Spelling suggestions: "subject:"extracellular signalregulated 3kinase"" "subject:"extracellular signalregulated 3βkinase""
11 |
Role of Extracellular-signal Regulated Kinase (ERK) and cAMP Response Element Binding Protein (CREB) in the Incubation of Nicotine CravingChang, Shunzhi 21 November 2013 (has links)
Nicotine Addiction is a chronic relapsing disorder. Relapse risk persists despite years of abstinence. Drug-associated cues have been demonstrated to induce craving and provoke relapse. Surprisingly, in human smokers, craving for nicotine increases or “incubates” with longer abstinence durations, a phenomenon that may explain persistent relapse liability. This incubation phenomenon also presents in animals trained to intravenously self-administer nicotine though the underlying mechanisms are unclear. Two proteins, ERK (Extra-cellular signal Regulated Kinase) and CREB (cAMP Response Element Binding protein) play important roles in learning, memory, and numerous aspects of drug addiction. We therefore examined whether changes in these proteins are associated with incubation of craving for nicotine in rats. We found increased nicotine-seeking behaviour after 14 days of abstinence (compared to 1 day) along with elevated ERK and CREB activity in the Accumbens brain region suggesting that these proteins may be involved in the incubation phenomenon.
|
12 |
Regulation and Function of Jagged 1 in the Immune Response to Helminth ProductsFelicia Goh Unknown Date (has links)
The host immune response to parasitic helminths is usually characterized by a Th2 phenotype. As the Jagged/Notch pathway has been implicated in driving Th2 development, it was hypothesized that host macrophages and dendritic cells (DCs) could detect helminth products and mount an appropriate response via this pathway. Schistosoma mansoni soluble egg antigen (SEA) rapidly up-regulated expression of the Notch ligand, Jagged 1, in both mouse and human macrophages, as well as in conventional mouse DCs. Other factors associated with Th cell development, including the Th1-promoting factor IL-12 p40, as well as another potential Th2-promoting factor, interleukin (IL)-33, were not transcriptionally responsive to SEA in these same cell types, thus indicating the selectivity of the response. Inducible gene expression was modified by the presence of the macrophage growth factor colony-stimulating factor (CSF)-1, which inhibited Jagged 1 induction by SEA and lipopolysaccharide (LPS), but enhanced LPS-induced IL-12p40 expression. Despite the observation that SEA upregulated Jagged 1 in both macrophages and DCs, only SEA-pulsed DCs promoted IL-4 production upon T-cell activation, suggesting that Jagged 1 induction alone is insufficient for instructing Th2 development. A recombinant form of the extracellular region of Jagged 1 did, however, enhance IFN-γ production in splenocytes, thus implying that the rapid induction of Jagged 1 in macrophages and DCs can regulate T cell responses. A potential role for SEA-induced Jagged 1 in autocrine responses in macrophages was also investigated through studies with recombinant extracellular Jagged 1, as well as ectopic expression of Jagged 1 in macrophages. A comparison of the responses initiated in macrophages by SEA and the bacterial endotoxin lipopolysaccharide (LPS) revealed common activation of extracellular signal regulated kinase-1/2 (ERK-1/2) and p38 phosphorylation. However, only LPS triggered IκB degradation, phosphorylation of c-Jun N-terminal kinase (JNK) and phosphorylation of Tyr701 of signal transducer and activator of transcription 1 (STAT1). SEA robustly activated signalling in HEK293 cells expressing either Toll-like receptor 2 (TLR2) or TLR4/MD2, as well as variably in cells expressing TLR3. Jagged 1 upregulation by SEA was not abrogated in TLR4 knockout macrophages, in contrast to the LPS response. Pharmacological inhibition of the ERK-1/2 pathway impaired both SEA- and LPS-inducible Jagged 1 expression in macrophages. In conclusion, the data within this thesis suggests that Jagged 1 is an ERK-dependent target of TLR signalling that has a macrophage-specific function in the response to SEA.
|
13 |
Dipeptidyl Peptidase-4 Inhibitor Anagliptin Prevents Intracranial Aneurysm Growth by Suppressing Macrophage Infiltration and Activation / DPP-4 阻害薬アナグリプチンはマクロファージの浸潤と活性化を抑制し脳動脈瘤増大を予防するIkedo, Taichi 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20983号 / 医博第4329号 / 新制||医||1027(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 竹内 理, 教授 杉田 昌彦, 教授 湊谷 謙司 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
14 |
Molecular mechanism of insulin-enhancing and -mimetic action of Vanadium compoundsMehdi, Mohamad Z. January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
15 |
B-Raf is an essential component of the mitotic machinery critical for activation of MAPK signaling during mitosis in Xenopus egg extractsBorysov, Sergiy I 01 June 2006 (has links)
Activation of the MAPK cascade during mitosis is critical for spindle assembly and normal mitotic progression. The underlying regulatory mechanisms that control activation of the MEK/MAPK cascade during mitosis are poorly understood. The goal of my dissertation research is to identify the MEK kinase responsible for activation of the MAPK cascade during mitosis and to elucidate the biochemical mechanisms that regulate its activity. In the described herein work I purified and characterized the MEK kinase activity present in M-phase arrested Xenopus egg extracts. I demonstrate that B-Raf is the critical MEK kinase required for activation of the MAPK pathway at mitosis. Consistent with this, I show that B-Raf is activated in an M-phase dependent manner. Further, I provide data linking Cdk1/cyclin B to mitotic activation of B-Raf.
Cdk1/cyclin B associates with and phosphorylates B-Raf in M-phase arrested extracts and directly targets Xenopus B-Raf in vitro at a conserved Ser-144 residue. Phosphorylation at Ser-144 is critical for M-phase dependent activation of B-Raf and for B-Raf's ability to trigger activation of the MAPK cascade at mitosis. Finally, I demonstrate that mitotic B-Raf undergoes feedback phosphorylation by MAPK at its conserved C-terminal SPKTP motif. Mutation of both phosphorylation sites within the SPKTP sequence to alanines increases activity of mitotic B-Raf. Further, inhibition or over-activation of MAPK during mitosis enhances or diminishes B-Raf activity, respectively. These results indicate that MAPK-mediated feedback phosphorylation negatively regulates B-Raf activity. Additionally, I show that active mitotic B-Raf exists in large multi-protein complex(s). By utilizing a proteomics approach I identify a set of proteins, which potentially associate with B-Raf at M-phase.
Future studies are necessary to elucidate the involvement of these proteins in regulating B-Raf mitotic functions. In summary, my dissertation studies demonstrate that B-Raf activates MAPK signaling at mitosis and undergoes an M-phase dependent regulation. I propose that B-Raf has important functions at mitosis that contributes to its overall role in promoting cell proliferation.
|
16 |
Epidermal Growth Factor Stimulation of RPE Cell Survival: Contribution of Phosphatidylinositol 3-Kinase and Mitogen-Activated Protein Kinase PathwaysDefoe, Dennis M., Grindstaff, Rachel D. 01 July 2004 (has links)
Epidermal growth factor (EGF) previously has been shown to stimulate short-term survival in vitro of cells derived from the native amphibian retinal pigment epithelium (RPE). In the present experiments, we have examined intracellular signaling pathways responsible for mediating these survival-specific growth factor effects, distinct from proliferative effects, using the human epithelial cell line RPE D407. When maintained as single cells in suspension culture in the absence of serum and exogenous survival factors, RPE D407 cell viability gradually declined over a 3-4 day period as a result of apoptotic cell death, a pattern similar to that seen for eye-derived RPE cells. Exposure to EGF (50 ng ml-1) enhanced cell survival by nearly 40% and caused a parallel increase in the tyrosine phosphate content of the EGF receptor (EGFR), as determined by immunoprecipitation and Western blotting. Both effects were completely blocked by 1μM AG1478, an EGFR-selective tyrosine kinase inhibitor. EGF also stimulated phosphorylation of the phosphatidylinositol 3′-kinase (PI3K)-dependent effector kinase Akt, as well as that of the MEK-dependent mitogen-activated kinase (MAPK), extracellular signal-regulated kinase (ERK). Furthermore, EGF-induced protection was substantially reduced by either the PI3K inhibitor LY294002 (25μM) or the MEK inhibitor U0126 (10μM), under conditions in which phosphorylation of Akt and ERK1/2, respectively, was blocked. Our results indicate that EGF-stimulated survival of RPE D407 cells takes place as a result of signaling through both PI3K and ERK/MAPK pathways. Further, residual anti-apoptotic activity stimulated by EGF in the presence of both blockers suggests that additional as yet unidentified growth factor-dependent survival pathways exist.
|
17 |
Endothelin-1 and H2O2-induced signaling in vascular smooth muscle cells : modulation by CaMKII and Nitric oxideBouallegue, Ali 08 1900 (has links)
L’endothéline-1 (ET-1) est un peptide vasoactif extrêmement puissant qui possède une forte activité mitogénique dans les cellules du muscle lisse vasculaire (VSMCs). Il a été démontré que l’ET-1 est impliquée dans plusieurs maladies cardio-vasculaires, comme l’athérosclérose, l'hypertension, la resténose après l'angioplastie, l’insuffisance cardiaque et l'arythmie. L’ET-1 exerce ses effets via plusieurs voies de signalisation qui incluent le Ca2+, les protéines kinases activées par les mitogènes (MAPKs) y compris les kinases régulées par les signaux extracellulaires (ERK1/2) et la voie de la phosphatidylinositol 3-kinase (PI-3K)/protein kinase B (PKB). Plusieurs études ont démontré que les dérivés réactifs de l'oxygène (ROS) peuvent jouer un rôle important dans la signalisation d’ERK1/2 et de PKB induite par plusieurs facteurs de croissance et hormones.
Nous avons précédemment montré que l'ET-1 produit des ROS qui agissent comme médiateur de la signalisation cellulaire induite par l’ET-1. Le peroxyde d’hydrogène (H2O2), une molécule qui appartient à la famille des ROS, peut activer les voies de la MAPK et de la PKB dans les VSMCs. Par ailleurs, nos résultats suggèrent également que le Ca2+ et la calmoduline (CaM) sont essentiels pour la phosphorylation d’ERK1/2, de p38 et de PKB induite par le H2O2 dans les VSMCs. La Ca2+/CaM-dependent protein kinases II (CaMKII) est une sérine/thréonine protéine kinase multifonctionnelle activée par le Ca2+/CaM. Il a été montré que la CaMKII est impliquée dans les voies de signalisation induite par le H2O2 dans les cellules endothéliales. Cependant, le rôle de la CaMKII dans la phosphorylation d’ERK1/2, de PKB et de la proline-rich tyrosine kinase 2 (Pyk2) induite par l’ET-1 et le H2O2, de même que son rôle dans l’effet hypertrophique et prolifératif de l’ET-1 dans les VSMCs demeure inexploré.
Le monoxyde d’azote (NO) est une molécule vasoactive impliquée dans la régulation de plusieurs réponses hormonales. Le NO peut moduler la signalisation contrôlant la croissance cellulaire induite par plusieurs agonistes d’où son rôle protecteur dans le système vasculaire.
Des études ont montré que le NO peut inhiber la voie de Ras/Raf/ERK1/2 et la voie de PKB induite par le facteur de croissance endothélial (EGF) et l’angiotensine II (Ang II). Beaucoup d’autres travaux ont mis en évidence un cross-talk entre les voies de signalisation activées par l’ET-1 et le NO. La capacité du NO à inhiber la signalisation intracellulaire induite par l’ET-1 dans les VSMCs demeure inconnue. Le travail présenté dans cette thèse vise à déterminer le rôle du système Ca2+-CaM-CaMKII dans la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par l’ET-1 et le H2O2 ainsi que son rôle dans la croissance et la prolifération cellulaire induites par l’ET-1 dans les VSMCs. Nous avons également testé le rôle du NO dans la phosphorylation d’ERK1/2, de PKB et de Pyk2 ainsi que la synthèse protéique induite par l’ET-1.
Dans la première partie de notre étude, nous avons examiné le rôle de la CaMKII dans la phosphorylation d’ERK1/2 et de PKB induite par l’ET-1 dans les VSMCs en utilisant trois approches différentes i.e. l'usage d'inhibiteurs pharmacologiques, un peptide auto-inhibiteur de la CaMKII (CaMKII AIP) et la technique de siRNA. Nous avons démontré que la CaMKII est impliquée dans la phosphorylation d’ERK1/2 et de PKB induite par l’ET-1 dans les VSMCs. Des études précédentes ont montré à l’aide d’inhibiteurs pharmacologiques comme le KN-93 que l'Ang II et les agents induisant une augmentation de la concentration en Ca2+ intracellulaire comme l’ionomycine, provoquent la phosphorylation d’ERK1/2 via la CaM dans les VSMCs. Cependant, en utilisant différentes approches, nos études ont montré pour la première fois une implication de la CaMKII dans la phosphorylation d’ERK1/2 et de PKB induite par l’ET-1 dans les VSMCs. Nous avons également rapporté pour la première fois, un rôle crucial de la CaMKII dans la pathophysiologie vasculaire associée à l’ET-1 puisque l’activation de la CaMKII joue un rôle important dans l’hypertrophie et la croissance cellulaire.
Dans la deuxième partie, à la lumière des études précédentes qui montraient que les ROS agissent comme médiateurs de la signalisation induite par l’ET-1 dans les VSMCs, nous avons examiné si la CaMKII est également impliquée dans l’activation des voies d’ERK1/2 et de PKB induite par le H2O2. En utilisant des approches pharmacologiques et moléculaires, nous avons montré, comme pour l’ET-1, que la CaMKII joue un rôle critique en amont de la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par le H2O2.
Nous avons précédemment montré que la transactivation du récepteur de type I de l’insulin-like growth factor (IGF-1R) est nécessaire à l’activation de PKB induite par le H2O2. Pour cette raison, nous avons examiné l'effet de l'inhibition de la CaMKII par l’inhibiteur pharmacologique ou par le knock-down de la CaMKII sur la phosphorylation d’IGF-1R induite par le H2O2. Les résultats démontrent que la CaMKII joue un rôle critique en amont de la phosphorylation d’ERK1/2, de PKB et d’IGF-1R induite par le H2O2.
Dans la troisième partie de notre étude, nous avons également examiné le mécanisme moléculaire par lequel le NO exerce ses effets anti-mitogéniques et anti-hypertrophiques dans la signalisation induite par l’ET-1. En testant l'effet de deux différents donneurs de NO (S-nitroso-N-acetylpenicillamine (SNAP), sodium nitroprusside (SNP)) et un inhibiteur de NO synthase, le N (G)-nitro-L-arginine methyl ester (L-NAME) dans la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par l’ET-1, nous avons observé que le NO a un effet inhibiteur sur la signalisation induite par l’ET-1 dans les VSMCs. Par ailleurs, le 8-Br-GMPc, un analogue du GMPc, a un effet similaire à celui des deux donneurs du NO, tandis que l’oxadiazole quinoxaline (ODQ), un inhibiteur de la guanylate cyclase soluble, inverse l'effet inhibiteur du NO. Nous concluons que le NO diminue la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par l’ET-1 d’une manière dépendante du GMPc. Le NO inhibe aussi les effets hypertrophiques de l’ET-1 puisque le traitement avec le SNAP diminue la synthèse des protéines induite par l’ET-1.
En résumé, les études présentées dans cette thèse démontrent que l’ET-1 et le H2O2 sont des activateurs de la phosphorylation d’ERK1/2, de PKB et de Pyk2 dans les VSMCs et que la CaMKII s’avère nécessaire pour ce processus, en agissant en amont de l’activation de IGF-1R induite par le H2O2 dans les VSMCs. Elles montrent également que le NO inhibe la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par l’ET-1. Enfin, nos travaux suggèrent aussi que l’activation de la CaMKII stimule la synthèse des protéines et de l’ADN induites par l’ET-1 alors que le NO inhibe la synthèse des protéines induite par ET-1.
Mots clés: Endothéline ; Peroxyde d'hydrogène ; CaMKII ; Monoxyde d’azote ; Système vasculaire ; PKB; ERK1/2; IGF-1R; Hypertrophie. / Endothelin-1 has emerged as an extremely potent vasoactive peptide exhibiting potent mitogenic activity in vascular smooth muscle cells (VSMCs). A critical role of ET-1 in many cardiovascular diseases, such as atherosclerosis, hypertension, restenosis after angioplasty, heart failure and arrhythmia has been suggested. ET-1 exerts its effects through multiple signaling pathways which include Ca2+, mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinases 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI-3K)/protein kinase B (PKB)/Akt pathways. Several studies have also demonstrated that reactive oxygen species (ROS) may play an important role in mediating the signals of several growth factors and peptides hormones linked to these pathways. We have previously reported that ET-1 generates ROS which mediates ET-1-induced signaling. H2O2, an important ROS molecule, activates both MAPKs and PKB signaling in VSMCs. In addition, we have also suggested that Ca2+ and CaM are essential to trigger H2O2-induced ERK1/2, p38 and PKB phosphorylation in A-10 VSMCs. Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine protein kinase which is believed to transduce the downstream effects of Ca2+/CaM, and has been shown to be involved in H2O2-induced signaling in endothelial cells. However, a role of CaMKII in mediating ET-1 and H2O2-induced ERK1/2, PKB, Pyk2 phosphorylation, as well as its effect on hypertrophic and proliferative responses of ET-1 in VSMCs remains unexplored. Interestingly, a role of CaMKII in several cardiovascular diseases has been reported and studies showing that pharmacological inhibition of CaMKII, by using KN-93, prevent arrhythmic activity improved vascular dysfunction in diabetes or in Ang II-induced hypertension.
Nitric oxide (NO) is also an important reactive species and vasoactive molecule involved in the regulation of several hormone-mediated responses. NO has been suggested to modify growth-promoting signaling events and thus may serve as a vascular protective agent. Studies have shown that NO can attenuate EGF and Ang II-induced Ras/Raf/ERK1/2 as well as increase in PKB phosphorylation signaling pathways. There is also evidence for a potential cross-talk between ET-1 and NO, however not much information on the ability of NO to modify ET-1-induced signaling in VSMCs is available. Therefore, the work presented in this thesis has investigated the role of CaMKII system in ET-1 and H2O2-induced ERK1/2, PKB and Pyk2 phosphorylation, as well as in cell growth and proliferation evoked by ET-1 in VSMCs. We also investigated the role of NO in ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation as well as protein synthesis.
In the first part of our studies, by using three different approaches, i.e. use of pharmacological inhibitors, a CaMKII AIP (autoinhibitor peptide) and siRNA techniques, we have investigated the involvement of CaMKII in ET-1-induced ERK1/2 and PKB phosphorylation in A-10 VSMC. We have demonstrated that CaMKII mediates the effect of ET-1 on ERK1/2 and PKB phosphorylation in A-10 VSMC.
By using pharmacological inhibitor alone such as, KN-93, earlier studies have reported that AngII and Ca2+ elevating agents, such as ionomycin, exert their effects on ERK1/2 phosphorylation via CaM-dependent pathways in VSMC. However, by using multiple approaches, our studies, have provided the first evidence to suggest an involvement of CaMKII in mediating the effect of ET-1 on ERK1/2 and PKB phosphorylation in A-10 VSMC. We have also reported for the first time, a crucial role of CaMKII in vascular pathophysiology related to ET-1 by regulating the growth and hypertrophic events by using the technique of [3H]leucine and [3H]thymidine incorporation.
In the second part, in view of earlier studies showing that ROS mediates ET-1-induced signaling events in VSMC, we have also investigated if CaMKII is also implicated in H2O2-induced activation of ERK1/2 and PKB pathways. By using both pharmacological and molecular approaches, we show that similar to ET-1, CaMKII serves as a critical upstream component in triggering H2O2-induced ERK1/2, PKB and Pyk2 phosphorylation in VSMC. Furthermore, since we have previously reported that IGF-1R transactivation is needed for H2O2-induced PKB activation, we have investigated the effect of CaMKII inhibition and knocking-down on IGF-1R phosphorylation evoked by H2O2. Taken together, these results demonstrate that CaMKII plays a critical upstream role in mediating the effect of H2O2 on ERK1/2, PKB and IGF-1R phosphorylation.
In the third part of our studies, we have investigated the molecular mechanism by which NO exerts its anti-mitogenic and anti-hypertrophic effect on ET-1-induced signaling. By testing the effect of two different NO donors (SNAP and SNP) and L-NAME, an inhibitor of NO synthase, in ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation, we observed that NO has an inhibitory effect in ET-1-induced signaling in VSMC. In addition, 8-Br-cGMP, an analogue of cGMP, exerted similar effect to that of NO donors whereas, oxadiazole quinoxalin (ODQ), an inhibitor of soluble guanylyl cyclase (sGC), reversed the inhibitory effect of NO. We conclude that NO, in a cGMP-dependent manner, attenuated ET-1-induced phosphorylation of ERK1/2, PKB and Pyk2 and also antagonized the hypertrophic effects of ET-1, since SNAP treatment decreased the protein synthesis induced by ET-1.
In summary, the studies presented in this thesis demonstrate that both ET-1 and H2O2 induce ERK1/2, PKB and Pyk2 phosphorylation in VSMC and CaMKII activation is required for these events. We have also shown that CaMKII phosphorylation is upstream of H2O2-induced IGF-1R transactivation in VSMC. We have also provided evidence that NO attenuates ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation. Finally, we have established that CaMKII activation stimulates ET-1-evoked protein and DNA synthesis, yet NO attenuates protein synthesis induced by ET-1.
Keywords : Endothelin; Hydrogen peroxide; CaMKII; Nitric oxide; Vascular; Protein Kinase B; Extracellular Signal-Regulated Kinase1/2; IGF-1R; Growth.
|
18 |
Delayed Cell Death after Traumatic Brain Injury : Role of Reactive Oxygen SpeciesClausen, Fredrik January 2004 (has links)
<p>Traumatic brain injury (TBI) is a leading cause of death and disability TBI survivors often suffer from severe disturbances of cognition, memory and emotions. Improving the treatment is of great importance, but as of yet no specific neuroprotective treatment has been found. After TBI there are changes in ion homeostasis and protein regulation, causing generation of reactive oxygen species (ROS). Overproduction of ROS can lead to damage cellmembranes, proteins and DNA and secondary cell death. In the present thesis experimental TBI in rats were used to study the effects of the ROS scavengers α-phenyl-N-tert-butyl-nitrone (PBN) and 2-sulfophenyl-N-tert-butyl-nitrone (S-PBN) on morphology, function, intracellular signalling and apoptosis. </p><p>Posttreatment with PBN and S-PBN resulted in attenuation of tissue loss after TBI and S-PBN improved cognitive function evaluated in the Morris water maze (MWM). Pretreatment with PBN protected hippocampal morphology, which correlated to better MWM-performance after TBI.</p><p>To detect ROS-generation in vivo, a method using 4-hydroxybenzoic acid (4-HBA) microdialysis in the injured cortex was refined. 4-HBA reacts with ROS to form 3,4-DHBA, which can be quantified using HPLC, revealing that ROS-formation was increased for 90 minutes after TBI. It was possible to attenuate the formation significantly with PBN and S-PBN treatment. </p><p>The activation of extracellular signal-regulated kinase (ERK) is generally considered beneficial for cell survival. However, persistent ERK activation was found in the injured cortex after TBI, coinciding with apoptosis-like cell death 24 h after injury. Pretreatment with the MEK-inhibitor U0126 and S-PBN significantly decreased ERK activation and reduced apoptosis-like cell death. Posttreatment with U0126 or S-PBN showed robust protection of cortical tissue.</p><p>To conclude: ROS-mediated mechanisms play an important role in secondary cell death following TBI. The observed effects of ROS in intracellular signalling may be important for defining new targets for neuroprotective intervention.</p>
|
19 |
Delayed Cell Death after Traumatic Brain Injury : Role of Reactive Oxygen SpeciesClausen, Fredrik January 2004 (has links)
Traumatic brain injury (TBI) is a leading cause of death and disability TBI survivors often suffer from severe disturbances of cognition, memory and emotions. Improving the treatment is of great importance, but as of yet no specific neuroprotective treatment has been found. After TBI there are changes in ion homeostasis and protein regulation, causing generation of reactive oxygen species (ROS). Overproduction of ROS can lead to damage cellmembranes, proteins and DNA and secondary cell death. In the present thesis experimental TBI in rats were used to study the effects of the ROS scavengers α-phenyl-N-tert-butyl-nitrone (PBN) and 2-sulfophenyl-N-tert-butyl-nitrone (S-PBN) on morphology, function, intracellular signalling and apoptosis. Posttreatment with PBN and S-PBN resulted in attenuation of tissue loss after TBI and S-PBN improved cognitive function evaluated in the Morris water maze (MWM). Pretreatment with PBN protected hippocampal morphology, which correlated to better MWM-performance after TBI. To detect ROS-generation in vivo, a method using 4-hydroxybenzoic acid (4-HBA) microdialysis in the injured cortex was refined. 4-HBA reacts with ROS to form 3,4-DHBA, which can be quantified using HPLC, revealing that ROS-formation was increased for 90 minutes after TBI. It was possible to attenuate the formation significantly with PBN and S-PBN treatment. The activation of extracellular signal-regulated kinase (ERK) is generally considered beneficial for cell survival. However, persistent ERK activation was found in the injured cortex after TBI, coinciding with apoptosis-like cell death 24 h after injury. Pretreatment with the MEK-inhibitor U0126 and S-PBN significantly decreased ERK activation and reduced apoptosis-like cell death. Posttreatment with U0126 or S-PBN showed robust protection of cortical tissue. To conclude: ROS-mediated mechanisms play an important role in secondary cell death following TBI. The observed effects of ROS in intracellular signalling may be important for defining new targets for neuroprotective intervention.
|
20 |
Endothelin-1 and H2O2-induced signaling in vascular smooth muscle cells : modulation by CaMKII and Nitric oxideBouallegue, Ali 08 1900 (has links)
L’endothéline-1 (ET-1) est un peptide vasoactif extrêmement puissant qui possède une forte activité mitogénique dans les cellules du muscle lisse vasculaire (VSMCs). Il a été démontré que l’ET-1 est impliquée dans plusieurs maladies cardio-vasculaires, comme l’athérosclérose, l'hypertension, la resténose après l'angioplastie, l’insuffisance cardiaque et l'arythmie. L’ET-1 exerce ses effets via plusieurs voies de signalisation qui incluent le Ca2+, les protéines kinases activées par les mitogènes (MAPKs) y compris les kinases régulées par les signaux extracellulaires (ERK1/2) et la voie de la phosphatidylinositol 3-kinase (PI-3K)/protein kinase B (PKB). Plusieurs études ont démontré que les dérivés réactifs de l'oxygène (ROS) peuvent jouer un rôle important dans la signalisation d’ERK1/2 et de PKB induite par plusieurs facteurs de croissance et hormones.
Nous avons précédemment montré que l'ET-1 produit des ROS qui agissent comme médiateur de la signalisation cellulaire induite par l’ET-1. Le peroxyde d’hydrogène (H2O2), une molécule qui appartient à la famille des ROS, peut activer les voies de la MAPK et de la PKB dans les VSMCs. Par ailleurs, nos résultats suggèrent également que le Ca2+ et la calmoduline (CaM) sont essentiels pour la phosphorylation d’ERK1/2, de p38 et de PKB induite par le H2O2 dans les VSMCs. La Ca2+/CaM-dependent protein kinases II (CaMKII) est une sérine/thréonine protéine kinase multifonctionnelle activée par le Ca2+/CaM. Il a été montré que la CaMKII est impliquée dans les voies de signalisation induite par le H2O2 dans les cellules endothéliales. Cependant, le rôle de la CaMKII dans la phosphorylation d’ERK1/2, de PKB et de la proline-rich tyrosine kinase 2 (Pyk2) induite par l’ET-1 et le H2O2, de même que son rôle dans l’effet hypertrophique et prolifératif de l’ET-1 dans les VSMCs demeure inexploré.
Le monoxyde d’azote (NO) est une molécule vasoactive impliquée dans la régulation de plusieurs réponses hormonales. Le NO peut moduler la signalisation contrôlant la croissance cellulaire induite par plusieurs agonistes d’où son rôle protecteur dans le système vasculaire.
Des études ont montré que le NO peut inhiber la voie de Ras/Raf/ERK1/2 et la voie de PKB induite par le facteur de croissance endothélial (EGF) et l’angiotensine II (Ang II). Beaucoup d’autres travaux ont mis en évidence un cross-talk entre les voies de signalisation activées par l’ET-1 et le NO. La capacité du NO à inhiber la signalisation intracellulaire induite par l’ET-1 dans les VSMCs demeure inconnue. Le travail présenté dans cette thèse vise à déterminer le rôle du système Ca2+-CaM-CaMKII dans la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par l’ET-1 et le H2O2 ainsi que son rôle dans la croissance et la prolifération cellulaire induites par l’ET-1 dans les VSMCs. Nous avons également testé le rôle du NO dans la phosphorylation d’ERK1/2, de PKB et de Pyk2 ainsi que la synthèse protéique induite par l’ET-1.
Dans la première partie de notre étude, nous avons examiné le rôle de la CaMKII dans la phosphorylation d’ERK1/2 et de PKB induite par l’ET-1 dans les VSMCs en utilisant trois approches différentes i.e. l'usage d'inhibiteurs pharmacologiques, un peptide auto-inhibiteur de la CaMKII (CaMKII AIP) et la technique de siRNA. Nous avons démontré que la CaMKII est impliquée dans la phosphorylation d’ERK1/2 et de PKB induite par l’ET-1 dans les VSMCs. Des études précédentes ont montré à l’aide d’inhibiteurs pharmacologiques comme le KN-93 que l'Ang II et les agents induisant une augmentation de la concentration en Ca2+ intracellulaire comme l’ionomycine, provoquent la phosphorylation d’ERK1/2 via la CaM dans les VSMCs. Cependant, en utilisant différentes approches, nos études ont montré pour la première fois une implication de la CaMKII dans la phosphorylation d’ERK1/2 et de PKB induite par l’ET-1 dans les VSMCs. Nous avons également rapporté pour la première fois, un rôle crucial de la CaMKII dans la pathophysiologie vasculaire associée à l’ET-1 puisque l’activation de la CaMKII joue un rôle important dans l’hypertrophie et la croissance cellulaire.
Dans la deuxième partie, à la lumière des études précédentes qui montraient que les ROS agissent comme médiateurs de la signalisation induite par l’ET-1 dans les VSMCs, nous avons examiné si la CaMKII est également impliquée dans l’activation des voies d’ERK1/2 et de PKB induite par le H2O2. En utilisant des approches pharmacologiques et moléculaires, nous avons montré, comme pour l’ET-1, que la CaMKII joue un rôle critique en amont de la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par le H2O2.
Nous avons précédemment montré que la transactivation du récepteur de type I de l’insulin-like growth factor (IGF-1R) est nécessaire à l’activation de PKB induite par le H2O2. Pour cette raison, nous avons examiné l'effet de l'inhibition de la CaMKII par l’inhibiteur pharmacologique ou par le knock-down de la CaMKII sur la phosphorylation d’IGF-1R induite par le H2O2. Les résultats démontrent que la CaMKII joue un rôle critique en amont de la phosphorylation d’ERK1/2, de PKB et d’IGF-1R induite par le H2O2.
Dans la troisième partie de notre étude, nous avons également examiné le mécanisme moléculaire par lequel le NO exerce ses effets anti-mitogéniques et anti-hypertrophiques dans la signalisation induite par l’ET-1. En testant l'effet de deux différents donneurs de NO (S-nitroso-N-acetylpenicillamine (SNAP), sodium nitroprusside (SNP)) et un inhibiteur de NO synthase, le N (G)-nitro-L-arginine methyl ester (L-NAME) dans la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par l’ET-1, nous avons observé que le NO a un effet inhibiteur sur la signalisation induite par l’ET-1 dans les VSMCs. Par ailleurs, le 8-Br-GMPc, un analogue du GMPc, a un effet similaire à celui des deux donneurs du NO, tandis que l’oxadiazole quinoxaline (ODQ), un inhibiteur de la guanylate cyclase soluble, inverse l'effet inhibiteur du NO. Nous concluons que le NO diminue la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par l’ET-1 d’une manière dépendante du GMPc. Le NO inhibe aussi les effets hypertrophiques de l’ET-1 puisque le traitement avec le SNAP diminue la synthèse des protéines induite par l’ET-1.
En résumé, les études présentées dans cette thèse démontrent que l’ET-1 et le H2O2 sont des activateurs de la phosphorylation d’ERK1/2, de PKB et de Pyk2 dans les VSMCs et que la CaMKII s’avère nécessaire pour ce processus, en agissant en amont de l’activation de IGF-1R induite par le H2O2 dans les VSMCs. Elles montrent également que le NO inhibe la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par l’ET-1. Enfin, nos travaux suggèrent aussi que l’activation de la CaMKII stimule la synthèse des protéines et de l’ADN induites par l’ET-1 alors que le NO inhibe la synthèse des protéines induite par ET-1.
Mots clés: Endothéline ; Peroxyde d'hydrogène ; CaMKII ; Monoxyde d’azote ; Système vasculaire ; PKB; ERK1/2; IGF-1R; Hypertrophie. / Endothelin-1 has emerged as an extremely potent vasoactive peptide exhibiting potent mitogenic activity in vascular smooth muscle cells (VSMCs). A critical role of ET-1 in many cardiovascular diseases, such as atherosclerosis, hypertension, restenosis after angioplasty, heart failure and arrhythmia has been suggested. ET-1 exerts its effects through multiple signaling pathways which include Ca2+, mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinases 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI-3K)/protein kinase B (PKB)/Akt pathways. Several studies have also demonstrated that reactive oxygen species (ROS) may play an important role in mediating the signals of several growth factors and peptides hormones linked to these pathways. We have previously reported that ET-1 generates ROS which mediates ET-1-induced signaling. H2O2, an important ROS molecule, activates both MAPKs and PKB signaling in VSMCs. In addition, we have also suggested that Ca2+ and CaM are essential to trigger H2O2-induced ERK1/2, p38 and PKB phosphorylation in A-10 VSMCs. Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine protein kinase which is believed to transduce the downstream effects of Ca2+/CaM, and has been shown to be involved in H2O2-induced signaling in endothelial cells. However, a role of CaMKII in mediating ET-1 and H2O2-induced ERK1/2, PKB, Pyk2 phosphorylation, as well as its effect on hypertrophic and proliferative responses of ET-1 in VSMCs remains unexplored. Interestingly, a role of CaMKII in several cardiovascular diseases has been reported and studies showing that pharmacological inhibition of CaMKII, by using KN-93, prevent arrhythmic activity improved vascular dysfunction in diabetes or in Ang II-induced hypertension.
Nitric oxide (NO) is also an important reactive species and vasoactive molecule involved in the regulation of several hormone-mediated responses. NO has been suggested to modify growth-promoting signaling events and thus may serve as a vascular protective agent. Studies have shown that NO can attenuate EGF and Ang II-induced Ras/Raf/ERK1/2 as well as increase in PKB phosphorylation signaling pathways. There is also evidence for a potential cross-talk between ET-1 and NO, however not much information on the ability of NO to modify ET-1-induced signaling in VSMCs is available. Therefore, the work presented in this thesis has investigated the role of CaMKII system in ET-1 and H2O2-induced ERK1/2, PKB and Pyk2 phosphorylation, as well as in cell growth and proliferation evoked by ET-1 in VSMCs. We also investigated the role of NO in ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation as well as protein synthesis.
In the first part of our studies, by using three different approaches, i.e. use of pharmacological inhibitors, a CaMKII AIP (autoinhibitor peptide) and siRNA techniques, we have investigated the involvement of CaMKII in ET-1-induced ERK1/2 and PKB phosphorylation in A-10 VSMC. We have demonstrated that CaMKII mediates the effect of ET-1 on ERK1/2 and PKB phosphorylation in A-10 VSMC.
By using pharmacological inhibitor alone such as, KN-93, earlier studies have reported that AngII and Ca2+ elevating agents, such as ionomycin, exert their effects on ERK1/2 phosphorylation via CaM-dependent pathways in VSMC. However, by using multiple approaches, our studies, have provided the first evidence to suggest an involvement of CaMKII in mediating the effect of ET-1 on ERK1/2 and PKB phosphorylation in A-10 VSMC. We have also reported for the first time, a crucial role of CaMKII in vascular pathophysiology related to ET-1 by regulating the growth and hypertrophic events by using the technique of [3H]leucine and [3H]thymidine incorporation.
In the second part, in view of earlier studies showing that ROS mediates ET-1-induced signaling events in VSMC, we have also investigated if CaMKII is also implicated in H2O2-induced activation of ERK1/2 and PKB pathways. By using both pharmacological and molecular approaches, we show that similar to ET-1, CaMKII serves as a critical upstream component in triggering H2O2-induced ERK1/2, PKB and Pyk2 phosphorylation in VSMC. Furthermore, since we have previously reported that IGF-1R transactivation is needed for H2O2-induced PKB activation, we have investigated the effect of CaMKII inhibition and knocking-down on IGF-1R phosphorylation evoked by H2O2. Taken together, these results demonstrate that CaMKII plays a critical upstream role in mediating the effect of H2O2 on ERK1/2, PKB and IGF-1R phosphorylation.
In the third part of our studies, we have investigated the molecular mechanism by which NO exerts its anti-mitogenic and anti-hypertrophic effect on ET-1-induced signaling. By testing the effect of two different NO donors (SNAP and SNP) and L-NAME, an inhibitor of NO synthase, in ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation, we observed that NO has an inhibitory effect in ET-1-induced signaling in VSMC. In addition, 8-Br-cGMP, an analogue of cGMP, exerted similar effect to that of NO donors whereas, oxadiazole quinoxalin (ODQ), an inhibitor of soluble guanylyl cyclase (sGC), reversed the inhibitory effect of NO. We conclude that NO, in a cGMP-dependent manner, attenuated ET-1-induced phosphorylation of ERK1/2, PKB and Pyk2 and also antagonized the hypertrophic effects of ET-1, since SNAP treatment decreased the protein synthesis induced by ET-1.
In summary, the studies presented in this thesis demonstrate that both ET-1 and H2O2 induce ERK1/2, PKB and Pyk2 phosphorylation in VSMC and CaMKII activation is required for these events. We have also shown that CaMKII phosphorylation is upstream of H2O2-induced IGF-1R transactivation in VSMC. We have also provided evidence that NO attenuates ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation. Finally, we have established that CaMKII activation stimulates ET-1-evoked protein and DNA synthesis, yet NO attenuates protein synthesis induced by ET-1.
Keywords : Endothelin; Hydrogen peroxide; CaMKII; Nitric oxide; Vascular; Protein Kinase B; Extracellular Signal-Regulated Kinase1/2; IGF-1R; Growth.
|
Page generated in 0.1118 seconds