• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 8
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

State-dependent changes in astrocyte regulation of extrasynaptic NMDA receptor signaling in neurosecretory neurons

Fleming, Tiffany M. January 2012 (has links)
No description available.
2

A Novel Function of Giant Ankyrin-G in Promoting the Formation of Somatodendritic GABAA Receptor Synaptogenesis

Tseng, Wei Chou January 2014 (has links)
<p>The formation and retention of distinct membrane domains in the fluidic membrane bilayer is the key process in establishing spatial organization for mediating physiological functions in metazoans. The spectrin-ankyrin network organizes diverse membrane domains including T-tubule and intercalated disc of cardiomyocytes, basolateral membrane of epithelial cells, costameres of striatal muscle, and axon initial segments and nodes of Ranvier in nervous system. This thesis identifies a novel function of 480 kDa ankyrin-G, an alternatively spliced isoform of the ankyrin family, in promoting somatodendritic GABAA receptor synaptogenesis both in vitro and in vivo. In the nervous system, an insertion of a neuronal specific exon (exon 37) occurs in ankyrin-G polypeptide which results in a 480 kDa isoform. 480 kDa ankyrin-G (giant ankyrin-G) has been shown to coordinate formation and maintenance of the axon initial segment (AIS) and nodes of Ranvier. This thesis research began with the discovery that giant ankyrin-G, previously thought to be confined to the axon initial segment, forms developmentally-regulated and cell-type specific somatodendritic "outposts" on the plasma membrane of pyramidal neurons. This somatodendritic 480 kDa ankyrin-G outpost forms micron-scale membrane domains where it associates with canonical AIS binding partners including voltage-gated sodium channel and neurofascin. This thesis further discovered that the giant insert of 480 kDa ankyrin-G interacts with GABARAP, a GABAA receptor-associated protein. Both the interaction with GABARAP and the membrane association through palmitoylation of giant ankyrin-G are required for the formation of somatodendritic GABAergic synapses. This work further found that ankyrin-G associates with extrasynaptic GABAA receptors and stabilizes receptors on the extrasynaptic membrane through opposing endocytosis. This story demonstrates for the first time the existence of giant ankyrin-G somatodendritic outpost as well as its function in directing the formation of GABAergic synapses that provides a rationale for studies linking ankyrin-G genetic variation with psychiatric disease and neurodevelopmental disorders.</p><p>Additional work presented in the Appendix characterized novel ankyrin-G full length transcripts in the heart and kidney with unique domain compositions though alternative splicing. The preliminary work further identified biochemical properties and potential role of an insert C in the C-terminus of ankyrin-G in mediating cytokinesis and cellular migration in mouse fibroblasts. Together, this thesis work expands the knowledge of giant ankyrin-G functions in the nervous system and offers insights into the diversified roles of distinct ankyrin-G peptides acquired from alternative splicing in organizing specific membrane domains and interacting with defined intracellular pathways in different tissues.</p> / Dissertation
3

INTERVENTION TO EXTRASYNAPTIC GABAA RECEPTORS FOR SYMPTOM RELIEF IN MOUSE MODELS OF RETT SYNDROME

Zhong, Weiwei 10 May 2017 (has links)
Rett Syndrome (RTT) is a neurodevelopmental disorder affecting 1 out of 10,000 females worldwide. Mutations of the X-linked MECP2 gene encoding methyl CpG binding protein 2 (MeCP2) accounts for >90% of RTT cases. People with RTT and mice with Mecp2 disruption show autonomic dysfunction, especially life-threatening breathing disorders, which involves defects in brainstem neurons for breathing controls, including neurons in the locus coeruleus (LC). Accumulating evidence obtained from Mecp2−/Y mice suggests that imbalanced excitation/inhibition or the impaired synaptic communications in central neurons plays a major role. LC neurons in Mecp2−/Ymice are hyperexcited, attributable to the deficiency in GABA synaptic inhibition. Several previous studies indicate that augmenting synaptic GABA receptors (GABARs) leads to a relief of RTT-like symptoms in mice. The extrasynaptic GABARs located outside synaptic cleft, which have the capability to produce sustained inhibition, and may be a potential therapeutic target for the rebalance of excitation/inhibition in RTT. In contrast to the rich information of the synaptic GABARs in RTT research, however, whether Mecp2 gene disruption affects the extrasynaptic GABARs remains unclear. In this study, we show evidence that the extrasynaptic GABAR mediated tonic inhibition of LC neurons was enhanced in Mecp2−/Ymice, which seems attributable to the augmented δ subunit expression. Low-dose THIP exposure, an agonist specific to δ subunit containing extrasynaptic GABARs, extended the lifespan, alleviated breathing abnormalities, enhanced motor function, and improved social behaviors of Mecp2−/Ymice. Such beneficial effects were associated with stabilization of brainstem neuronal hyperexcitability, including neurons in the LC and the mesencephalic trigeminal V nucleus (Me5), and improvement of norepinephrine (NE) biosynthesis. Such phenomena were found in symptomatic Mecp2+/− (sMecp2+/−) female mice model as well, in which the THIP exposure alleviated the hyperexcitability of both LC and Me5 neurons to a similar level as their counterparts in Mecp2−/Y mice, and improved breathing function. In identified LC neurons of sMecp2+/− mice, the hyperexcitability appeared to be determined by both MeCP2 expression and their environmental cues. In conclusion, intervention to extrasynaptic GABAAR by chronic treatment with THIP might be a therapeutic approach to RTT-like symptoms in both Mecp2−/Y and Mecp2+/− mice models and perhaps in people with RTT as well.
4

Modulation optogénétique de la gliotransmission / Optogenetic modulates gliotransmission

Shen, Weida 22 September 2017 (has links)
Gliotransmitters dérivés de l'astrocyte glutamate et l'ATP modulent l'activité neuronale. Cependant, il reste à savoir comment les astrocytes contrôlent la libération et coordonnent les actions de ces gliotransmetteurs. Dans la première partie de ma thèse, en utilisant l'expression transgénique de la canalrhodopsine 2 (ChR2) sensible à la lumière dans les astrocytes, nous avons observé que la photostimulation augmentait de manière fiable le potentiel d'action des neurones pyramidaux de l'hippocampe. Cette excitation repose principalement sur une libération de glutamate dépendant du Ca2+ par les astrocytes qui active les NMDR neuronaux extrasynaptiques. Remarquablement, nos résultats montrent que l'augmentation de Ca2+ induite par ChR2 et la libération ultérieure de glutamate sont amplifiées par l'activation autocrine induite par l'ATP/ADP des récepteurs P2Y1 sur les astrocytes. Ainsi, l'excitation neuronale est favorisée par une action synergique de la signalisation glutamatergique et purinergique autocrine dans les astrocytes. Ce nouveau mécanisme peut être particulièrement pertinent pour les conditions pathologiques dans lesquelles la concentration extracellulaire d'ATP est augmentée et agit comme un signal de danger majeur. Dans la seconde partie de ma thèse, nous rapportons que la photostimulation sélective des astrocytes ChR2 dans le gyrus denté facilite la transmission synaptique excitatrice sur les cellules granulaires via l'activation des NMDR pré-synaptiques contenant GluN2B. De plus, nous avons découvert que l'élévation intracellulaire du Ca2+ induite par l'ATP et dérivée de l'ATP contrôlait étroitement la libération du glutamate par les astrocytes au cours de la photostimulation des astrocytes. Nos résultats fournissent des preuves d'une relation étroite entre l'ATP dérivé d'astrocyte et le glutamate. / Astrocyte-derived gliotransmitters glutamate and ATP modulate neuronal activity. It remains unclear, however, how astrocytes control the release and coordinate the actions of these gliotransmitters. In the first part of my thesis, using transgenic expression of the light-sensitive channelrhodopsin 2 (ChR2) in astrocytes, we observed that photostimulation reliably increases action potential firing of hippocampal pyramidal neurons. This excitation relies primarily on a Ca2+-dependent glutamate release by astrocytes that activates neuronal extra-synaptic NMDRs. Remarkably, our results show that ChR2-induced Ca2+ increase and subsequent glutamate release are amplified by ATP/ADP-mediated autocrine activation of P2Y1 receptors on astrocytes. Thus, neuronal excitation is promoted by a synergistic action of glutamatergic and autocrine purinergic signaling in astrocytes. This new mechanism may be particularly relevant for pathological conditions in which ATP extracellular concentration is increased and acts as a major danger signal. In the second part of my thesis, we report that selective photostimulation ChR2 positive astrocytes in dentate gyrus facilitates excitatory synaptic transmission onto granule cells via the activation of pre-synaptic GluN2B-containing NMDRs. Moreover, we discovered that astrocyte-derived ATP-mediated intracellular Ca2+ elevation tightly controls glutamate release from astrocytes during astrocyte photostimulation. Our results provide evidence for a close relationship between astrocytic-derived ATP and glutamate.
5

Caractérisation de la transmission GABAergique dans le globus pallidus externe chez des modèles rongeurs des maladies de Parkinson et de Huntington / Investigation of GABAergic neurotransmission in the external globus pallidus in rodent models of Parkinson and huntington’s diseases

Chazalon, Marine 18 December 2015 (has links)
Les ganglions de la base (GB) sont un ensemble de noyaux sous-corticaux impliqués dans les fonctions motrices, mnésiques et cognitives. Le globus pallidus externe (GPe) est un noyau GABAergique, qui tient la place de structure relais entre le striatum et le noyau sous-thalamique au sein du réseau des GB. Les changements de mode et de fréquence de décharge des neurones du GPe sont connus pour être les signatures électro-physiologiques des maladies de Parkinson (MP) et de Huntington (MH). Dans la MP, où les concentrations de GABA extracellulaires sont anormalement élevées dans le GPe, il est admis que la voie striato-pallidale (STR-GPe) est hyperactive, ce qui contribue à l’hypoactivité des neurones pallidaux. A l’inverse dans la MH, il est admis que l’hyperactivité des neurones du GPe est due à la dégénérescence de la voie STR-GPe levant la principale influence inhibitrice du GPe. Cependant, les mécanismes moléculaires impliqués dans ces changements d’activité pallidale sont encore peu connus. Nous avons donc entrepris des expériences de biologie moléculaire, d’immunohistochimie et d’électrophysiologie sur tranches, afin de mieux caractériser l’origine des modifications de transmission GABAergique conduisant aux changements d’activité électro-physiologique des neurones du GPe dans ces deux pathologies à l’aide de modèles animaux. Mes principaux résultats montrent l’apparition d’une inhibition tonique dans les neurones du GPe due à un déficit de recapture du GABA dans la MP et une réduction précoce de la transmission synaptique GABAergique dans la MH. Ces résultats suggèrent que les altérations de la transmission GABAergique contribuent à la physiopathologie de la MP et la MH. / The basal ganglia (BG) are a group of sub-cortical nuclei involved in motor, memory and cognitive functions. In the BG, the GABAergic external globus pallidus (GPe) holds a position of relay nucleus between the striatum (STR) and the sub thalamic nucleus within the indirect pathway of the BG. Modifications of rate and pattern of activity of this nucleus are known to be the electrophysiological signatures of Parkinson’s (PD) and Huntington’s diseases (HD). In PD, hyperactivity of the striato-pallidal (STR-GPe) pathway is thought to be responsible for the increase of the extracellular GABAergic concentrations in the GPe and participate to the hypoactivity of pallidal neurons observed in experimental Parkinsonism. In contrast, during HD, it is recognized that the hyperactivity of GPe neurons is due to the degeneration of striato-pallidal neurons and thus to the reduction of the main source of pallidal GABAergic inhibition. However, the molecular mechanisms involved in these modifications of pallidal activity are not well characterized. Therefore, using PD and HD animal models, the 6-OHDA rodents and the R6-1 transgenic mice respectively, we have performed molecular biology, immunohistochemistry and electrophysiological in vitro experiments in order to better understand the origin of GABAergic transmission alterations leading to changes in electrophysiological activity of GPe neurons into these two pathologies. My main results show the apparition of a tonic GABAergic inhibition due to a deficit of GABA uptake in PD and a early stage reduction of GABAergic synaptic transmission in HD. Altogether, these results suggest that alterations of GABAergic transmission contribute to the pathophysiology of PD and HD.
6

Impact des glucocorticoïdes circulants sur la maturation et le fonctionnement de l'inhibition spinale GABAergique / Impact of glucocorticoids on maturation and functioning of the inhibitory transmission involving GABA neurotransmitter

Zell, Vivien 22 November 2013 (has links)
Les glucocorticoïdes (GC) sont des hormones stéroïdes synthétisées par les glandes surrénales. La production de ces GC est une des réponses de l’organisme pour rétablir l’homéostasie grâce à différentes actions comprenant des effets centraux sur le comportement et la douleur. C’est ce dernier qui a fait l’objet de mes travaux dans le cadre de cette thèse.Les afférences sensorielles primaires véhiculent les informations de la périphérie dans les cornes dorsales de la moelle épinière. Ces informations qui peuvent être nociceptives sont modulées par un réseau de neurones spinal avant d’être transmises et intégrées. Nous avons montré que les GC sont impliqués dans la maturation et le fonctionnement de la transmission inhibitrice faisant intervenir le neurotransmetteur GABA. Dans les cornes dorsales, cette inhibition est cruciale pour limiter les mécanismes de transmission de l’information nociceptive. / Glucocorticoids (GC) are steroid hormones synthesized in adrenals following HPA axis activation. GC production is a response of the organism to alleviate homeostasis perturbations through different actions. One of them involves central neuronal modulation of behavior and pain perception.Primary afferents convey peripheral sensory information in the dorsal horns of the spinal cord. This information can be nociceptive and are modulated by a spinal neuronal network before being transmitted and integrated. We showed that GC are implied in the maturation and functioning of the inhibitory transmission involving GABA neurotransmitter. In the dorsal horns this inhibitory transmission is of major importance, limiting the processing of nociceptive information.
7

Modulação do sistema das poliaminas e bloqueio seletivo de correntes de K+ do tipo A reverte o dano cognitivo induzido por peptídeo β-amiloide25-35 / Modulation of polyamine system and blockade of A-Type K+ currents counteracts β-Amyloid25-35-induced cognitive deficits

Gomes, Guilherme Monteiro 18 November 2013 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / In Alzheimer s disease (AD), β-amyloid peptide (Aβ) has been linked with synaptic loss and cognitive dysfunction, albeit the precise mechanism remains unknown. An involvement of N-Methyl-D-Aspartate receptors (NMDAR) in AD is proposed, since its inhibition attenuates some aspects of AD s neuropathology. In this regard, polyamines, like spermidine and spermine, positive modulators of NMDARs, have been shown to have both concentration and synthesis increased by Aβ. Using the novel object recognition task we showed that negative modulation of polyamine system, been trough blockade of its binding site at NMDAR by arcaine (0.02 nmol/site), traxoprodil (0.002 nmol/site), or inhibition of polyamine synthesis by DFMO (2.7 nmol/site), reverses Aβ25-35-induced memory impairment in mice. The activation of polyamine binding site at NMDAR located at extrasynaptic sites might underlie the cognitive deficits of Aβ25-35-treated mice, since incubation of hippocampal neuron cultures with spermidine (400 μM) or Aβ25-35 (10 μM) significantly increased nuclear accumulation of jacob protein, a marker of extrasynaptic NMDAR activation. Moreover, traxoprodil (4nM), arcaine (4 μM) or DFMO (5 μM) blocked the Aβ-induced jacob nuclear translocation. Activation of extrasynaptic NMDAR in neurons leads to striping of synaptic contacts and simplification of neuronal cytoarchitecture. Incubation of hippocampal neuron cultures with traxoprodil (4 Nm), arcaine (4 μM) or DFMO (5 μM) reversed the deleterious effects of Aβ25-35 on dendritic spine number and spine morphology. We also evaluated the involvement of A-type K+ currents on the Aβ25-35-induced memory impairment. Administration of Tx3-1 (3 100 pmol/site), a selective IA blocker, restored memory of mice injected with Aβ25-35 and tested on the novel object recognition task The reversal of memory impairment and the protective effect on dendritic spine alterations exerted by the modulators of the polyamine system suggest the polyamine binding site at extrasynaptic NMDAR a potential player in Aβ-induced cognitive deficit. / O peptídeo β-amiloide (Aβ), reconhecido como agente tóxico na Doença de Alzheimer (DA) é implicado como causador de danos cognitivos e sinápticos, apesar de os mecanismos não serem completamente compreendidos. O envolvimento do receptor N-metil-D-aspartato (NMDA) na DA é sugerido, visto que o seu bloqueio atenua alguns aspectos neuropatológicos da DA. Nesse contexto, tem sido demonstrado que as poliaminas, como espermidina e espermina, moduladores positivos do receptor NMDA, possuem níveis e síntese elevada tanto no cérebro de pacientes com DA como em preparações in vitro utilizando o peptídeo Aβ. Neste estudo demonstrou-se que a modulação do sistema das poliaminas, através do bloqueio do seu sítio de ligação no receptor NMDA por arcaína (0,02 nmol/sítio), traxoprodil (0,002 nmol/sítio) ou da inibição de sua síntese por DFMO (2,7 nmol/sítio), reverte o déficit cognitivo induzido pela injeção de Aβ25-35 em camundongos testados na tarefa de reconhecimento de objetos. A ativação do sítio de ligação das poliaminas em receptores NMDA extrassinápticos pode subjazer o déficit cognitivo de camundongos injetados com Aβ25-35, visto que a incubação de culturas primárias de neurônios hipocampais com espermidina (400 μM), NMDA (200 μM) ou Aβ25-35 (10 μM) aumenta o acúmulo nuclear de jacob, um marcador de ativação de receptores NMDA extrassinápticos, de maneira significante. Ademais, traxoprodil (4 nM), arcaína (4 μM) ou DFMO (5 μM) bloquearam o acúmulo nuclear de jacob induzido por Aβ. A ativação de receptores NMDA extrassinápticos em neurônios leva a simplificação da citoarquitetura neuronal e a diminuição de contatos sinápticos. Aqui demonstrou-se que a incubação de culturas de neurônios hipocampais com traxoprodil (4 nM), arcaína (4 μM) ou DFMO (5 μM) reverte as alterações na a densidade e morfologia de espinhas dendríticas induzido pela incubação com Aβ25-35. Ainda, também avaliou-se o envolvimento de correntes de K+ do tipo A no déficit cognitivo induzido pela injeção i.c.v. de Aβ25-35. A administração de Tx3-1 (3 100 pmol/sítio), um bloqueador seletivo de correntes IA, reverteu o prejuízo de memória de camundongos injetados com Aβ25-35 e testados na tarefa de reconhecimento de objetos. A reversão dos danos cognitivos e sinápticos induzidos por Aβ25-35 através da modulação do sistema das poliaminas sugere a estimulação do sítio de ligação das poliaminas no receptor NMDA, possivelmente extrassínaptico, como um dos mecanimos por trás do déficit cognitivo induzido pelo peptídeo Aβ.
8

Contrôle des récepteurs du glutamate de type NMDA par leur site co-agoniste / Control or NMDA receptors through their co-agonist binding-site

Papouin, Thomas 06 October 2011 (has links)
Le récepteur du glutamate de type N-méthyl-D-aspartate (NMDAR) est un transducteur clef dans la physiologie du système nerveux et dans nombre de ses pathologies, selon qu’il est localisé à la synapse ou en position extra-synaptique respectivement. Son activité est sous le contrôle étroit du ‘site-glycine’, dont l’activation est gouvernée par la disponibilité en coagoniste. Pourtant, on ignore encore largement les règles qui régissent cette étape limitante de l’activation des NMDARs in situ. Par ailleurs, l’ensemble des onnaissances actuelles suggère que les astrocytes pourraient contrôler les NMDARs dans le contexte des interactions entre cellules gliales et neurones, en particulier via la libération du gliotransmetteur D-sérine. Le principal objectif de ce travail de thèse a été de comprendre les modalités du contrôle endogène des NMDARs par leur site co-agoniste, dans la région CA1 de l’hippocampe. Nous avons porté notre attention, avant tout, sur les acteurs de ce contrôle : la glycine et la D-sérine, qui sont les ligands endogènes du site-co-agoniste. Nous nous sommes intéressés à leur contribution respective dans le contrôle des NMDARs, aux dynamiques de ce contrôle en fonction de l’activité neuronale, à ses variations en fonction de la localisation des NMDARs, ainsi qu’à ses modifications développementales. Nous montrons par des approches d’électrophysiologie que la D-sérine, et non la glycine, est le co-agoniste endogène des NMDARs à la synapse CA3-CA1 chez l’adulte. Elle est délivrée par les prolongements astrocytaires environnants, d’une manière qui est influencée par l’activité synaptique. Sa libération répond à un mécanisme vésiculaire et est dépendante de la signalisation calcique intra-astrocytaire. De cette manière, les astrocytes exercent un contrôle étroit et dynamique des NMDARs à l’état basal et au cours de phénomènes de plasticité synaptique. En contre partie, à l’inverse de leurs homologues localisés à la synapse, les NMDARs extrasynaptiques sont contrôlés par la glycine à l’âge adulte. Cette compartimentation spatiale est dictée par une disponibilité différentielle des deux co-agonistes aux différents sites. Elle est également favorisée par une composition en sous-unités des NMDARs synaptiques et extra-synaptiques différente qui leur confère une affinité distincte pour la glycine et la D-sérine. Enfin, le contrôle des NMDARs par la D-sérine astrocytaire observé à l’âge adulte n’est pas opérationnel à la naissance. En effet, il ne se met en place qu’au cours du premier mois post-natal, de façon concomitante au changement de composition en sous-unités des NMDARs. / N-methyl D-aspartate receptors (NMDARs) are central to many aspects of brain physiology and pathology, which they impact differently depending on their synaptic or extrasynaptic location, respectively. In addition to glutamate, they are gated by the necessary binding of a co-agonist on the so-called ‘glycine-binding site’. However, very little is known about the rules that govern the control of NMDARs through this site, in situ. Evidence now suggests that astrocytes could play a critical role in controlling NMDARs activity, in particular through the release of the gliotransmitter D-serine. In the present work, we aimed at understanding how NMDARs are endogenously controlled through their co-agonist binding site, in the CA1 region of rat hippocampus. We primarily focused on the role of two endogenous ligands of this site: glycine and D-serine. We investigated their relative contribution in the control of NMDARs at the different subcellular locations, the dynamics of such control according to synaptic activity, as well as possible changes during post-natal development. Using elecrophysiological approaches, we demonstrate that NMDARs are gated by Dserine, but not glycine, at CA3-CA1 synapses in adults. D-serine is supplied at least in part by surrounding astrocytes in an activity-dependant manner. Its release occurs in response to calcium signalling within the astrocyte and in a vesicular way. Correspondingly, we found astrocytic supply of D-serine to be essential for NMDARs-dependant functions such as synaptic plasticity. In contrast with their synaptic counterparts, extrasynaptic NMDARs are gated by endogenous glycine and not by D-serine. We provide evidence that this compartmentation relies on the differential availability of the two co-agonists at synaptic and extrasynaptic sites. Besides, due to differences in their subunit composition, synaptic and extrasynaptic NMDARs may have preferential affinity for D-serine and glycine respectively. Finally, we show that the control of the NMDAR co-agonist site is developmentally regulated. Early after birth, glycine is the endogenous co-agonist of synaptic NMDARs. The control exerted by D-serine only progressively appears during the first post-natal month, as the switch in NMDARs subunit composition occurs, suggesting a maturation of cellular interactions at the tripartite synapse.

Page generated in 0.0491 seconds