• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 17
  • 7
  • 2
  • 1
  • Tagged with
  • 47
  • 47
  • 23
  • 23
  • 14
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modeling and identification of the constitutive behaviour of magneto-rheological elastomers / Modelisation et identification de la loi de comportement des elastomeres magneto-rheologiques

Voropaieff, Jean-Pierre 14 September 2018 (has links)
Ce travail de thèse porte sur une catégorie de matériaux actifs dénommés Elastomères Magnéto-Rhéologiques (EMR). Ces derniers sont composés de particules micrométriques et magnétisables imprégnées dans une matrice élastomère isolante. Il est possible de modifier les propriétés mécaniques de tels matériaux en les soumettant à un champ magnétique externe. Avec pour objectif d’aboutir à une caractérisation couplée (magnéto-mécanique) du comportement des EMRs en grandes déformations et en présence de champs magnétiques élevés, ce travail propose une approche à la fois expérimentale, théorique et numérique.La première partie de ce travail s’intéresse à des aspects expérimentaux où l’influence de la microstructure (isotrope et transverse isotrope) et l’influence de la fraction volumique de particules sont étudiées. Un échantillon dédié est développé afin d’obtenir simultanément des champs mécaniques et magnétiques les plus homogènes possibles dans celui-ci lors d’une caractérisation couplée. La question de l’adhésion interfaciale entre les particules de fer doux et la matrice en silicone est également traitée et il est montré qu’un traitement chimique des particules est nécessaire afin d’éviter toute décohésion avec la matrice lorsque le matériau est soumis à un champ magnétique externe. Avant d’analyser les données obtenues, le dispositif expérimental permettant d’obtenir de manière simultanée une mesure du champ de déformation en trois dimensions et une mesure des champs magnétiques internes, est décrit. Malgré l’ensemble des difficultés expérimentales en grande partie dûes à des phénomènes d’instabilité qui sont omniprésents chez les EMRs, de nombreuses données sont collectées et serviront à la calibration des lois de comportement.La seconde partie de cette thèse couvre la modélisation couplée magnéto-mécanique des EMRs en s’appuyant sur le cadre théorique général des solides magnéto-élastiques proposé par Kankanala, Triantafyllidis et Danas (2004, 2012, 2014). En particulier, la méthode énergétique (qui s’appuie sur l’utilisation d’une fonction d’énergie libre) est préférée et des formulations variationnelles équivalentes (qui diffèrent entre elles simplement par le choix de la variable magnétique indépendante utilisée pour décrire le problème : B, H ou M) sont proposées et implémentées dans des codes numériques 3D s’appuyant sur la méthode des éléments finis. Ces outils numériques sont combinés à la méthode de minimisation des moindres carrés afin d’obtenir l’ensemble des paramètres matériaux du modèle de comportement des EMRs. L’utilisation de simulations numériques est nécessaire car une approche purement analytique ne permettrait pas de modéliser « l’effet de forme » observé expérimentalement. En effet, il est primordial de modéliser ce dernier car dans le cas contraire les paramètres identifiés dépendraient de la forme de l’échantillon expérimental et ne décriraient pas uniquement le matériau.La troisième partie de cette étude décrit en détail l’implémentation numérique des différentes formulations variationnelles proposées précédemment. Dans chacun des cas, il est prouvé que l’utilisation d’éléments isoparamétriques est bien adaptée. De nombreuses difficultés numériques ont été observées dans le cas des formulations variationnelles utilisant le champ de déplacement et le potentiel vecteur magnétique comme variables indépendantes. L’ensemble de ces difficultés (comme par exemple la minimisation de l’énergie potentielle sous la contrainte imposée par la jauge de Coulomb) est surmonté dans ce travail. Avant de décrire les différents problèmes tests utilisés pour s’assurer de la validité et de la précision des codes numériques, les différentes étapes nécessaires à la simulation d’un problème aux limites sont expliquées. Plus précisément, les questions liées aux spécificités des conditions aux limites à appliquer sur le potentiel vecteur magnétique ou encore aux conditions de symétries, sont traitées. / In this thesis, we study a class of “active materials” called Magnetorheological elastomers (MRE) which are ferromagnetic impregnated rubbers whose mechanical properties are altered by the application of external magnetic fields. With the purpose of characterizing the behavior of MREs up to large strains and high magnetic fields, this work brings a completely novel experimental, theoretical and numerical approach.The first part of this study focuses on an experimental investigation of MRE where multiple microstructures (isotropic and transversely isotropic materials) and multiple particles’ volume fraction are tested. A special sample geometry is designed in order to increase the uniformity of internal magnetic and mechanical fields measured during coupled-field experiments. The interfacial adhesion between the iron fillers and the silicone matrix is investigated and we show that when specimens are subjected to external magnetic fields, a silane primer treatment of the particles is needed to prevent debonding at the interface particle/matrix. Then, we present the magneto-mechanical testing setup that allows simultaneous 3D mechanical and magnetic measurements before discussing the results. Even if is found that instabilities are ubiquitous in MREs, lots of useful data are collected and will be used to compute the parameters proposed in the material model.The second part of the thesis is dedicated to the modeling of isotropic MREs. The continuum description proposed by Kankanala, Triantafyllidis and Danas (2004, 2012, 2014) to derive constitutive laws that account for finite strains is used and, in particular, the energetic approach (that requires an energy density function) is chosen. Multiple equivalent variational formulation alternatives (based on different choices of the independent magnetic variable used in the energy function: B, H or M) are given and implemented into 3D finite element (FEM) codes. Based on the use of FEM simulation in combination with least square optimization methods, the previously collected experimental data are fitted and all three energy functions ψB , ψH and ψM are computed. The obtained material model proves to have excellent predictive capabilities when compared to other experiments not used in the fitting process. The use of numerical tools is necessary to make sure that the calculated material parameters are not influenced by the shape of experimental specimens.The last part of this work details the numerical implementation of the different variational formulations. For each one of them, it is found that isoparametric elements are well suited to simulate coupled magneto-mechanical boundary value problems. We show that special care is needed when implementing variational formulations using the displacement vector and the magnetic vector potential as independent variables. Indeed, ensuring the uniqueness of the vector potential requires to numerically enforce the Coulomb gauge, which leads to numerical complications that are addressed in this thesis. Before describing the different patch tests that have been considered to validate the numerical codes, we show which are the valid boundary conditions for the magnetic vector potential and how to use the symmetry properties of a given boundary value problem to reduce its complexity and the computational resources needed to solve it.
12

Experimental characterization and constitutive modeling of viscoplastic effects in high strain-rate deformation of polycrystalline FCC metals

Santos, Tiago dos January 2016 (has links)
O presente trabalho tem como objetivo a caracterização experimental e modelagem constitutiva do comportamento de metais CFC (Cúbicos de Face Centrada) policristalinos quando submetidos a altas taxas de deformação. O material empregado no desenvolvimento do trabalho é uma liga de alumínio comercialmente pura: o alumínio AA1050. No âmbito da presente investigação, os experimentos são conduzidos à temperatura ambiente. O desenvolvimento experimental tem por objetivo evidenciar as principais características constitutivas que descrevem o comportamento macroscópico desta classe de metais quando submetidos a processos de deformação envolvendo altas taxas de deformação: (i) o endurecimento induzido pela deformação; (ii) o endurecimento induzido pela taxa de deformação; e (iii) a sensibilidade instantânea em relação à taxa de deformação. Para a caracterização de cada uma destes aspectos constitutivos, são realizados experimentos específicos utilizando equipamentos desenvolvidos, em sua maioria, no contexto da presente investigação. De forma geral, os experimentos consistem em ensaios de compressão envolvendo uma ampla faixa de taxas de deformação, variando desde condições quasi-estáticas a taxas na ordem de 104 s−1. Os resultados experimentais, juntamente com evidências experimentais macro e microscópicas disponíveis na literatura, dão suporte ao desenvolvimento de um modelo constitutivo elasto-viscoplástico. A formulação constitutiva segue uma abordagem semi-física, na qual a escolha das variáveis inelásticas e proposição de suas regras de evolução são qualitativamente guiadas por considerações metalúrgicas baseadas no acúmulo e organização de discordâncias O modelo proposto, embora consista em uma abordagem simplificada quando comparado a modelos de base física, é capaz de representar separadamente cada uma das características constitutivas destacadas anteriormente. Com base nos resultados experimentais aqui obtidos, o modelo elasto-viscoplástico proposto é então ajustado e posteriormente validado. Na sequência é desenvolvida a formulação numérica relacionada ao modelo proposto. A abordagem como um todo é inserida em um contexto de deformações finitas seguindo uma descrição Lagrangiana Total. O desenvolvimento numérico descreve o procedimento utilizado para solução de problemas de equilíbrio não lineares seguindo uma formulação incremental implícita empregando o método dos elementos finitos. Em um contexto local, é utilizado um esquema de integração implícito seguindo um mapeamento exponencial. A linearização das equações de mapeamento de retorno possibilita a derivação analítica do módulo tangente consistente. O modelo constitutivo, bem como o procedimento numérico, são utilizados para a solução de problemas numéricos clássicos como: ensaio de compressão em condições de deformações homogêneas, e compressão envolvendo contato com atrito. As simulações numéricas avaliam tanto a capacidade constitutiva do modelo proposto em descrever o comportamento de estruturas quando deformadas sob condições envolvendo elevadas taxas de deformação, quanto à eficiência do procedimento numérico a partir de análises de convergência Em conclusão, com o procedimento experimental adotado é possível evidenciar as principais características macroscópicas inerentes ao comportamento de metais quando submetidos a processos de deformação envolvendo altas velocidades. Além disso, com base nos resultados analíticos e numéricos, observa-se que o modelo constitutivo proposto é capaz de reproduzir de forma satisfatória os comportamentos evidenciados experimentalmente. / The present work aims at performing the experimental characterization and constitutive modeling associated with the mechanical behavior of polycrystalline FCC (Face Centered Cubic) metals when subjected to high strain-rate deformations. The material to be employed in the experiments is a commercially pure aluminum alloy: aluminum AA1050. Within the present investigation context, experiments are performed at room temperatures. The primary objective of the laboratory experiments is to assess the main constitutive features associated with the macroscopic mechanical behavior observed for FCC metals subjected to high strain-rate deformation processes: (i) strain-hardening; (ii) strain-rate-hardening; and (iii) instantaneous rate-sensitivity. In order to characterize each constitutive feature, experiments using equipments specifically devised to achieve the objectives are performed. The laboratory investigation consists of compression tests involving a wide strain-rate range, from quasi-static conditions to strain-rates of the order of 104 s−1. Experimental results together with micro and macroscopic experimental evidences available in the literature give support to the development of a elastic-viscoplastic model. The stress-strain formulation follows a semi-physical approach, in which inelastic variables and their evolution equations are qualitatively motivated by metallurgical considerations based on the storage and arrangement of dislocations. Although its simplified nature when compared to physically-based models, the proposed model is capable of representing separately each one of the constitutive features highlighted early In addition, in analogy to the stress-strain proposition, a model describing the material hardness evolution in terms of strain and strain-rate histories is also provided. Based on the obtained experimental results, the proposed elastic-viscoplastic and hardness evolution models are adjusted and then validated. The corresponding stress-strain numerical formulation is developed in a subsequent step. The approach as a whole is integrated into finite strain framework following a Total Lagrangian description. The procedure employed to solve nonlinear equilibrium problem follows an implicit incremental formulation implemented in the context of the finite element method. At a local level, an implicit integration scheme based on an exponential mapping is adopted. From linearization of return mapping equations, an analytical consistent tangent modulus is obtained. Both constitutive model and numerical approach are employed to simulated classical problems: a compression test involving homogeneous deformation and a compression test involving contact and frictional conditions. Numerical simulations evaluate the constitutive capabilities associated with the proposed model when predicting the structural behavior at high strain-rate loadings. Furthermore, numerical efficiency and robustness related to the present procedure are also assessed by means of convergence analysis. While the adopted experimental procedure gave fundamental evidences of the main macroscopic features inherent in the metallic material behavior when subjected to high strain-rate deformations, the analytical and numerical results demonstrated that the proposed constitutive model is able to suitably reproduce the observed behavior.
13

Etude des performances de matériaux hybrides MOFs pour le captage de COVs / Probing the performances of MOFs for VOCs recovery

Planchais, Arnaud 12 December 2014 (has links)
Ce travail est une contribution à la compréhension des performances de matériaux hybrides poreux de type MOFs pour le captage de benzène, dans le cadre de la lutte contre les émissions de Composés Organiques Volatils (COVs) à partir de procédés basés sur l'adsorption d'effluents gazeux. Dans ce but, nous avons couplé diverses techniques expérimentales (spectroscopie d'impédance complexe, diffraction des rayons X, manométrie d'adsorption, …) à des simulations moléculaires (calculs basés sur la Théorie de la Fonctionnelle de la Densité, Monte Carlo ou Dynamique Moléculaire) pour étudier ces matériaux en termes de capacité et de mécanisme d'adsorption. Différentes familles de MOFs ont été sélectionnées afin d'analyser l'impact de diverses caractéristiques de ces matériaux, comme la flexibilité du réseau, la présence de cations extra-réseau et la nature chimique des ligands organiques, sur leurs propriétés d'adsorption de benzène. Par ailleurs, l'eau étant souvent considérée comme un facteur limitant lors de l'adsorption sélective d'une espèce à partir d'effluents gazeux chargés d'humidité, nous avons également envisagé l'étude de cet adsorbat seul, avant d'explorer la co-adsorption de mélanges benzène/eau dans des proportions différentes. Une rationalisation des données nous a permis de conclure que certains des matériaux explorés présentent une sélectivité benzène/eau intéressante pour envisager leur utilisation potentielle dans le cadre du captage de traces. / The Metal Organic Frameworks (MOFs), a recent class of hybrid porous solids, appears as valuable candidates for various applications related to their sorption abilities. The optimization of their performances requires a control of the parameters that govern the adsorption process, including the confined species/MOF interactions and the synergic dynamics of the system. In this context, experimental tools (Complex Impedance Spectroscopy, X Ray Diffraction, volumetric adsorption…) were combined with molecular simulations (Density Functional Theory, Monte Carlo and Molecular Dynamics calculations) to explore the benzene adsorption of MOFs in terms of capacity and microscopic mechanism. Different series of MOFs were selected to address the impact of various features, including the lattice flexibility, the presence of extra-framework cations and the ligand functionalization, on their adsorption performances. Benzene and water were considered as adsorbents separately, before exploring the co-adsorption of various benzene/water mixtures. The rationalization of the data allowed us to understand why some of the selected solids, showing interesting benzene/water selectivity, are likely to be used for the capture of benzene traces in humid conditions.
14

Channel modeling for polarized MIMO systems/Modélisation de canal pour systèmes MIMO polarisés

Quitin, François 06 April 2011 (has links)
This thesis treats of channel models for polarized multi-antenna wireless systems. Polarized multi-antenna systems are systems that use perpendicularly polarized, co-located antennas at the base station and at the mobile terminal, in order to benefit from the so-called polarization diversity. Such systems benefit from the advantages of MIMO systems while still maintaining a compact equipment size. Two models will be presented in this thesis. The first one is the Polarized-Input Polarized-Output (PIPO) channel model, the second one is the Polarized-Diffuse-Directional channel model. The PIPO model is a statistical channel model for tri-polarized to tri-polarized communication systems. A tri-polarized antenna system is a tranceiver using three perpendicular antennas. The aim of the PIPO channel model is to have a model that has a simple mathematical structure, so it can be used for solving precoding equations or capacity calculations. Although the PIPO model has a very simple structure, it takes the following parameters into account: coherent channel component, cross-polar channel power imbalance, inter-channel correlation, short- and long-scale time variance. Experimental measurements are used to parameterize the model. It is shown how the model parameters are extracted from experimental measurements, and the results are analyzed to allow further simplification of the model. The PDD model, on the other hand, is a geometry-based stochastic channel model. It models the channel as a sum of clusters, where each cluster consists of groups of multipath components (MPCs). The PDD model includes two novelties that will be developed in detail in this thesis. - The model considers polarization on a per-cluster basis. This permits to have a more accurate description of the polar-angular spectrum. - The diffuse multipath component (DMC) is included by considering a diffuse component for each cluster. The diffuse cluster component is then modeled as the sum of a set of diffuse MPCs. The model is specified in detail, and it is shown how the model can be generated. Experimental measurements were carried out to parameterize the model. A new extraction technique for extracting the specular-diffuse clusters from the measurements is proposed. This technique is based on joint clustering of the specular MPCs and the bins of the diffuse component. The experimental results are analyzed, and superimposed with environment information to gain further insight into the physical aspects of clustered propagation. Finally, both models are validated. Several validation metrics are introduced, and their pertinence in the context of polarized MIMO systems is highlighted. Both models are successfully validated, and the advantages and limitations of each models are investigated. Cette thèse traite des modèles de canal pour systèmes sans-fils multi-antennes polarisés. Des systèmes multi-antennes polarisés sont des systèmes qui utilisent des antennes polarisées perpendiculairement co-localisées à la station de base et au terminal mobile, dans le but de bénéficier de la diversité de polarisation. De tels systèmes peuvent bénéficier des avantages des systèmes MIMO tout en diminuant l'encombrement des équipements. Deux modèles seront présentés dans cette thèse. Le premier est le modèle Polarized-Input Polarized-Output (PIPO), le second est le modèle Polarized-Diffuse-Directional (PDD). Le modèle PIPO est un modèle statistique pour des systèmes de communication tri-polaire à tri-polaire. Un système tri-polaire est un émetteur ou un récepteur qui utilise trois antennes perpendiculaires. Le but du modèle de canal PIPO est d'avoir un modèle qui a une structure mathématique simple, afin qu'il puisse être utilisé pour résoudre des équations de précodage ou des calculs de capacité. Malgré la structure simple du modèle PIPO, il tient compte des paramètres suivants: la composante cohérente du canal, les différences de puissance entre canaux cross-polaires, la corrélation entre canaux, les variations à courte et à longue échelle de temps. Des mesures expérimentales ont été réalisées afin de paramétriser le modèle. Les techniques pour extraire les paramètres du modèle des mesures expérimentales sont présentées, et les résultats sont analysés afin de permettre une simplification supplémentaire du modèle. Le modèle PDD, quant à lui, est un modèle de canal stochasique-géométrique. Il modélise le canal comme une somme de clusters, où chaque clusters est composé d'un groupe de chemins multi-trajets. Le modèle PDD inclut les deux nouveautés suivantes qui seront développées en détail dans cette thèse. - Le modèle considère une polarisation par cluster. Ceci permet d'avoir une description plus exacte du spectre angulaire-polaire. - La composante diffuse est prise en compte en incluant une composante diffuse pour chaque cluster. La composante diffuse d'un cluster est alors modelisée comme une somme de multi-trajets diffus. Le modèle est spécifié en détail, et il est présenté comment le modèle peut être généré. Des mesures expérimentales ont été faites afin de paramétriser le modèle. Une nouvelle technique d'extraction est proposée pour extraire les clusters spéculaires-diffus. Cette technique est basée sur le clustering conjoint des multi-trajets spéculaires et des "bins" de la composante diffuse. Les résultats expérimentaux sont analysés, et superposés avec l'information de l'environnement de mesure afin d'avoir une connaissance accrue des aspects physiques de la propagation par clusters. Finalement, les deux modèles sont validés. Plusieurs métriques de validations sont introduites, et leur pertinence dans le cadre des systèmes MIMO polarisés est mis en avant. Les deux modèles sont validés avec succès, et les avantages et limitations de chaque modèle sont investigués.
15

Contribution à la caractérisation mécanique et à la modélisation des tricots de Nickel-Titane / Contribution to the mechanical characterization and modelling of knitted Nickel-Titanium textiles

Tissot, François 10 October 2016 (has links)
Le tricotage est une technique d'obtention de textiles ancestrale qui est encore couramment utilisée de nos jours. Cette technique permet de produire des textiles possédant une forte déformation élastique, un comportement mécanique anisotrope modifiable simplement en jouant sur la géométrie de la maille, la possibilité d'obtenir des formes générales (préformes) ou internes (trous) durant le procédé de fabrication, rendant ces textiles particulièrement attractifs et rentables. Plus récemment, l’utilisation des alliages à mémoire de forme (AMF), en particulier de fils de Nickel-Titane (Ni-Ti), pour produire ces tricots a permis de proposer des textiles aux fonctionnalités nouvelles, telles qu'une très grande déformation élastique, un changement de forme sous l'effet d'un échauffement, une forte capacité d’amortissement, etc.Cependant, le comportement mécanique de tels tricots AMF reste encore assez mal connu, et bien qu'un certain nombre d'études aient déjà été proposées dans la littérature concernant la caractérisation du comportement mécanique de ces tricots, l'application aux tricots NiTi reste insuffisamment faite.Dans ce travail, un ensemble d’outils expérimentaux et numériques a été mis en place pour étudier la déformation des tricots NiTi, en particulier pour évaluer l'influence des paramètres matériaux, géométrie, frottements, etc., sur le comportement mécanique. Un montage expérimental a été développé pour caractériser le textile en traction biaxiale. Il s'inspire des techniques utilisées pour les membranes souples visant à obtenir un champ de déformation le plus uniforme possible dans la zone déformée. De plus, sa conception ainsi qu’un programme de traitement d'images permettent la mesure de la distribution des efforts aux frontières ainsi que la mesure de la morphologie des mailles du tricot au cours de la déformation.Le comportement mécanique du tricot a été modélisé par homogénéisation numérique en réalisant des simulations numériques par éléments finis sur une maille représentative sous conditions périodiques. Les prédictions des simulations sont validées en regard des résultats expérimentaux obtenus sur les tricots NiTi, en traction simple et traction biaxiale suivant les directions chaine et trame. Elles sont ensuite utilisées pour analyser l'importance des différents mécanismes de déformation en fonction de la sollicitation étudiée. / Knitting is an ancestral textile manufacturing technique which is still commonly used nowadays. This method allows to manufacture textiles possessing high recoverable strains, an anisotropic mechanical behavior easily tuned by varying the knit loop dimensions, the ability to obtain general forms (preforms) or internal forms (holes) during the manufacturing process, and more, making those textiles particularly attractive and cost-efficient. More recently, the use of Shape Memory Alloys (SMA), notably Nickel-Titanium (Ni-Ti) wires, for producing those textiles allowed to propose textiles with new functional properties, such as very high recoverable strains, shape-shifting effects under temperature changes, high damping capacity, etc.However, such SMA knitted textiles mechanical behavior remains relatively unknown, and even if a certain number of studies have dealt with the knitted textiles mechanical characterization, the application to NiTi knitted textiles remains insufficiently done.In this work, a set of experimental and numerical tools have been developed to study knitted NiTi textiles deformation, especially to evaluate the influence of material parameters, knit geometry, friction, etc., on the mechanical behavior. An experimental setup has been developed to characterize such textiles in biaxial tension. It is inspired by methods developed for soft membranes aiming at obtaining strain fields as uniform as possible in the sample working area. Furthermore, its conception as well as a dedicated image processing software allow measuring boundary forces distributions and knit loops morphology during deformation.The knitted textile mechanical behavior has been modeled using numerical homogenization method by performing finite elements numerical simulation of a representative knit loop under periodic conditions. Simulations predictions are validated in regard to experimental results obtained on knitted NiTi textiles, in simple tension and biaxial tension in course and wale directions. They are then used to analyze the importance of different deformation mechanisms depending on the loading case studied.
16

Assemblages collés : modélisation, simulation et caractérisation expérimentale / Adhesively Bonded Joints : Modeling, Simulation and Experimental Characterization

Lélias, Guillaume 08 July 2016 (has links)
Dans le cadre d'un projet de recherche interne nommé JoSAT (Joint Stress Analysis Tool), Sogeti High Tech a développé depuis 2008 un outil de simulation simplifié d'analyse de joints collés. Cet outil permet d'obtenir à la fois la répartition des efforts internes dans chacun des substrats mais également la répartition des contraintes adhésives le long du recouvrement, tout en ayant l'avantage d'être beaucoup moins chronophage que la méthode des Éléments-Finis (EF). En 2011, cet outil a été étendu de sorte à supporter différents comportements adhésifs non-linéaires sous la forme de relations contrainte-déformation spécifiée par l'utilisateur. Cependant, le champs d'application de cette nouvelle théorie fut démontré comme limitée aux jonctions en simple recouvrement, et dans le cas de faible non-linéarité uniquement. Dans ce contexte, l'objectif de la thèse est double. Premièrement, étendre et valider l'outil d'analyse simplifiée aux cas de comportement non-linéaire adhésif mais également des substrats. Deuxièmement, proposer et développer de nouvelles méthodes visant à caractériser le comportement non-linéaire d'un film adhésif. / In the frame of an internal research program called JoSAT (Joint Stress Analysis Tool), SogetiHigh Tech has suggested developing since 2008 a simplified tool for the stress analysis ofadhesively bonded joints. This tool allows for the distribution of both the internal forces anddisplacements in the adherends as well as the adhesive stresses along the overlap to beestimated from specified loads and boundary conditions, and has the advantage of beingextremely time saving compared to conventional Finite Element (FE) analyses.In 2011, this tool was extended to support adhesive material nonlinearities in the form ofspecified adhesive stress-strain evolution laws. However the theory developed wasdemonstrated as valid for the Single-Lap Joint (SLJ) configuration only, and limited to smalllevels of adhesive material nonlinearities. In this context, the objective of the thesis is double. First, extend and validate the simplified tool for the analysis of adhesively bonded joints in the case of nonlinear adhesive as well asadherends stress-strain constitutive behaviors. Then, suggest and develop experimentalprotocols for the characterization of the cohesive properties of thin adhesive layers so that thesimplified tool can be sustained with relevant experimental data in terms of adhesive stressstainconstitutive relationships.
17

Experimental characterization and constitutive modeling of viscoplastic effects in high strain-rate deformation of polycrystalline FCC metals

Santos, Tiago dos January 2016 (has links)
O presente trabalho tem como objetivo a caracterização experimental e modelagem constitutiva do comportamento de metais CFC (Cúbicos de Face Centrada) policristalinos quando submetidos a altas taxas de deformação. O material empregado no desenvolvimento do trabalho é uma liga de alumínio comercialmente pura: o alumínio AA1050. No âmbito da presente investigação, os experimentos são conduzidos à temperatura ambiente. O desenvolvimento experimental tem por objetivo evidenciar as principais características constitutivas que descrevem o comportamento macroscópico desta classe de metais quando submetidos a processos de deformação envolvendo altas taxas de deformação: (i) o endurecimento induzido pela deformação; (ii) o endurecimento induzido pela taxa de deformação; e (iii) a sensibilidade instantânea em relação à taxa de deformação. Para a caracterização de cada uma destes aspectos constitutivos, são realizados experimentos específicos utilizando equipamentos desenvolvidos, em sua maioria, no contexto da presente investigação. De forma geral, os experimentos consistem em ensaios de compressão envolvendo uma ampla faixa de taxas de deformação, variando desde condições quasi-estáticas a taxas na ordem de 104 s−1. Os resultados experimentais, juntamente com evidências experimentais macro e microscópicas disponíveis na literatura, dão suporte ao desenvolvimento de um modelo constitutivo elasto-viscoplástico. A formulação constitutiva segue uma abordagem semi-física, na qual a escolha das variáveis inelásticas e proposição de suas regras de evolução são qualitativamente guiadas por considerações metalúrgicas baseadas no acúmulo e organização de discordâncias O modelo proposto, embora consista em uma abordagem simplificada quando comparado a modelos de base física, é capaz de representar separadamente cada uma das características constitutivas destacadas anteriormente. Com base nos resultados experimentais aqui obtidos, o modelo elasto-viscoplástico proposto é então ajustado e posteriormente validado. Na sequência é desenvolvida a formulação numérica relacionada ao modelo proposto. A abordagem como um todo é inserida em um contexto de deformações finitas seguindo uma descrição Lagrangiana Total. O desenvolvimento numérico descreve o procedimento utilizado para solução de problemas de equilíbrio não lineares seguindo uma formulação incremental implícita empregando o método dos elementos finitos. Em um contexto local, é utilizado um esquema de integração implícito seguindo um mapeamento exponencial. A linearização das equações de mapeamento de retorno possibilita a derivação analítica do módulo tangente consistente. O modelo constitutivo, bem como o procedimento numérico, são utilizados para a solução de problemas numéricos clássicos como: ensaio de compressão em condições de deformações homogêneas, e compressão envolvendo contato com atrito. As simulações numéricas avaliam tanto a capacidade constitutiva do modelo proposto em descrever o comportamento de estruturas quando deformadas sob condições envolvendo elevadas taxas de deformação, quanto à eficiência do procedimento numérico a partir de análises de convergência Em conclusão, com o procedimento experimental adotado é possível evidenciar as principais características macroscópicas inerentes ao comportamento de metais quando submetidos a processos de deformação envolvendo altas velocidades. Além disso, com base nos resultados analíticos e numéricos, observa-se que o modelo constitutivo proposto é capaz de reproduzir de forma satisfatória os comportamentos evidenciados experimentalmente. / The present work aims at performing the experimental characterization and constitutive modeling associated with the mechanical behavior of polycrystalline FCC (Face Centered Cubic) metals when subjected to high strain-rate deformations. The material to be employed in the experiments is a commercially pure aluminum alloy: aluminum AA1050. Within the present investigation context, experiments are performed at room temperatures. The primary objective of the laboratory experiments is to assess the main constitutive features associated with the macroscopic mechanical behavior observed for FCC metals subjected to high strain-rate deformation processes: (i) strain-hardening; (ii) strain-rate-hardening; and (iii) instantaneous rate-sensitivity. In order to characterize each constitutive feature, experiments using equipments specifically devised to achieve the objectives are performed. The laboratory investigation consists of compression tests involving a wide strain-rate range, from quasi-static conditions to strain-rates of the order of 104 s−1. Experimental results together with micro and macroscopic experimental evidences available in the literature give support to the development of a elastic-viscoplastic model. The stress-strain formulation follows a semi-physical approach, in which inelastic variables and their evolution equations are qualitatively motivated by metallurgical considerations based on the storage and arrangement of dislocations. Although its simplified nature when compared to physically-based models, the proposed model is capable of representing separately each one of the constitutive features highlighted early In addition, in analogy to the stress-strain proposition, a model describing the material hardness evolution in terms of strain and strain-rate histories is also provided. Based on the obtained experimental results, the proposed elastic-viscoplastic and hardness evolution models are adjusted and then validated. The corresponding stress-strain numerical formulation is developed in a subsequent step. The approach as a whole is integrated into finite strain framework following a Total Lagrangian description. The procedure employed to solve nonlinear equilibrium problem follows an implicit incremental formulation implemented in the context of the finite element method. At a local level, an implicit integration scheme based on an exponential mapping is adopted. From linearization of return mapping equations, an analytical consistent tangent modulus is obtained. Both constitutive model and numerical approach are employed to simulated classical problems: a compression test involving homogeneous deformation and a compression test involving contact and frictional conditions. Numerical simulations evaluate the constitutive capabilities associated with the proposed model when predicting the structural behavior at high strain-rate loadings. Furthermore, numerical efficiency and robustness related to the present procedure are also assessed by means of convergence analysis. While the adopted experimental procedure gave fundamental evidences of the main macroscopic features inherent in the metallic material behavior when subjected to high strain-rate deformations, the analytical and numerical results demonstrated that the proposed constitutive model is able to suitably reproduce the observed behavior.
18

Experimental characterization and constitutive modeling of viscoplastic effects in high strain-rate deformation of polycrystalline FCC metals

Santos, Tiago dos January 2016 (has links)
O presente trabalho tem como objetivo a caracterização experimental e modelagem constitutiva do comportamento de metais CFC (Cúbicos de Face Centrada) policristalinos quando submetidos a altas taxas de deformação. O material empregado no desenvolvimento do trabalho é uma liga de alumínio comercialmente pura: o alumínio AA1050. No âmbito da presente investigação, os experimentos são conduzidos à temperatura ambiente. O desenvolvimento experimental tem por objetivo evidenciar as principais características constitutivas que descrevem o comportamento macroscópico desta classe de metais quando submetidos a processos de deformação envolvendo altas taxas de deformação: (i) o endurecimento induzido pela deformação; (ii) o endurecimento induzido pela taxa de deformação; e (iii) a sensibilidade instantânea em relação à taxa de deformação. Para a caracterização de cada uma destes aspectos constitutivos, são realizados experimentos específicos utilizando equipamentos desenvolvidos, em sua maioria, no contexto da presente investigação. De forma geral, os experimentos consistem em ensaios de compressão envolvendo uma ampla faixa de taxas de deformação, variando desde condições quasi-estáticas a taxas na ordem de 104 s−1. Os resultados experimentais, juntamente com evidências experimentais macro e microscópicas disponíveis na literatura, dão suporte ao desenvolvimento de um modelo constitutivo elasto-viscoplástico. A formulação constitutiva segue uma abordagem semi-física, na qual a escolha das variáveis inelásticas e proposição de suas regras de evolução são qualitativamente guiadas por considerações metalúrgicas baseadas no acúmulo e organização de discordâncias O modelo proposto, embora consista em uma abordagem simplificada quando comparado a modelos de base física, é capaz de representar separadamente cada uma das características constitutivas destacadas anteriormente. Com base nos resultados experimentais aqui obtidos, o modelo elasto-viscoplástico proposto é então ajustado e posteriormente validado. Na sequência é desenvolvida a formulação numérica relacionada ao modelo proposto. A abordagem como um todo é inserida em um contexto de deformações finitas seguindo uma descrição Lagrangiana Total. O desenvolvimento numérico descreve o procedimento utilizado para solução de problemas de equilíbrio não lineares seguindo uma formulação incremental implícita empregando o método dos elementos finitos. Em um contexto local, é utilizado um esquema de integração implícito seguindo um mapeamento exponencial. A linearização das equações de mapeamento de retorno possibilita a derivação analítica do módulo tangente consistente. O modelo constitutivo, bem como o procedimento numérico, são utilizados para a solução de problemas numéricos clássicos como: ensaio de compressão em condições de deformações homogêneas, e compressão envolvendo contato com atrito. As simulações numéricas avaliam tanto a capacidade constitutiva do modelo proposto em descrever o comportamento de estruturas quando deformadas sob condições envolvendo elevadas taxas de deformação, quanto à eficiência do procedimento numérico a partir de análises de convergência Em conclusão, com o procedimento experimental adotado é possível evidenciar as principais características macroscópicas inerentes ao comportamento de metais quando submetidos a processos de deformação envolvendo altas velocidades. Além disso, com base nos resultados analíticos e numéricos, observa-se que o modelo constitutivo proposto é capaz de reproduzir de forma satisfatória os comportamentos evidenciados experimentalmente. / The present work aims at performing the experimental characterization and constitutive modeling associated with the mechanical behavior of polycrystalline FCC (Face Centered Cubic) metals when subjected to high strain-rate deformations. The material to be employed in the experiments is a commercially pure aluminum alloy: aluminum AA1050. Within the present investigation context, experiments are performed at room temperatures. The primary objective of the laboratory experiments is to assess the main constitutive features associated with the macroscopic mechanical behavior observed for FCC metals subjected to high strain-rate deformation processes: (i) strain-hardening; (ii) strain-rate-hardening; and (iii) instantaneous rate-sensitivity. In order to characterize each constitutive feature, experiments using equipments specifically devised to achieve the objectives are performed. The laboratory investigation consists of compression tests involving a wide strain-rate range, from quasi-static conditions to strain-rates of the order of 104 s−1. Experimental results together with micro and macroscopic experimental evidences available in the literature give support to the development of a elastic-viscoplastic model. The stress-strain formulation follows a semi-physical approach, in which inelastic variables and their evolution equations are qualitatively motivated by metallurgical considerations based on the storage and arrangement of dislocations. Although its simplified nature when compared to physically-based models, the proposed model is capable of representing separately each one of the constitutive features highlighted early In addition, in analogy to the stress-strain proposition, a model describing the material hardness evolution in terms of strain and strain-rate histories is also provided. Based on the obtained experimental results, the proposed elastic-viscoplastic and hardness evolution models are adjusted and then validated. The corresponding stress-strain numerical formulation is developed in a subsequent step. The approach as a whole is integrated into finite strain framework following a Total Lagrangian description. The procedure employed to solve nonlinear equilibrium problem follows an implicit incremental formulation implemented in the context of the finite element method. At a local level, an implicit integration scheme based on an exponential mapping is adopted. From linearization of return mapping equations, an analytical consistent tangent modulus is obtained. Both constitutive model and numerical approach are employed to simulated classical problems: a compression test involving homogeneous deformation and a compression test involving contact and frictional conditions. Numerical simulations evaluate the constitutive capabilities associated with the proposed model when predicting the structural behavior at high strain-rate loadings. Furthermore, numerical efficiency and robustness related to the present procedure are also assessed by means of convergence analysis. While the adopted experimental procedure gave fundamental evidences of the main macroscopic features inherent in the metallic material behavior when subjected to high strain-rate deformations, the analytical and numerical results demonstrated that the proposed constitutive model is able to suitably reproduce the observed behavior.
19

Evaluation numérique des contraintes résiduelles appliquée à l'acier DP600 soudé par laser de haute puissance Nd : YAG / Numérical evaluation of the residueal stress applied to the laser welded steel DP 600 high power Nd : YAG

Seang, Chansopheak 27 June 2013 (has links)
Les études sur les procédés de soudage et sur la fiabilité des structures assemblées apparaissent actuellement comme un domaine de recherche actif, ouvert et complexe, car elles nécessitent de combiner de nombreuses connaissances dans différents domaines de la physique, de la mécanique et des procédés. La distribution des contraintes résiduelles joue un rôle important dans la vie des structures en favorisant la rupture par fatigue ou par fissuration. Ainsi, une meilleure compréhension des contraintes résiduelles évite l'utilisation de facteurs de sécurité plus élevés et, par conséquent permet de mieux optimiser le cycle de vie des structures soudées. A travers ce travail de thèse, nous nous sommes intéressés au soudage par laser d’un acier dual phase DP600, soudé en configuration par recouvrement, dont l’application est l’utilisation dans le domaine automobile. Cette thèse présente deux volets : un volet expérimental et un volet numérique.L’étude expérimentale nous a permis d’une part d’appréhender les conséquences métallurgiques et mécaniques du procédé laser sur l’acier DP600 et d’autre part d’utiliser et de valider les résultats numériques des modèles développés. L’étude numérique a eu pour objectif de prédire l’histoire thermique, métallurgique et l’évolution des caractéristiques mécaniques des tôles soudées par faisceau laser. Nous avons développé, sur un code de calcul par élémentsfinis Abaqus, trois modèles numériques. Le modèle thermomécanique, nous a permis de simuler la distribution spatio-temporelle de la température. Dans ce cas, le chargement appliqué est dépendant des paramètres du procédé etdes caractéristiques du faisceau laser et est associé à des conditions aux limites. Pour le modèle mécanique, nous avonsconsidéré un comportement élasto-plastique avec un chargement thermique transitoire, résultat du modèle thermique.Le deuxième modèle thermo-métallurgique nous a permis de simuler les phénomènes d’austénisation pendant la phase de chauffage (modèle de Waeckel) et de prendre en compte les fractions volumiques des phases martensitiques générées par les transformations de phases austénite–martensite lors du refroidissement (modèle de Koistinen-Marburger). Enfin, dans la dernière partie de simulation, nous avons réalisé le couplage thermo-metallo-mécanique. Les résultats obtenus dans la partie précédente, ont été implémentés dans deux modèles mécaniques : le modèle mécanique classique et le modèle mécanique avec prise en compte de la déformation liée aux effets de dilatation métallurgique. Cet effet a été intégré à travers le coefficient de dilatation thermique des phases ferritiques et martensitiques et des fractions volumiques obtenues à partir du modèle thermo-métallurgique. Les résultats ont montré que la répartition des contraintes résiduelles dans la zone de fusion et dans la zone affectée thermiquement sous l’effet de la déformation thermo-métallurgique donne des valeurs supérieures à celles estimées par le modèle élasto-plastique classique. / Studies on welding processes and the reliability of assembled structures currently appear as an area of active research, open and complex as they need to combine knowledge in many different fields of physics, mechanics and processes. The distribution of residual stress plays an important role in the life of welded structures by promoting fatigue failure or cracking. Thus, a better understanding of residual stress avoids the use of higher safety factors and therefore helps to optimize the life cycle of welded structures. Through this work, we are interested in laser welding of steel DP600 dual phase welded overlap configuration, the application is the use in the automotive field. This thesis has two components: an experimental and a numerical part. The experimental study allowed us, firstly to understand the metallurgical and mechanical effects of laser welding on steel DP600 and secondly to use and validate the numerical results of the developed models. The numerical study aimed to predict the thermal history, and metallurgical changes in mechanical properties of laser beam welded sheets. We have developed three numerical models by using a finite element code inside Abaqus. The thermomechanical model allowed us to simulate the temporal and spatial distribution of temperature. In this case, the applied load is dependent on the processing parameters and characteristics of the laser beam and is associated with boundary conditions. For the mechanical model, we considered an elastoplastic behavior with a transient thermal loading result of the thermal model. The second thermo-metallurgical m odel allowed us to simulate the phenomena austenitizing during the heating phase (Waeckel model) and take into account the volume fraction of martensitic phase transformations generated by the austenite-martensite transformation during cooling (Koistinen-Marburger model). Finally, in the last part of simulation, we have achieved the metallothermo- mechanical coupling. The results obtained in the previous section have been implemented in two mechanical models: the classical mechanics model and the mechanical model taking intoaccount the deformation due to the effects of metallurgical expansion. This effect has been built through the coefficient ofthermal expansion of ferritic and martensitic phases and volume fractions obtained from the thermo-metallurgical model. The results showed that the distribution of residual stresses in the fusion zone and the heat affected as a result of the eformation thermometallurgical field gives values higher than those estimated by the classical elastic-plastic model.
20

Modélisation d'un procédé de bûcheronnage mécanisé / Modeling of the Cut-to-Length hardwood harvesting process

Hatton, Benjamin 29 September 2014 (has links)
Dans le cadre du projet ECOMEF visant à éco-concevoir un outil de bûcheronnage pour la mécanisation des peuplements feuillus, les travaux de thèse présentés ici concernent la modélisation du système bois court, et plus particulièrement des opérations d’abattage et de façonnage (ébranchage et billonnage). Des modèles ont été développés afin d’étudier la transmission de l’effort d’entraînement au tronc par les rouleaux ainsi que l’opération d’ébranchage par choc. Parallèlement, différents démonstrateurs ont été réalisés afin de mener un certain nombre d’essais expérimentaux, qui ont permis, d’une part, une meilleure compréhension des phénomènes étudiés, et d’autre part le recalage des modèles théoriques. Enfin, une simulation dynamique multicorps a été mise en place, afin d’étudier plus précisément l’adaptation de différentes architectures cinématiques de châssis articulés aux flexuosités du tronc rencontrées dans les essences feuillues. Celle-ci intègre l’ensemble des modèles analytiques développés et permet une approche globale à travers l’interaction des modèles les uns avec les autres. / The research work presented here and realized within the framework of the ECOMEF project - which aims to develop a harvester head more specifically designed to process and fell broad-leaved trees – focuses on the modeling of the cut-to-length logging process, and particularly on the felling and processing (delimbing and bucking) operations. Several models have been developed in order to study the transmission of the feed force to the trunk or the delimbing process. In the same time, different benches have been designed in order to carry out experimental tests that allow a better understanding of the considered phenomenons as well as the experimental characterization of the models’ parameters. Finally, a multi-body dynamic simulation has been developed, in order to study the adaptation of different kinematic architectures of articulated frames to the crooked trunks specific to broad-leaved trees. This simulation contains each analytic model and allow a global study of the phenomenon by considering the interaction between each model.

Page generated in 0.5899 seconds