• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Surface Architectures on Gallium Nitride Light Emitting Diodes for Light Extraction Improvement

Lin, Jia-chi 02 August 2010 (has links)
In recent years, even though the light output of GaN-related LED continues to increase, the brightness is still low compared to conventional lighting systems and it is necessary to further improve the light extraction of LEDs. In this study, we utilize the ZnO nanotip with aqueous solution and flip-chip technique to increase the light extraction of GaN LEDs. Electroluminescence (EL) and angular optical distribution are used to measure the light output intensity of LED. In the results, ZnO nanotip after thermal annealing with N2O ambiance decrease the ZnO defects. Flip-chip LED has higher light intensity ( 1.25 times) than conventional one in vertical emitting area ( at 0 angles). The enhancement of light output is duo to the reduction of light absorption from the metal contact and Fresnel¡¦s transmission losses. Finally, we fabricate a high brightness LED with above light enhancement design. EL intensity of LED is increased about 1.38 times than conventional one. Therefore, we can manufacture a LEDs array with above designs to obtain high light output for future solid-state illumination.
2

Micro Structures on Gallium Nitride Light Emitting Diodes for Light Extraction Improvement

Ho, Chen-Lin 15 July 2008 (has links)
In recent years, even though the light output of GaN-related LED continues to increase, the brightness is still low compared to conventional lighting systems and it is necessary to further improve the light extraction of LEDs. In this study, the characteristics of LPD-SiO2 film and Al/SiO2/GaN MOS diode were investigated in advance of the formation of SiO2 micro structure for improving the oxide quality and controlling the deposition parameters. Temperature-difference method, post-annealing treatment, photochemical treatment, sulfurated treatment and etc. were used for the purposes of better properties of the MOS structure and the LED. To obtain higher light extraction efficiency of GaN LED, hemispherical SiO2 microlens was formed on the conventional and the flip-chip LEDs. The deposition mechanism had been developed to obtain the further improvements on the electrical and optical properties. The influences of epoxy encapsulation on the LEDs without and with microlens were also studied. Considering the refractive index of SiO2 is close to that of the epoxy, the enhancements of light extraction efficiency and angular optical distribution of GaN LED by using SiO2 microlens will be degraded after encapsulating. Therefore, we also tried to deposit ZnO film and rod on GaN LED by LPD method to maintain or further enhance the light extraction efficiency of GaN LEDs by the combining the micro structure and the epoxy encapsulation.
3

Fabrication of aspherical micro-lens using modified LIGA process

Lee, Wan-chi 26 August 2009 (has links)
This study utilizes a modified LIGA process to fabricate a high aspect ratio aspherical micro lens array, which improves low light output of OLED due to its intrinsic total internal reflection. Presently typical OLED extraction efficiency is not high. How to increase OLED extraction efficiency is a valuable topic to discuss. This study analyzes related parameters that influence the formation of micro lenses, for example, the influence of variation of diametric dimension, dry etching parameters and electroforming rate. The experimental results indicate that the tolerance of dimensional variation of the diameter is about 5% during the thermal reflow and dry etching stage. The oxygen content and the photoresist surface during dry etching influence the result. A high electroforming rate is helpful for covering the surface defects on photoresist. An undercut caused by dry etching will discontinue the initial electroformed layers. A apherical microens array can raise the luminance to a maximum of 15 times higher.
4

Benefits of flour storage as related to process efficiencies in milling

Johnson, Brent S. January 1900 (has links)
Master of Agribusiness / Department of Agricultural Economics / Bryan Schurle / The milling of wheat into white flour is a high volume, low margin business. Flour is a commodity. Competition is fierce. Over the past several years, there have been several mergers and acquisitions leading to fewer, but larger flour mills. The number of companies in the flour milling business has diminished as well. Flour sold in small packages on the grocery store shelf is but a small part of the business these days. Most flour is sold to commercial bakers in large bags or bulk trucks. The process of milling wheat into white flour consists of numerous variables within an extensive collection of equipment. It is the job of the miller to minimize the negative impact of these variables or at least hold constant as many of these variables as possible while achieving the best efficiency possible. To lessen the effect of these numerous variables on a large extensive system makes for a well running operation. When efficiency is achieved, a flour milling operation can be a profitable venture. A number of the variables that influence efficiency are affected by the amount of flour storage that a flour mill has. This thesis examines the benefits of flour storage as related to flour process efficiencies in milling. With flour mills operating at large output capacities, it is necessary for a flour mill to have adequate bulk flour storage bins as well as the right amount of warehouse space. Changes from one type flour to another in a flour mill require some time and an abundance of intervention by a skilled operator or miller. Having the proper amount of storage space makes it possible to minimize changes as well as the opportunity to optimize production of each specific flour type that is processed on the mill. To justify capital project money to invest in the proper amount of storage can be a challenge. Warehouse space and bulk flour storage can be expensive, and it is difficult to quantify how theoretical improvements will increase production and quality in the end product of flour. Using regression methods, production data obtained from an average sized commercial flour mill was used to estimate the increase in extraction due to a longer length of run allowed by the addition of storage space. By increasing the time a mill stays on a specific wheat mix to a minimum of twenty hours, there is a theoretical increase in extraction of 1.02 percentage points, resulting in wheat savings of over $500,000 per year. This resulting savings on the raw input material showed that capital expenditures on storage can be justified. A positive net present value and good internal rate of return show that the increased efficiency due to longer lengths of run justified the additional expense of the additional storage capacity. As volatility and the price per bushel of grain continue to increase, having the proper plant infrastructure with regard to storage space is of the utmost importance. Other benefits of storage will be realized as well in the area of flour quality and customer service.
5

Optical Simulation and Optimization of Light Extraction Efficiency for Organic Light Emitting Diodes

January 2016 (has links)
abstract: Current organic light emitting diodes (OLEDs) suffer from the low light extraction efficiency. In this thesis, novel OLED structures including photonic crystal, Fabry-Perot resonance cavity and hyperbolic metamaterials were numerically simulated and theoretically investigated. Finite-difference time-domain (FDTD) method was employed to numerically simulate the light extraction efficiency of various 3D OLED structures. With photonic crystal structures, a maximum of 30% extraction efficiency is achieved. A higher external quantum efficiency of 35% is derived after applying Fabry-Perot resonance cavity into OLEDs. Furthermore, different factors such as material properties, layer thicknesses and dipole polarizations and locations have been studied. Moreover, an upper limit for the light extraction efficiency of 80% is reached theoretically with perfect reflector and single dipole polarization and location. To elucidate the physical mechanism, transfer matrix method is introduced to calculate the spectral-hemispherical reflectance of the multilayer OLED structures. In addition, an attempt of using hyperbolic metamaterial in OLED has been made and resulted in 27% external quantum efficiency, due to the similar mechanism of wave interference as Fabry-Perot structure. The simulation and optimization methods and findings would facilitate the design of next generation, high-efficiency OLED devices. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2016
6

Black-box optimization of simulated light extraction efficiency from quantum dots in pyramidal gallium nitride structures

Olofsson, Karl-Johan January 2019 (has links)
Microsized hexagonal gallium nitride pyramids show promise as next generation Light Emitting Diodes (LEDs) due to certain quantum properties within the pyramids. One metric for evaluating the efficiency of a LED device is by studying its Light Extraction Efficiency (LEE). To calculate the LEE for different pyramid designs, simulations can be performed using the FDTD method. Maximizing the LEE is treated as a black-box optimization problem with an interpolation method that utilizes radial basis functions. A simple heuristic is implemented and tested for various pyramid parameters. The LEE is shown to be highly dependent on the pyramid size, the source position and the polarization. Under certain circumstances, a LEE over 17% is found above the pyramid. The results are however in some situations very sensitive to the simulation parameters, leading to results not converging properly. Establishing convergence for all simulation evaluations must be done with further care. The results imply a high LEE for the pyramids is possible, which motivates the need for further research.
7

Analysis of Light Extraction Efficiency Enhancement for Deep Ultraviolet and Visible Light-Emitting Diodes with III-Nitride Micro-Domes

Zhao, Peng 12 March 2013 (has links)
No description available.
8

Sample DNA Recovery Utilizing Poly (A) RNA Carrier on Cotton Swabs

Paul, Thomas 15 May 2023 (has links)
No description available.
9

Microdialysis Sampling of Macro Molecules : Fluid Characteristics, Extraction Efficiency and Enhanced Performance

Chu, Jiangtao January 2015 (has links)
In this thesis, fluid characteristics and sampling efficiency of high molecular weight cut-off microdialysis are presented, with the aim of improving the understanding of microdialysis sampling mechanisms and its performance regarding extraction efficiency of biological fluid and biomarkers. Microdialysis is a well-established clinical sampling tool for monitoring small biomarkers such as lactate and glucose. In recent years, interest has raised in using high molecular weight cut-off microdialysis to sample macro molecules such as neuropeptides, cytokines and proteins. However, with the increase of the membrane pore size, high molecular weight cut-off microdialysis exhibits drawbacks such like unstable catheter performance, imbalanced fluid recovery, low and unstable molecule extraction efficiency, etc. But still, the fluid characteristics of high molecular weight cut-off microdialysis is rarely studied, and the clinical or in vitro molecule sampling efficiency from recent studies vary from each other and are difficult to compare.   Therefore, in this thesis three aspects of high molecular weight cut-off microdialysis have been explored. The first, the fluid characteristics of large pore microdialysis has been investigated, theoretically and experimentally. The results suggest that the experimental fluid recovery is in consistency with its theoretical formula. The second, the macromolecule transport behaviour has been visualized and semi-quantified, using an in vitro test system and fluorescence imaging. The third, two in vitro tests have been done to mimic in vivo cerebrospinal fluid sampling under pressurization, using native and differently surface modified catheters. As results, individual protein/peptide extraction efficiencies were achieved, using targeted mass spectrometry analysis. In summary, a theory system of the fluid characteristics of high molecular weight cut-off microdialysis has been built and testified; Macromolecular transport of microdialysis catheter has been visualized; In vivo biomolecules sampling has been simulated by well-defined in vitro studies; Individual biomolecular extraction efficiency has been shown; Different surface modifications of microdialysis catheter have been investigated. It was found that, improved sampling performance can be achieved, in terms of balanced fluid recovery and controlled protein extraction efficiency.
10

Dynamics of free and bound excitons in GaN nanowires

Hauswald, Christian 17 March 2015 (has links)
GaN-Nanodrähte können mit einer hohen strukturellen Perfektion auf verschiedenen kristallinen und amorphen Substraten gewachsen werden. Sie bieten somit faszinierende Möglichkeiten, sowohl zur Untersuchung von fundamentalen Eigenschaften des Materialsystems, als auch in der Anwendung in optoelektronischen Bauteilen. Obwohl bereits verschiedene Prototypen solcher Bauteile vorgestellt wurden, sind viele grundlegende Eigenschaften von GaN-Nanodrähten noch ungeklärt, darunter die interne Quanteneffizienz (IQE), welche ein wichtiges Merkmal für optoelektronische Anwendungen darstellt. Die vorliegende Arbeit präsentiert eine detaillierte Untersuchung der Rekombinationsdynamik von Exzitonen, in selbst-induzierten und selektiv gewachsenen GaN Nanodraht-Proben, welche mit Molekularstrahlepitaxie hergestellt wurden. Die zeitaufgelösten Photolumineszenz (PL)-Experimente werden durch Simulationen ergänzt, welche auf Ratengleichungs-Modellen basieren. Es stellt sich heraus, dass die Populationen von freien und gebundenen Exzitonen gekoppelt sind und zwischen 10 und 300 K von einem nichtstrahlenden Kanal beeinflusst werden. Die Untersuchung von Proben mit unterschiedlichem Nanodraht-Durchmesser und Koaleszenzgrad zeigt, dass weder die Nanodraht-Oberfläche, noch Defekte als Folge von Koaleszenz diesen nichtstrahlenden Kanal induzieren. Daraus lässt sich folgern, dass die kurze Zerfallszeit von Exzitonen in GaN-Nanodrähten durch Punktdefekte verursacht wird, welche die IQE bei 10 K auf 20% limitieren. Der häufig beobachtete biexponentiellen PL-Zerfall des Donator-gebundenen Exzitons wird analysiert und es zeigt sich, dass die langsame Komponente durch eine Kopplung mit Akzeptoren verursacht wird. Motiviert durch Experimente, welche eine starke Abhängigkeit der PL-Intensität vom Nanodraht-Durchmesser zeigen, wird die externen Quanteneffizienz von geordneten Nanodraht-Feldern mit Hilfe numerischer Simulationen der Absorption und Extraktion von Licht in diesen Strukturen untersucht. / GaN nanowires (NWs) can be fabricated with a high structural perfection on various crystalline and amorphous substrates. They offer intriguing possibilities for both fundamental investigations of the GaN material system as well as applications in optoelectronic devices. Although prototype devices based on GaN NWs have been presented already, several fundamental questions remain unresolved to date. In particular, the internal quantum efficiency (IQE), an important basic figure of merit for optoelectronic applications, is essentially unknown for GaN NWs. This thesis presents a detailed investigation of the exciton dynamics in GaN NWs using continuous-wave and time-resolved photoluminescence (PL) spectroscopy. Spontaneously formed ensembles and ordered arrays of GaN NWs grown by molecular-beam epitaxy are examined. The experiments are combined with simulations based on the solution of rate equation systems to obtain new insights into the recombination dynamics in GaN NWs at low temperatures. In particular, the free and bound exciton states in GaN NWs are found to be coupled and affected by a nonradiative channel between 10 and 300 K. The investigation of samples with different NW diameters and coalescence degrees conclusively shows that the dominating nonradiative channel is neither related to the NW surface nor to coalescence-induced defects. Hence, we conclude that nonradiative point defects are the origin of the fast recombination dynamics in GaN NWs, and limit the IQE of the investigated samples to about 20% at cryogenic temperatures. We also demonstrate that the frequently observed biexponential decay for the donor-bound exciton originates from a coupling with the acceptor-bound exciton state in the GaN NWs. Motivated by an experimentally observed, strong dependence of the PL intensity of ordered GaN NW arrays on the NW diameter, we perform numerical simulations of the light absorption and extraction to explore the external quantum efficiency of these samples.

Page generated in 0.1015 seconds