thesis (Master, Civil Engineering) -- Queen's University, 2013-07-24 11:28:19.728
|
4 |
Assessment of critical parameters that affect the seismic performance of bridge steel pedestalsSrivastava, Siddharth 15 May 2009 (has links)
The Georgia Department of Transportation has been installing steel pedestals on bridges, ranging in height up to 33½” (0.85m) to increase the vertical clearance of many multi-span simply-supported and multi-span continuous bridges in Georgia. But there is a concern about the performance of these steel pedestals as they are designed without seismic consideration and may perform poorly compared to high-type steel “rocker” bearings, which were found to be unstable supports in previous earthquakes. This research models a candidate bridge using experimental data that captures the force-displacement hysteretic behavior of the steel pedestals. The results show how these steel pedestals behave when subjected to a range of ground motions. Nonlinear time history analysis is conducted using SAP 2000 software on a three-dimensional model of the candidate bridge. In addition, parametric studies of various critical parameters that can affect the seismic performance of the bridge are investigated, such as 1) varying the mass of the structure, 2) varying the stiffness of the deck joint, 3) varying column heights, and 4) seismic retrofitting using cable restrainers.
The results show that these pedestals should not be used in regions of high seismicity, and in regions of low seismicity, it is likely that they need to be retrofitted. They can, although, be used safely in regions of low seismicity. In addition, it was shown that the mass of a superstructure and height of the columns significantly affect the behavior of these steel pedestals, and should be given a careful consideration before usage. It was also shown that the stiffness of the expansion joints does not significantly affect the displacement of the steel pedestals and the forces transmitted to them. However, if the expansion joints are too stiff compared to the adjacent bridge components, then the forces transferred during pounding of superstructure is increased significantly.
|
5 |
Innovativ tätning av läckande dilatationsfogar i betongdammar : Bentonit: Metoder, Utvärdering och Fallstudie / Innovative sealing of leaking expansion joints in concrete dams : Bentonite: Methods, Evaluation and Case StudyAdell, Anton January 2022 (has links)
Majoriteten av de svenska betongdammarna uppfördes under 1900-talet och börjar därför närma sig sin uppskattade livslängd; 50-160 år. Några av dessa betongdammar används för att utvinna vattenkraft. Vattenkraft är Sveriges största energikälla och utgör ca 45% av vår totala elproduktion. Det ställs därför krav på att reparera samtliga betongdammar inför fortsatt förvaltning och för att bibehålla vår elproduktion. Betongdammar sammanlänkas med hjälp av dilatationsfogar. Dilatationsfogar hjälper betongkonstruktionen att stå emot de rörelser som sker under temperaturvariationer. På grund av dilatationsfogens placering i konstruktionen så är det väldigt svårt att genomföra och säkerställa en reparation. Inuti dilatationsfogens plåtfogbandskanal, i fallen där dilatationsfogen besitter två fogband, används bitumen som ett vattenstopp. Varje dilatationsfog som tätas med bitumen genererar en klimatpåverkan om ca 0,5 till 1,5 kg CO2-e per fog. Om fogbanden, inom dilatationsfogen, eller betongen i närheten av dessa skadas så kan därav bitumen lackas ut och följa med vattnet nedströms. Om detta sker så genereras en ökad miljö- och klimatpåverkan. Då nytt material måste produceras för att avlasta bitumenförlusten, fogbanden måste reparareras och bituminet släpps ut i naturen. Därför är det även av intresse att minimera eller helt ta bort det nuvarande vattenstoppet av bitumen. I ett försök att minimera komplexiteten och trappa ned på bitumenanvändningen undersöks i detta examensarbete en reparation med hjälp av bentonitpellets. Reparationen sker via ett borrhål som sedan återfylls med bentonitpellets. Det finns två betongdammar i Sverige som använt sig utav denna metodik. Examensarbetet syftar således till att utvärdera hur denna reparationsmetodik står sig, dels längre fram i tiden, mot andra alternativ och framtida förväntningar om att eventuellt kunna ersätta bituminet mot andra material. Inledningsvis undersöktes bentonitpelletsens svällförmåga samt hur materialet ansamlar sig fukt. Detta genom nya framtagna metoder, som delvis, är baserade på tidigare standarder. Med hjälp utav dessa nya metoder kunde materialegenskaper också utvärderas mer långsiktigt. För att utvärdera långtidsperspektiv tilläts bentonitpelletsen att genomgå frostcykler i ett temperaturväxlingsskåp. Där fem dygn i temperaturväxlingsskåpet, uppskattningsvis, motsvarar de svenska klimatförhållanden i norra Sverige som förväntas inträffa under ett år. Bentonitpelletsen utvärderades sedan via samma testmetodik efter 1,5 och 3 år. Resultatet från bentonitpelletsens fuktupptagningsförmåga visade på en skillnad mellan de olika sorterna. Den rena Na-bentonitens fuktupptagningsförmåga står sig bättre med tiden, jämfört mot de kemiskt framställda Na-bentonitpelletserna. Resultaten från svällförmågan tyder dock på att samtliga bentonitpellets upplever en försämring allt eftersom. Om vattenkvoten är låg innan frostcykler så ökar bentonitpelletsens svällförmåga, på grund av att den uttorkas. Efter den första experimentella delen, och insamlade materialkunskaper från denna, uppfördes en miniatyrversion av en verklig dilatationsfog. Bakgrunden till detta genomförande var att man ville undersöka hur stort tryck som bentonitpelletsen klarar av att hålla tillbaka innan materialet går till brott. Vattenfalls konstruktörer uppförde testriggen och denna bestod främst utav plåt. En delad betongkub, med ett hål i mitten, placerades i konstruktionen. Hålet fylldes därefter upp av bentonitpellets. För att kunna åskåda hur materialet betedde sig under tryckförsök bekläddes konstruktionens ovandel med plexiglas. På denna plexiglasskiva installerades en manometer. Med hjälp av manometern, och ett konstant inflöde av vatten, kunde trycket i testriggen uppmätas och regleras. När den sedimenterade bentonitpelletsen går till brott så sjunker trycket på manometern. Resultatet från tryckförsöken visar på ett samband mellan bentonitpelletsens deklarerade svälltryck och det tillförda vattentrycket. Beroende på inflödet kan en reparation med bentonitpellets maximalt klara av att hålla tillbaka ett tryck motsvarande 5 till 12 höjdmeter av vatten – där det exakta värdet baseras på tiden den tillåtits att sedimentera. Dessa värden gäller för dess initiala förmåga. Hur materialet står emot vattentryck längre fram i tiden behöver fortsatt utvärdering. Baserat på studiens resultat så kommer inte den tidigare genomförda reparationen, i en av betongdammarna, att hålla – eftersom denna reparation överstiger 12 höjdmeter. Baserat på informationen som presenterats i denna rapport råder det en fortsatt osäkerhet om bentonit kan användas i betongkonstruktioner. Området kräver således fortsatt forskning för att säkerställa dess långsiktiga hållbarhet inom betongkonstruktionen. / Most of Sweden’s concrete dams were built during the 1900’s. Therefore, they are starting to reach the estimated end of their life-cycle; 50-160 years. Some of these concrete dams are used for hydroelectric purposes. Hydroelectric power is one of Sweden’s primary source for electricity, which approximately makes for 45% of our total electric production. Hence, the need for reparation is increasing for further management and maintaining our electricity production in these concrete dams. Concrete dams are linked by expansion joints. These expansion joints help to reduce the stress, during swelling and shrinking, in the concrete caused by temperature variation. Due to the placement of these expansions joint, they become difficult to repair as well as ensuring the success of a reparation. Inside the expansion joint there are dimbands. The dimbands can be sealed with bitumen to help their water stopping abilities. For every expansion joint that is sealed with bitumen the estimated climate impact is 0,5 to 1,5 kg CO2-e per joint. If the dimbands, inside the expansion joint, or the surrounding concrete gets damaged or breaks the bitumen varnishes downstream. This generates for an increased environmental and climate impact, due to the need for new bitumen and steel to fill and seal the leak and oils being released into the surroundings. Therefore, it is also of interest to reduce the usage of bitumen or remove it completely from these dimbands. To minimize the complexity and reduce the usage of bitumen this thesis will evaluate a reparation method with bentonite pellets. The reparation method consists of a borehole, which is then backfilled, with bentonite pellets. There are two concrete dams in Sweden which have used this method. Therefore, this thesis work also aims to evaluate how this reparation will last, regarding time, against other options and future expectations regarding the replacement of bitumen. To begin, the bentonite pellets where first evaluated based on their swelling capabilities and moisture absorption. These attributes were tested by new methods, which are partly based on previous standards. These new methods for the material properties also allowed for long-term evaluation. To evaluate how the bentonite pellets would react over time they were placed in a temperature change cabinet. Five days in these cabinets, were assumed to, correspond to the Northern Swedish climate changes that takes place over a year. The bentonite pellets were then evaluated by the new methods after 1,5 and 3 years. The results, for both swelling and moisture absorption, showed a difference depending on the bentonite type. The pure Na-bentonite moisture absorption has better absorption capabilities over time, compared to chemically produced Na-bentonite. The results from swelling shows that, regardless of bentonite type, they all induce worse swelling capabilities over time. Although, if they begin thawing cycles at a lower water content their swelling capabilities increases due to the bentonite experiencing exsiccation. After the first experimental part, and this newly gathered material knowledge, a miniature version of a concrete dams’ expansion joint were built. The background to this was to research how many altitude meters (mVp) the bentonite pellets could withstand before collapse. Vattenfalls engineers built the testrigg, expansion joint, which primarily consisted of steel. A splintered concrete cube, with a predrilled hole in the middle, was then placed in this steel cartridge. The hole was then filled with bentonite pellets. To see the sequence of the material reaction during pressure tests the testrigg had a top of plexiglass. A manometer was then attached to the plexiglass. The manometer, and a consistent flow of water, allowed for the pressure to be monitored and regulated. When the sedimented bentonite pellets collapses the pressure drops. Results from the pressure tests show a correlation between the bentonite pellets declared swelling pressure and the externally supplied water pressure. Depending on the inflow the bentonite pellets can withstand a pressure between 5 to 12 meters of water height – where the exact value is given by the time it is allowed to sediment. These values only consider the initial expansion of the material. Further research is required to evaluate how much water pressure the material can withstand over time. Based on the findings of this study one of the previously repaired concrete dams’ bentonite seal will collapse in due time, since the reparation exceeds 12 meters in height. Based on the information provided in this thesis it is difficult to decide whether a bentonite seal will be beneficial for the concrete structure. Further research is required to ensure the sustainability of using bentonite inside concrete structures.
|
6 |
Rekommenderade Livscykelplaner för övergångskonstruktioner : En utvärdering av BaTMan data / Recommended Life-Cycle Plans for bridge expansion joints : An evaluation of BaTMan dataSrba, Martin January 2016 (has links)
Studien syftar till att ta fram rekommenderade livscykelplaner för övergångskonstruktioner för att i framtiden möjliggöra säkrare livscykelkostnadsanalyser. Nedbrytningen av övergångskonstruktioner kan grovt delas upp i två kategorier, användarrelaterad nedbrytning samt nedbrytning associerat med rådande klimatförhållanden. I studien har årsdygnstrafiken och klimatzonernas påverkan på övergångskonstruktionen studerats genom utvärdering av historiskt utförda åtgärder kopplade till Trafikverkets broförvaltningssystem BaTMan. Regressionsanalyser och överlevnadsanalyser utfördes för de vanligaste åtgärderna. Resultaten visar att utbyte av tätprofil samt övergångskonstruktion är de åtgärder som förekommer allra mest och sker i genomsnitt efter 25 respektive 33 år. Från analyserna kunde utläsas att trafikintensiteten är en faktor som direkt påverkar nedbrytningen och således reparation och utbyte av övergångskonstruktion, troligt är även att tung trafik står för en stor del av nedbrytningen. Även klimatet verkar ha en påverkan på både övergångskonstruktionens och tätprofilens livslängd. Baserat på resultaten rekommenderas tre livscykelplaner, livscykelplanerna kan användas som underlag i framtida livscykelberäkningar. De kan även användas som stöd för förvaltare vid uppbyggnad av strategier under förvaltningsfasen. / This study aims to develop recommended Life-Cycle Plans for bridge expansion joints which in the future can be used for Life-Cycle Cost analysis to achieve a higher degree of certainty. The degradation of expansion joints can be roughly divided into two categories, user-related degradation and degradation due to climatic conditions. In the study, the influence of annual average daily traffic and climate zones on the expansion joint will be studied by evaluating historically conducted maintenance actions related to the Swedish Transport Administrations (Trafikverket) bridge management system BaTMan. Regression analysis and survival analyzes were performed for the most common actions. The results show that replacement of the strip seal and the expansion joint is the most commonly performed maintenance measures and occurs on average after 25 and 33 years. From the analyzes it was deduced that the traffic intensity is a factor that directly affects the degradation and therefore also the repair and replacement of the expansion joint, likely is also that a large part of the degradation is due to the wear of heavy vehicles. The climate also seems to have an impact on the lifetime of the expansion joint as well as the strip seal. Based on the results, three Life-Cycle Plans was recommended. These Life-Cycle Plans can be used for future Life-Cycle Cost calculations but also to support bridge managers when comparing different maintenance strategies during the operational phase.
|
7 |
Live Load Testing and Analysis of the Southbound Span of U.S. Route 15 over Interstate-66Collins, William Norfleet 25 August 2010 (has links)
more funding must be allocated for their rehabilitation or replacement. The Federal Highway Administration's (FHWA) Long-Term Bridge Performance (LTBP) Program has been developed to help bridge stakeholders make the best decisions concerning the allocation of these funds. This is done through the use of high quality data obtained through numerous testing processes.
As part of the LTBP Pilot Program, researchers have performed live load tests on the U.S. Route 15 Southbound bridge over Interstate-66. The main performance and behavior characteristics focused on are service strain and deflection, wheel load distribution, dynamic load allowance, and rotational behavior of bridge bearings.
Data from this test will be used as a tool in developing and refining a plan for long-term bridge monitoring. This includes identifying the primarily loaded girders and their expected range of response under ambient traffic conditions. Information obtained from this test will also aid in the refinement of finite element models by offering insight into the performance of individual bridge components, as well as overall global behavior. Finally, the methods and results of this test have been documented to allow for comparison with future testing of this bridge, which will yield information concerning the changes in bridge behavior over time. / Master of Science
|
8 |
Kulturně vzdělávací centum / Cultural and educational centerBelžík, Roman January 2013 (has links)
The aim of this thesis is to develop a new building – a cultural and educational center, located in the town of Uherské Hradiště. The building is fitted to the central part of the city, on unused building lot, with good access to public transport links. The building is designed as a partial basement facility, with three floors and a basement. Structurally it is a column-based, skeletal support system, made of reinforced concrete. The basement part consists of bearing walls of reinforced concrete. The ceiling structure is made of locally backed, cross-reinforced slabs, also made of reinforced concrete. The outer perimeter infill masonry is constructed of ceramic bricks with a thickness of 300mm. Interior bearing walls are made of reinforced concrete of appropriate dimensions. Dividing walls are made of plasterboard constructions. Roof structures are formed by a system of flat roofs and terraces. In principle there are two types – the roofs with safety waterproofing and the ones without it. The base structure consists of footings and strips of reinforced concrete.
|
9 |
Průzkum a hodnocení mostu na dálnici D2 / Survey and Assessment of highway D2 BridgeVýpustek, Libor January 2013 (has links)
This thesis deals with the exploration and evaluation of the existing bridge carried him on the highway D2. The work is divided into theoretical and practical parts. The theoretical part focuses on the technical surveys, diagnosis of building structures and some methods of investigation and testing of building structures. In the practical part the visual inspection and diagnosis of disorders of the highway bridge substructures ev. No. D2-058, to determine material characteristics substructure and evaluate the state of the bridge. In conclusion, the practical part of the recommendations for the design and method of repairing the bridge.
|
10 |
Stavebně technologický projekt realizace Místní komunikace ve Žďáru nad Sázavou / Constructive technological project ofKalců, Martin January 2015 (has links)
This diploma thesis deals with the development of constructive technology project od local road in Žďár nad Sázavou. Specifically, there is a solution prestressed reinforced concrete construction of the bridge over the Sázava river according to the extent of the diploma work.
|
Page generated in 0.0789 seconds