• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 19
  • 17
  • Tagged with
  • 90
  • 65
  • 39
  • 27
  • 23
  • 19
  • 15
  • 15
  • 15
  • 15
  • 13
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Exzitonentransfer und Dissoziationsdynamik in konjugierten Polymeren

Müller, Jürgen G. January 2003 (has links)
München, Univ., Diss., 2003
12

On the correlation between the electronic structure and transport properties of [2.2]paracyclophanes and other aromatic systems / Über die Korrelation zwischen der elektronischen Struktur und den Transporteigenschaften von [2.2]Paracyclophan und anderen aromatischen Systemen

Pfister, Johannes January 2011 (has links) (PDF)
Die vorliegende Arbeit präsentiert theoretische Untersuchungen zu Energie- und Ladungs-Transporteigenschaften in organischen Kristallen. Kapitel 4 behandelt Exzitonentransport in Anthracen bei dem der Fall einer schwachen Kopplung zwischen den π-Systemen vorliegt. Die elektronische Kopplung wird mit dem „monomer transition density“ (MTD) Ansatz berechnet. Aus den Kopplungen und Reorganisationsenergien werden mit der Marcus-Theorie Hüpfraten berechnet. Mit Kenntnis der Kristallstrukturen werden daraus in die experimentell zugänglichen Exzitonendiffusionslängen berechnet, deren isotroper Anteil im Rahmen der Streuung der experimentell zugänglichen Daten reproduziert werden. Auch die Anisotropie der Exzitonendiffusionslängen wird qualitativ und quantitativ im Rahmen der zu erwartenden Messgenauigkeit richtig wiedergegeben. Weiterhin enthält Kapitel 4 Untersuchungen zum Elektronen- und Lochtransport in den zwei verschiedenen Modifikationen (α und β) von Perylen. Reorganisationsenergien sowie Diffusionskonstanten wurden für beide beide Kristallstrukturen und Typen des Ladungstransports berechnet. Den besten Transport stellt dabei Lochtransport in β-Perylen dar, jedoch ist dieser stark isotrop. Die bevorzugte Transportrichtung is entlang der b-Achse der Einheitszelle mit elektronischen Kopplungen von größer als 100 meV. Allerdings gibt es hier keinerlei Lochtransport in Richtung der c-Achse. Die Diffusionskonstante in Richtung der b-Achse ist um zwei Größenordnungen größer als die in c-Richtung (62.7•10-6 m2/s vs. 0.4•10-6 m2/s). Der Ladungstransport wird sowohl für Löcher, als auch für Elektronen in beiden Perylenmodifikationen immer stark anisotrop berechnet. Um diese Resultate zu verifizieren wurden experimentelle Elektronenmobilitäten in α-Perylen mit den Simulationen verglichen. Es stellte sich eine sehr gute Übereinstimmung heraus mit Fehlern von nur maximal 27%. Wie oben gezeigt, ist es möglich Transporteigenschaften in zwischen schwach wechselwirkenden Systemen zu berechnen und zu messen. Allerdings ist es hier schwierig, die Güte der zu Grunde liegenden Kopplungsparameter genau anzugeben. Aus diesem Gunde wurde eine Zusammenarbeit über stark wechselwirkede Systeme zwischen uns sowie den Arbeitskreis von Prof. Ingo Fischer begonnen. Dort wurden [2.2]Paracyclophane und dessen Derivate untersucht um zu zeigen, wie Substitution mit Hydroxylgruppen deren Absorptionseigenschaften beeinflusst. Eine Kombination der SCS-MP2 und SCS-CC2-Methoden liefert hierbei insgesamt die besten Ergebnisse um die geometrischen und elektronischen Strukturen für Grund- und angeregte Zustände dieser Modellsysteme sowie deren Stammmolekülen Benzol und Phenol zu beschreiben. Strukturell weist nur [2.2]Paracyclophan im Grundzustand ein Doppelminimumspotenzial bzgl. Verschiebung und Verdrillung der Benzol/Phenol-einheiten untereinander auf. Alle anderen Systeme sind aufgrund ihrer Substitution weniger flexibel. Fast alle untersuchten [2.2]Paracyclophane zeigen nur geringe Strukturänderungen bei der Anregung in den S1 Zustand: Der Abstand zwischen den Ringen wird kürzer, aber qualitativ behalten sie ihre Verdrillung und Verschiebung bei, wenn auch das Ausmaß dieser Verzerrungen reduziert wird. Die Ausnahme hierbei ist p-DHPC, welches von einer verschoben Struktur im Grundzustand in eine verdrillte Struktur im angeregten Zustand übergeht. Dies hat zur Konsequenz, dass die Intensität des 0-0-Übergangs aufgrund der Franck-Condon Faktoren für p-DHPC experimentell nicht mehr beobachtet werden kann und von Verunreinigungen durch o-DHPC überdeckt wird. Die Strukturen der Paracyclophane und deren Änderung durch elektronische Übergänge werden in dieser Arbeit durch elektrostatische Potenziale sowie den antibindenen (bindenden) HOMO (LUMO) Orbitalen erklärt. Adiabatische Anregungsenergien wurden mit Nullpunktsschwingungsenergien korrigiert und liefern Genauigkeiten deren Fehler weniger als 0,1 eV beträgt. Hierbei ist zu beachten, dass eine Korrektur auf B3LYP Niveau die Ergebnisse verschlechtert und man die Berechnung der Schwingungsfrequenzen auf SCS-CC2 durchführen muss um diese Genauigkeit zu erhalten. Aufgrund dieser Rechnungen wurde eine Interpretation der experimentellen [1+1]REMPI Spektren möglich. Bandenprogressionen für die Schwingungen der Verschiebung, der Verdrillung und einer Atmung im [2.2]Paracyclophanskelett wurden identifiziert und zeigen gute Übereinstimmung zum Experiment. Diese Arbeiten zeigen, dass das Substitutionsschema von [2.2]Paracyclophanen eine erhebliche Auswirkung auf die spektroskopischen Eigenschaften haben kann. Da diese Eigenschaften direkt mit den Transporteigenschaften dieser Materialien verbunden ist, kann das hier gewonnene Verständnis der spektroskopischen Eigenschaften genutzt werden, um Materialien mit maßgeschneiderten Transporteigenschaften zu designen. Es konnte gezeigt werden, dass die SCS-CC2-Methode sehr gut geeignet ist, die zu Grunde liegende Wechselwirkung zwischen den π-Systemen vorherzusagen. / The present work presents investigations on energy and charge transport properties in organic crystals. Chapter 4 treats exciton transport in anthracene, which is an example for weakly coupled π-systems. The electronic coupling parameter is evaluated by the monomer transition density approach. With these and the reorganization energy hopping rates are calculated in the framework of the Marcus theory. Together with the knowledge of the crystal structure, these allow us to calculate the experimental accessible exciton diffusion lengths, whose isotropic part fits nicely within the scattering of experimental values found in the literature. Furthermore, the anisotropy of the exciton diffusion lengths is reproduced qualitatively and quantitatively correct. This chapter also contains studies about electron and hole transport in both polymorphs (α and β) of perylene. Reorganization energies as well as diffusion coefficients for both crystal structures and types of charge transport were calculated. The best transport is hole transport in β-perylene, but it is strongly isotropic. The preferred transport direction is along the b-axis of the unit cell with couplings of greater than 100 meV. However, there is no transport along the c-axis. The diffusion constant in b-direction is bigger by two orders of magnitude than in c-direction (62.7•10-6 m2/s vs. 0.4•10-6 m2/s). Charge transport is calculated to be strongly anisotropic for holes as well as electrons in both modifications. To verify these results experimental electron mobilities have been compared to the simulations. Good agreement was found with errors of less than 27%. As it was shown above, the calculation and measurement of transport properties between weakly coupled systems is possible. However, it is difficult to exactly determine the quality of the electronic coupling. For this reason a collaboration about strongly interacting π-systems was started between us and the research group of Prof. Ingo Fischer. There, [2.2]paracyclophanes and its derivates were investigated to show how hydroxyl substitution influences absorption properties. Overall, a combination of SCS-MP2 and SCS-CC2 performs best to address the description of geometric and electronic structures for both ground and excited states of these model systems as well as their parent compounds benzene and phenol. Only [2.2]paracyclophane shows a double minimum potential regarding a twist and shift motion between the benzene/phenol subunits towards each other. All other systems are less flexible due to their substitution pattern. Almost all [2.2]paracyclophanes display minor changes in their geometric structure upon excitation to the S1 state: The inter-ring distance shortens, but qualitatively they keep their shift and twist characteristics, although the extent of these deformations diminishes. The exception is p-DHPC, which turns from a shifted ground state structure into a twisted excited state structure. Consequently, the intensity of the 0-0 transition cannot be observed experimentally due to small Franck-Condon factors and impurities of o-DHPC. In the present thesis, the structures and their changes due to excitation are explained by electrostatic potentials as well as antibonding (bonding) HOMO (LUMO) orbitals. Adiabatic excitation energies have been corrected by ZPEs and result in accuracies with errors smaller than 0.1 eV. Note that corrections on the B3LYP level worsen the results and one has to apply SCS-CC2 to achieve this accuracy. These calculations allow an interpretation of the experimental [1+1]REMPI spectra. Band progressions of the twist, shift and breathing of the [2.2]paracyclophane skeleton vibrations have been identified and show good agreement to the experiment. This work shows that the substitution pattern in [2.2]paracyclophanes can have a significant impact on spectroscopic properties. Because these properties are directly linked to the transport properties of these materials, the hereby gained insight can be used to design materials with customized transport properties. It was shown that the SCS-CC2 method is very appropriate to predict the interaction between the π-systems
13

Exzitonische Verlustmechanismen in organischen Bilagen-Solarzellen / Excitonic loss mechanisms in organic bilayer solar cells

Steindamm, Andreas January 2015 (has links) (PDF)
Um die Wirkungsgrade organischer Solarzellen weiter zu steigern, ist ein Verständnis der auftretenden Verlustmechanismen entscheidend. Im Vergleich zu anorganischen photovoltaischen Zellen sind in den organischen Halbleitern die durch Absorption erzeugten Elektron-Loch-Paare, die als Exzitonen bezeichnet werden, sehr viel stärker gebunden. Daher müssen sie an einer Heterogrenzfläche, gebildet durch ein Donator- und ein Akzeptormaterial, in freie Ladungsträger getrennt werden. Mit dem erforderlichen Transportweg an die Heterogrenzschicht sind Rekombinationsverluste der exzitonischen Anregungen verbunden, die aus einer Vielzahl unterschiedlicher Prozesse resultieren und einen der Hauptverlustkanäle in organischen Solarzellen darstellen. Aus diesem Grund wird der Fokus dieser Arbeit auf die Charakterisierung und mögliche Reduzierung solcher exzitonischen Verlustmechanismen gelegt. Als Modellsystem wird dazu eine planare Bilagen-Struktur auf Basis des Donatormaterials Diindenoperylen (DIP) und des Akzeptors Fulleren C60 verwendet. Durch die Kombination von elektrischen und spektroskopischen Messmethoden werden unterschiedliche exzitonische Verlustmechanismen in den aktiven Schichten charakterisiert und die zugrunde liegenden mikroskopischen Ursachen diskutiert. Dazu wird zuerst auf die strukturellen, optischen und elektrischen Eigenschaften von DIP/C60-Solarzellen eingegangen. In einem zweiten Abschnitt werden die mikroskopischen Einflüsse einer Exzitonen blockierenden Lage (EBL, exciton blocking layer) aus Bathophenanthrolin (BPhen) durch eine komplementäre Charakterisierung von Photolumineszenz und elektrischen Parametern der Solarzellen untersucht, wobei auch die Notwendigkeit der EBL zur Unterbindung von Metalleinlagerungen in den aktiven organischen Schichten analysiert wird. Die anschließende Studie der Intensitäts- und Temperaturabhängigkeit der j(U)-Kennlinien gibt Aufschluss über die intrinsischen Zellparameter sowie die Rekombinationsmechanismen von Ladungsträgern in den aktiven Schichten. Ferner werden durch temperaturabhängige spektroskopische Untersuchungen der Photo- und Elektrolumineszenz der Solarzellen Informationen über die elektronischen Zustände der DIP-Schicht erlangt, die für Rekombinationsverluste der generierten Exzitonen verantwortlich sind. Zusätzlich werden Raman-Messungen an den Solarzellen und Einzelschichten diskutiert. In einer abschließenden Studie werden exzitonische Verluste unter Arbeitsbedingungen der Solarzelle durch Ladungsträgerwechselwirkungen in der Donator-Schicht quantifiziert. In dieser Arbeit konnten verschiedene relevante Verlustprozesse in organischen Solarzellen reduziert werden. Durch die Identifizierung der mikroskopischen Ursachen dieser Verluste wurde eine wichtige Voraussetzung für eine weitere Steigerung der Leistungseffizienz geschaffen. / To increase the efficiencies of organic solar cells, understanding of the occurring loss mechanisms is crucial. In comparison to inorganic photovoltaic cells the electron hole pairs, referred to as excitons, are bound much stronger in organic semiconductors. Therefore dissociation into free charge carriers takes place at a hetero interface of a donor and an acceptor material. The necessary diffusion path to this interface entails recombination loss mechanisms resulting from diverse processes which represent one of the main loss channels in organic solar cells. Thus the focus of this work is set on the characterization and potential reduction of such excitonic loss mechanisms. As a model system planar heterojunction solar cells consisting of diindenoperylene (DIP) as donor and fullerene C60 as acceptor material were used. By combining electrical with spectroscopic measurement techniques diverse excitonic loss mechanisms in the active layers are characterized and the underlying microscopic processes are discussed. Firstly the structural, optical and electrical properties of the DIP/C60 solar cells are observed. In a second section the microscopic effects of an exciton blocking layer (EBL) consisting of bathophenanthroline (BPhen) are investigated by a complementary analysis of photoluminescence and electrical parameters of the solar cells. In doing so also metal penetration into the active organic layers is analyzed and effectively suppressed. The following study of intensity and temperature dependent j(V) characteristics reveals intrinsic cell parameters as well as recombination mechanisms of charge carriers in the active layers. Moreover information about the electronic states of the DIP layer responsible for recombination losses is obtained by temperature dependent spectroscopic analyses of photo- and electroluminescence of the solar cells. Additionally Raman spectra of solar cells and the individual organic thin films are discussed. Finally excitonic losses in solar cells at working conditions due to charge carrier interaction are quantified for the donor layer. During this work diverse relevant loss mechanisms in organic solar cells could be reduced. By identifying the microscopic origins of such losses an important prerequisite was set for further power efficiency enhancement of organic photovoltaic cells.
14

Exzitonen in gekoppelten 2d Elektronen- und Lochgasen

Pohlt, Michael. January 2001 (has links)
Stuttgart, Univ., Diss., 2001.
15

Zur Exziton- und Ladungsträgerdynamik in einwandigen Kohlenstoffnanoröhren / Exciton and charge carrier dynamics in single-wall carbon nanotubes

Stich, Dominik January 2012 (has links) (PDF)
In dieser Dissertation wurde die Exziton- und Ladungsträgerdynamik in halbleitenden und metallischen einwandigen Kohlenstoffnanoröhren (SWNTs) mittels zeitkorreliertem Einzelphotonenzählen (TCSPC) und transienter Absorptionsspektroskopie untersucht. Die Experimente wurden an Tensid- oder DNA-stabilisierten SWNT-Proben in Suspension durchgeführt, in denen durch Dichtegradientenultrazentrifugation (DGU) halbleitende (6,5)-Röhren oder metallische (9,9)-Röhren angereichert wurden. Für die Herstellung der metallischen SWNT-Proben wurde das DGU-Verfahren optimiert. Metallische SWNT-Proben wiesen eine Verunreinigung von etwa 3% halbleitenden SWNTs auf. Von den angereicherten metallischen SWNTs war die (9,9)-Röhre mit einem relativen Anteil von 40% die vorherrschende Chiralität. Für transiente Absorptionsmessungen wurden die metallischen SWNT-Proben zudem durch Filtration aufkonzentriert. Halbleitende (6,5)-Proben wurden mit einem standardmäßig verwendeten Rezept hergestellt. Mit TCSPC-Messungen an (6,5)-Proben wurde erstmals gezeigt, dass halbleitende SWNTs neben der kurzlebigen Fluoreszenz des S1-Exzitons, die auf der ps-Zeitskala abläuft, auch eine langlebig Fluoreszenzkomponente aufweisen. Diese klingt mit t^−1 ab und stammt ebenfalls aus dem S1-Exzitonzustand. Das relative Gewicht der langlebigen Komponente an der Quantenausbeute beträgt (7 ± 2)%. Bei der langlebige Fluoreszenzkomponente handelt es sich um verzögerte Fluoreszenz. Diese entsteht durch die Wiederbesetzung des S1-Zustands aus einem tiefergelegenen Triplettzustand. Der vorherrschende Zerfall des Tripletts skaliert mit t^-0,5 und ist auf das nicht-Fick’sche Diffusionsverhalten der Tripletts zurückzuführen, die an Störstellen gefangen werden und abreagieren. Wird vor dem Übergang in den Grundzustand ein weiteres Triplett eingefangen, so kommt es zu einer Triplett-Triplett-Annihilation, die eine Wiederbesetzung des S1-Zustandes bewirkt. Für die transienten Absorptionsexperimente wurde ein Messaufbau verwirklicht, der Anregung und Abfrage im VIS und NIR Spektralbereich mit einer Zeitauflösung von bis zu 50 fs ermöglicht. Die Detektion des Abfragelichts erfolgt spektral aufgelöst mit einer CCD-Kamera. Der Aufbau ermöglicht Nachweisempfindlichkeiten von bis zu 0,2 mOD bei einer Integrationszeit von einer Sekunde. Durch unterschiedliche Modulation von Anregungs- und Abfragestrahl ist eine Detektion auf der Differenzfrequenz der Modulationen möglich, wodurch Einflüsse des Anregungslichts im Abfragespektrum effizient unterdrückt werden. In transienten Absorptionsexperimenten wurde die Exziton- und Ladungsträgerdynamik der (9,9)-Röhre untersucht. Die transienten Absorptionsdaten wurden mit einer globalen Fitroutine angepasst, der ein Vierniveausystem zugrunde lag. Aus dem globalen Fit sind die Photoanregungsspektren (PAS) - die Beiträge der drei angeregten Niveaus zu den transienten Absorptionsspektren - sowie die Zerfallszeiten zugänglich. Die PAS sind durch die Exzitonresonanz gekennzeichnet. Breite PB-Banden aufgrund der Besetzungsänderung der linearen E00-Bänder sind im Gegensatz zu transienten Absorptionsmessungen an Graphen oder Graphit nicht erkennbar. Die PAS des schnellen und mittleren Zerfalls sind ähnlich und weisen eine starkes PB-Signal bei der Energie des M1-Exzitons der (9,9)-Röhre auf, das von PA-Banden bei höheren undtieferen Energien begleitet wird. Der langsame Zerfall ist hingegen durch eine blauverschobene PB-Bande gekennzeichnet, die nur auf der niederenergetischen Seite mit einem PA-Signal einhergeht. Die Zerfallszeiten nehmen mit steigender Anregungsleistung zu und liegen im Bereich von 30 fs bis 120 fs, 500 fs bis 1000 fs und 40 ps. Die schnelle Zerfallskomponente wird mit der Dissoziation der Exzitonen sowie der Thermalisierung der freien Ladungsträgen in den linearen Leitungsbändern zu einer heißen Ladungsträgerverteilung assoziiert. Die mittlere Zerfallskomponente beschreibt die Abkühlung und Rekombination der freien Elektronen und Löcher. Entscheidender Mechanismus ist hierbei die Streuung an hochenergetischen optischen Phononmoden. Die langsame Zerfallskomponente kann durch langlebige, wahrscheinlich an Störstellen gefangene Ladungsträger erklärt werden, deren elektrische Felder durch den Stark-Effekt das ableitungsähnliche transiente Absorptionsspektrum erzeugen. Mittels transienter Absorptionsmessungen an (6,5)-Röhren wurde aus dem anregungsleistungsabhängigen maximalen PB-Signal des S1-Exzitons die Größe des S1-Exzitons zu (7,2 ± 2,5) nm bestimmt. Aus dem Vergleich der leistungsabhängigen maximalen PB-Signale bei Anregung in das S1- und das S2-Exziton ergibt sich, dass die Konversionseffizienz aus dem S2- in den S1-Zustand 1 ± 0,1 beträgt und innerhalb der experimentellen Zeitauflösung von 60 fs vollständig abläuft. Die Exzitongröße in metallischen (9,9)-Röhren wurde bei Exzitonlebensdauern von 15 fs bis 30 fs zu etwa 7 nm bis 12 nm abgeschätzt. / Within the course of this work, the electron- and exciton-dynamics in metallic and semiconducting single-wall carbon nanotubes (SWNTs) were examined by timecorrelated single-photon counting (TCSPC) spectroscopy and transient absorption spectroscopy. In the experiments surfactant- or DNA-stabilized SWNT-suspensions were used in which the semiconducting (6,5)-chirality or the metallic (9,9)-chirality were enriched by means of density gradient ultracentrifugation. The preparation method for metallic samples was optimized. It yields samples that contain 40% of the predominant (9,9)-chirality and show a contamination with semiconducting SWNTs of only 3%. Metallic SWNT samples for transient absorption experiments were concentrated by filtration. Semiconducting (6,5)-samples were prepared following a standard recipe. TCSPC-measurements on (6,5)-samples revealed that semiconducting SWNTs also exhibit a long-lived fluorescence component besides the short-lived fluorescence of the S1-exciton which emits on the ps-timescale. The long-lived component shows a t^−1 powerlaw decay behavior. It also stems from the S1-exciton state and accounts for (7 ± 2) % of the total quantum yield. The long-lived component is due to delayed fluorescence which is caused by the repopulation of the S1-exciton state from a lower-lying triplet state. The decay of the triplet state scales with t^−0,5 and is due to non-Fickian diffusion of the triplets which eventually get trapped at defect sites and decay. In the case that a second triplet is captured at an already occupied defect site, triplet-triplet-annihilation occurs, which leads to the reoccupation of the S1-exciton state. A transient absorption experiment was set up which allows pumping and probing in the visible and near-infrared spectral range with a temporal resolution of up to 60 fs. The spectrally resolved probe light is detected by a CCD-camera. The experimental setup reaches a detection sensitivity of up to 0,2 mOD at an integration time of one second. The experimental setup also allows for the detection on the difference frequency of the modulated pump- and probe-beams. This strongly suppresses contributions of stray light from the pump beam in the transient absorption spectrum. The exciton and charge carrier dynamics in metallic (9,9)-SWNTs were investigated with transient absorption measurements. A global fit routine, based on a four level model, was applied to the data. The decay times as well as the photo excitation spectra – the contributions of each of the three excited levels to the transient absorption spectra - are directly accessible from the global fit. All photo excitation spectra are dominated by PA- and PB-contributions from the exciton resonance. Broad PB-features due to the population of the linear E00-bands, as evidenced in graphene or graphite, were not found. The photo excitation spectra of the fast and medium decay component are similar. Both exhibit a strong PB-signal at the energy of the M1-excitons of the (9,9)-tube, which is accompanied by PA-Bands on the high and the low energy sides. The slow decay component is characterized by a blue-shifted PB-peak with a PA-band on the low energy side only. The decay times increase with rising excitation power and are in the range of 30 fs to 120 fs, 500 fs to 1000 fs, and 40 ps, respectively. The fast decay is associated with rapid exciton dissociation and thermalization of the charge carriers in the linear bands. The medium decay is governed by cooling of the hot charge carrier distribution and recombination of electrons and holes. Both processes are mediated by high energy optical phonons. The slow decay originates from long-lived charge carriers, likely trapped at defect sites. The derivative-like photo excitation spectrum is a sign of the Stark-effect, caused by the electric field of the charge carriers. Using transient absorption measurements, the size of the S1-exciton in (6,5)-tubes was determined from the excitation dependent maximum of the S1-PB-signal to be (7,2 ± 2,5) nm. Comparing the excitation dependent maximum PB-signal after exciting the S1- or the S2-exciton-states shows that the conversion efficency from the S2- into the S1-exciton state is 1 ± 0,1 and is completed within the experimental temporal resolution of 60 fs. The exciton size in metallic (9,9)-tubes is in the range from 7 nm to 12 nm for excitonic lifetimes of 15 fs to 30 fs.
16

Quantum chemical description of ultrafast exciton self-trapping in perylene based materials / Quanten-chemische Beschreibung von ultraschnellem Self-trapping von Exzitonen in Perylen-basierten Materialien

Settels, Volker January 2012 (has links) (PDF)
Im Rahmen dieser Dissertation wurden sehr lange Exzitonen-Diffusionslängen (LD) unter idealen Bedingungen für Perylen-basierte Materialien simuliert. Dies ist ein Indiz dafür, dass die sehr kurzen LD in realen Materialien aus einer extrinsischen sowie einer intrinsischen Immobilisierung resultieren. Letztere basiert auf einer Relaxation in sogenannten „Self-Trapping“-Zustände. Ein tieferes Verständnis der dem Self-Trapping zugrunde liegenden atomistischen Prozesse ist notwendig, um zukünftig Materialien mit langen LD entwickeln zu können, bei denen eine intrinsische Exzitonen-Immobilisierung verhindert wird. Für die Entwicklung eines solchen mechanistischen Verständnisses ist das Vorliegen einer eindeutigen Korrelation zwischen der molekularen Anordnung und der LD unabdingbar. Diese weisen Einkristalle von Diindenoperylen (DIP) und α-Perylen-tetracarboxyl-anhydrid (α-PTCDA) auf. Bei ersteren wurde eine außergewöhnlich lange LD von 90 nm und bei letzteren nur 22 nm gemessen. Teil dieser Arbeit war es, Gründe für diesen Unterschied in der LD zu finden. Nur Self-Trapping kommt als Ursache in Frage. Aus diesem Grund eignen sich diese Materialien, um ein atomistisches Verständnis des Self-Trappings exemplarisch an ihnen zu erarbeiten. Mutmaßlich könnten Differenzen in der elektronischen Struktur in DIP und α-PTCDA für das unterschiedliche Self-Trapping verantwortlich sein. Allerdings konnte gezeigt werden, dass es für viele Perylen-basierte Materialien keine signifikanten Unterschiede in der elektronischen Struktur gibt, wodurch diese für die Aufklärung von Immobilisierungsmechanismen zu vernachlässigen sind. Eine weitere mögliche Begründung wäre in Polarisationseffekten im Kristall zu suchen, welche die elektronische Struktur in Perylen-basierten Materialien unterschiedlich beeinflussen. Vor allem ihr Einfluss auf Ladungstrennungs-Zustände (CT), die oberhalb des optisch hellen Frenkel-Zustandes liegen, war fraglich, weil sie energetisch abgesenkt werden könnten. Ein signifikanter Einfluss von Polarisationseffekten konnte aber für alle Zustände mittels eines polarisierbaren Kontinuum-Modells ausgeschlossen werden. Die geringe LD im α-PTCDA ist folglich ein Indiz für ein Self-Trapping, das durch die Kristallstruktur aus π-Stapeln evoziert wird, welche in DIP fischgrätenartig ist. Da Polarisationseffekte auszuschließen sind, übt der Kristall lediglich durch sterische Restriktionen einen Einfluss auf das Dimer aus. Daher muss die Methode für die Beschreibung von Self-Trapping nur diese Effekte berücksichtigen, so dass sich für den Einsatz des mechanical embedding QM/MM-Ansatzes entschieden wurde. Nun konnten Potentialflächen berechnet werden, auf denen anschließend eine Wellenpaketdynamik durchgeführt wurde. Diese Methode erlaubt es erstmals, Mechanismen der Exzitonen-Immobilisierung in organischen Materialien auf einer atomistischen Ebene zu beschreiben. Als Erklärung für Self-Trapping in α-PTCDA dienten Potentialflächen, die eine intermolekulare Verschiebung des Dimers im Kristall abbilden. So wurde eine Exzitonen-Immobilisierung innerhalb von 500 fs gefunden, die aus einem irreversiblem Energieverlust und einer lokalen Verzerrung der Kristallstruktur resultiert und auf diese Weise den weiteren Transport des Exzitons verhindert. Im Fall von DIP kann diese Immobilisierung aufgrund hoher Energiebarrieren nicht stattfinden. Diese Barrieren resultieren aus der fischgrätenartigen Kristallstruktur des DIP. Diese Diskrepanzen in der Dynamik erklären die unterschiedlichen LD-Werte für DIP und α-PTCDA. In einem weiteren Fall wurde eine Exzitonen-Immobilisierung in helikalen π Aggregaten von Perylen-tetracarboxyl-bisimid (PBI) Molekülen festgestellt. Hier wird Self-Trapping durch einen Relaxationsmechanismus verursacht, in dem das Exziton durch geringe asymmetrische Schwingungen des Aggregats innerhalb von 200 fs von dem hellen Frenkel- in den dunklen Frenkel-Zustand transferiert wird, wobei dieser Übergang von einem CT-Zustand vermittelt wird. Der gesamte Vorgang ist nur bei helikalen Aggregaten möglich, weil nur hier CT-Zustände sehr dicht bei dem hellen Frenkel-Zustand vorhanden sind. Im finalen Frenkel-Zustand tritt eine Torsionsbewegung um die π-Stapelachse ein, so dass ein Energieverlust und eine lokale Änderung der Aggregatstruktur erfolgt – also ein Self-Trapping des Exzitons. Dieser modellierte Mechanismus steht im Einklang zu allen vorliegenden experimentellen Daten. Diese Erkenntnisse lassen die Schlussfolgerung zu, dass in künftigen Materialen für organische Solarzellen eine irreversible und ultraschnelle Deformation des Aggregats nach der Photoanregung vermieden werden muss - will man lange LD erreichen. Nur so kann Self-Trapping von Exzitonen verhindert werden. / In the context of this dissertation very long ranged exciton diffusion lengths (LD) were simulated for perylene-based materials under ideal conditions. This leads to the conclusion that the short LD values in existing materials result from an extrinsic and intrinsic immobilization. The latter, which is a specific material property, is based on a relaxation of the exciton into self-trapping states. An in-depth understanding of the atomistic processes defining self-trapping is essential to developing materials with long LD in the future, in which intrinsic immobilization is prevented. For the development of such a mechanistic understanding it is crucial that a clear relationship between molecular structure and LD is available. This is given by single crystals of diindeno perylene (DIP) and α-perylene tetracarboxylic anhydride (α-PTCDA). An extraordinary large LD of 90 nm was measured for the first one, while the latter possesses only 22 nm. Part of this thesis was to deliver reasons for this discrepancy. Only self-trapping comes into question to explain the different LD values. One reason for the different self-trapping in DIP and α-PTCDA could lie in the electronic structure. However, it was possible to demonstrate that a wide range of perylene-based materials possess no significant differences in their electronic structures. Consequently, such differences can be neglected for the explanation of immobilization mechanisms for the exciton. A further possible explanation could be polarization effects in the crystal, which influences the electronic structure of perylene based materials differently. Especially their influence on charge transfer (CT) states, which are located above the optically bright Frenkel state, was in question because such states could be stabilized by a polarizable surrounding. A significant influence of polarization effects on all considered states were excluded by using a polarizable continuum model. Hence, the small LD values in α-PTCDA are an evidence for self-trapping, which produces a crystal structure built up by π-stacks, while the one of DIP is of herringbone type. Since polarization effects can be neglected, is the dimer only via steric restrictions influenced by the crystal. Hence, a method describing self-trapping has to consider such effects, so that a mechanical embedding QM/MM approach is sufficient. Now, potential energy surfaces were calculated, on which wave packet dynamics were subsequently performed. In this way, atomistic mechanisms for the immobilization of excitons were described for the first time in organic materials. Self-trapping was studied in crystals of α-PTCDA by potential energy surfaces, which map an intermolecular shift motion of the dimer in the crystal. An immobilization of excitons occurs within 500 fs, which results from an irreversible energy loss together with a local deformation of the crystal lattice. This prevents a further transport of the exciton. In the case of DIP, this immobilization does not proceed due to high barriers. These barriers result from the herringbone type packing motif in the DIP crystal. This discrepancy in the dynamics explains the different LD values in DIP and α-PTCDA. In a further example, an exciton immobilization was found in helical π-aggregates of perylene tetracarboxylic bisimide (PBI) molecules. Self-trapping is caused by a relaxation mechanism, in which the exciton is transferred by asymmetric vibrations of the aggregate from the bright to a dark Frenkel state within 200 fs, whereby the transition is mediated by a CT state. However, the CT state is almost non-populated during the whole mechanism so that its participation could not yet be proven experimentally. This entire procedure is solely possible in helical aggregates, because only for such structures is there a CT state located next to the bright Frenkel state. At the final Frenkel state a torsional motion around the π-stacking axis is possible so that the loss in energy and the local rearrangement of the aggregate structure occurs, which means a self-trapping of the exciton. This mechanism is in perfect agreement with all available experimental data. These insights allow the conclusion that in future materials for organic solar cells an irreversible and ultrafast deformation of aggregates after photo-absorption must be avoided. Only in this way long LD values can be achieved and exciton self-trapping can be prevented. However, small LD values are always predicted in helical aggregates of perylene-based materials, because exciton immobilization occurs already due to small molecular motions. For this reason such aggregates are inappropriate for the use in organic solar cells. Long LD values are expected for aggregate structures with long intermolecular shifts or molecules with bulky substituents.
17

Exzitonengröße und -dynamik in (6,5)-Kohlenstoffnanoröhren : Transiente Absorptions- und Photolumineszenzmessungen / Exciton size and -dynamics in (6,5) carbon nanotubes

Mann, Christoph January 2015 (has links) (PDF)
Zahlreiche theoretische und experimentelle Untersuchungen haben erwiesen, dass in halbleitenden Kohlenstoffnanoröhren durch Absorption von Licht hauptsächlich Exzitonen erzeugt werden. Die photophysikalischen Eigenschaften und insbesondere die Prozesse nach der optischen Anregung sind aber gegenwärtig noch nicht vollständig verstanden. Zeitaufgelöste Spektroskopie bietet die Möglichkeit, diese Prozesse zu verfolgen und somit detaillierten Einblick in das photophysikalische Verhalten von Kohlenstoffnanoröhren zu nehmen. Hierbei scheinen auch extrinsische Faktoren - zu nennen sind die Herstellungsmethode, die Art der Probenpräparation, der Aggregationsgrad sowie der durch das Lösungs- bzw. Dispersionsmittel bedingte Einfluss - eine entscheidende Rolle zu spielen. In dieser Dissertation wurden die Exzitonengröße sowie die exzitonische Dynamik in einwandigen Kohlenstoffnanoröhren mittels transienter Absorptionsspektroskopie sowie stationärer und zeitaufgelöster Photolumineszenzmessungen untersucht. Alle Experimente fanden dabei an halbleitenden (6,5)-Kohlenstoffnanoröhren statt, deren chirale Anreicherung durch Dichtegradientenultrazentrifugation gelang. Für die temperaturabhängigen Messungen wurde ein Verfahren zur Herstellung von tensidstabilisierten Gelatinefilmen entwickelt. Diese zeichnen sich durch eine hohe Temperaturstabilität bei gleichzeitiger Minimierung von Streulichteffekten aus. Die Bestimmung der Exzitonengröße erfolgte mit Hilfe des Phasenraumfüllmodells, das die intensitätsabhängige Änderung der Oszillatorstärke eines Übergangs mit der Exzitonengröße verknüpft. Hierfür wurden leistungsabhängige Messungen der transienten Absorption durchgeführt und die Signalintensität des Photobleichens gegen die absorbierte Photonenflussdichte aufgetragen. Da diese beiden Größen nur bei geringer Exzitonendichte in einer linearen Beziehung stehen, aus der sich die Exzitonengröße berechnen lässt, wurde im Experiment besonderer Wert auf niedrige Anregungsfluenzen und deren exakte Bestimmung gelegt. Um den Einfluss der Aggregation quantifizieren zu können und den Vergleich mit der Literatur zu erleichtern, fanden die Untersuchungen sowohl an individualisierten als auch an aggregierten Röhrenproben statt. Die Datenanalyse, bei der erstmalig die stimulierte Emission sowie der spektrale Überlapp von Photoabsorptions- und Photobleichbande Berücksichtigung fanden, ergab für individualisierte (6,5)-Nanoröhren einen Wert von 12.0 nm für die Größe des S1-Exzitons, während diese bei der aggregierten Röhrenprobe nur 5.6 nm beträgt. Die Probenabhängigkeit der Exzitonengröße macht den Vergleich mit anderen experimentell ermittelten Werten schwierig. Diese liegen fast ausschließlich zwischen 1 nm und 4.5 nm, ihre Bestimmung fand aber teilweise an stark aggregierten bzw. polydispersen Proben statt. Theoretische Berechnungen liefern für die Exzitonengröße Werte zwischen 1 nm und 4 nm. Zwar gelten einige der Berechnungen für Vakuum, was verglichen zu einer experimentell in Lösung bzw. im Film bestimmten Exzitonengröße einen kleineren Wert mit sich bringt, jedoch kann allein hierdurch die Diskrepanz zu der in dieser Arbeit ermittelten Exzitonengröße von 12.0 nm nicht erklärt werden. Setzt man experimentell und theoretisch für Vakuum bestimmte Werte für die Exzitonengröße und die Bindungsenergie in einen einfachen Zusammenhang, entspricht eine Exzitonengröße von 12.0 nm einer Bindungsenergie zwischen 0.21 eV und 0.27 eV. Die mittels Zweiphotonenexperimenten ermittelten Werte für die Bindungsenergie von (6,5)-Kohlenstoffnanoröhren befinden sich zwischen 0.37 eV und 0.42 eV; diese wurden allerdings unter Zuhilfenahme eines vereinfachten zylindrischen Modells abgeschätzt. Weitere experimentelle und theoretische Untersuchungen könnten klären, inwieweit eine exzitonische Bindungsenergie zwischen 0.21 eV und 0.27 eV für (6,5)-SWNTs in Betracht kommt. Strahlender und nichtstrahlender Zerfall in den Grundzustand scheinen in (6,5)-Kohlenstoffnanoröhren durch eine Dynamik zwischen verschiedenen Zuständen sowie durch die Diffusion der Exzitonen beeinflusst zu werden. Um diese für die Rekombination maßgeblichen Prozesse besser zu verstehen, wurden temperaturabhängige Messungen der stationären und zeitaufgelösten Photolumineszenz sowie der transienten Absorption durchgeführt. Die Ergebnisse der stationären PL-Experimente deuten darauf hin, dass die Exzitonen zwischen dem optisch aktiven Singulettzustand mit A2-Symmetrie - im Folgenden mit [B] bezeichnet - und einem energetisch tiefer liegenden dunklen Zustand [D] gestreut werden. Mit einem Wert von 5 meV für die energetische Aufspaltung zwischen [B] und [D] gelingt eine gute Anpassung an die Daten, was mit Blick auf die Bandstruktur von (6,5)-SWNTs vermuten lässt, dass es sich bei [D] um den A1-Singulettzustand handelt. Außerdem scheint eine nichtthermische Verteilung der Exzitonen auf [B] und [D] vorzuliegen, wobei strahlende Rekombination nur vom Zustand [B] aus möglich ist. Mit diesen Annahmen kann das temperaturabhängige Verhalten der stationären Photolumineszenz modelliert werden, die Ergebnisse der zeitaufgelösten PL-Messungen jedoch nicht. Mit einem rein diffusionsdominierten Modell gelingt dies ebenso wenig, so dass zur Interpretation des PL-Zerfalls vermutlich ein Modell entwickelt werden muss, in dem sowohl die Streuung der Exzitonen zwischen [B] und [D] als auch das durch Diffusion bedingte Löschen an Defektstellen oder Röhrenenden Berücksichtigung findet. Die Bedeutung der Diffusion von Exzitonen zu Defektstellen oder Röhrenenden, an denen bevorzugt nichtstrahlender Zerfall stattfindet, kann durch spektral- und zeitaufgelöste PL-Messungen belegt werden. Abhängig von der zur Verfügung stehenden thermischen Energie und der Höhe der Potenzialbarrieren des untersuchten Systems kann die Diffusion niederenergetischer Exzitonen, die sich in Potenzialminima befinden, soweit eingeschränkt werden, dass diese eine fast bis um den Faktor zwei längere PL-Lebensdauer aufweisen als höherenergetische Exzitonen. Das unterschiedliche Verhalten von transienter Absorption und zeitaufgelöster Photolumineszenz bei Temperaturen zwischen 14 K und 35 K zeigt, dass die Repopulation des Grundzustands hauptsächlich von einem anderen Zustand aus erfolgt als die strahlende Rekombination. Ob es sich hierbei aber um den mit [D] bezeichneten A1-Singulettzustand oder einen anderen dunklen Zustand handelt, kann nicht abschließend geklärt werden. Aufgrund inhomogener Verbreiterung stellt die Halbwertsbreite der Banden im Absorptionsspektrum ein Maß für die Höhe der Potenzialbarrieren bzw. für die energetische Verteilung der Exzitonen im angeregten Zustand dar. In dieser Arbeit wurde anhand vier verschiedener Nanorohrsuspensionen gezeigt, dass Sättigungsverhalten der transienten Absorption von (6,5)-Kohlenstoffnanoröhren und Bandenbreite im Absorptionsspektrum demselben Trend folgen. Begründen kann man dies damit, dass das Sättigungsverhalten der transienten Absorption durch Exziton-Exziton-Annihilation bestimmt wird. Aufgrund ihrer eindimensionalen Struktur unterliegen Kohlenstoffnanoröhren einer starken Beeinflussung durch die Umgebung. Abhängig vom Lösungs- bzw. Dispersionsmittel resultiert eine unterschiedliche inhomogene Verbreiterung der Absorptionsbanden und damit unterschiedlich hohe Potenzialbarrieren im angeregten Zustand. Niedrige Potenzialbarrieren erlauben eine weitreichende Diffusion der Exzitonen, sodass effiziente Exziton-Exziton-Annihilation schon bei einer vergleichsweise geringen Exzitonendichte stattfindet und das Signal der transienten Absorption bei einer niedrigen Impulsfluenz sättigt. / Numerous theoretical and experimental studies have proved that in semiconducting carbon nanotubes, mainly excitons are created by light absorption. The photophysical properties and in particular the processes after optical excitation are to date not fully understood. Thanks to time-resolved spectroscopy, these processes can be pursued gaining detailed insight into the photophysical behavior of carbon nanotubes. Extrinsic factors like synthesis and preparation method, degree of aggregation as well as environmental effects appear to play a major role in this content. In this work, exciton size and dynamics in single-wall carbon nanotubes were studied by transient absorption spectroscopy as well as steady-state and time-resolved photoluminescence experiments. All measurements were done with semiconducting nanotubes of the (6,5)-chirality, which were obtained by density gradient ultracentrifugation. For temperature dependent measurements, an optimised surfactant stabilised gelatine film was developed which has a high temperature stability while minimising scattered light effects. The exciton size was determined by phase space filling analysis, which relates the intensity dependent reduction in oscillator strength of a transition with the size of the corresponding exciton. Therefore, the transient absorption was measured as a function of the power, and the intensity of the photobleach signal was plotted against the number of absorbed photons. The exciton size was calculated from the linear relationship between these two quantities at low exciton densities. Hence, great emphasis was put on working with high precision at low excitation fluences. In order to quantify the influence of the aggregation and in order to facilitate the comparison with literature, both individualised and aggregated nanotube samples were used in the experiments. From the data, the first subband exciton size was determined to be 12.0 nm and 5.6 nm for the individualised and the aggregated (6,5)-sample, respectively. Here, for the first time, both the stimulated emission and the spectral overlap of the photoabsorption and photobleach signal were taken into account. Thus, the exciton size strongly depends on the sample. This makes it difficult to compare the results with experimental values as shown in literature which almost exclusively lie between 1.0 nm and 4.5 nm but were partially determined using aggregated and polydisperse samples. Theory predicts an exciton size between 1 nm and 4 nm. In fact, some of these theoretical values were obtained for vacuum conditions leading to a smaller exciton size compared to experimental determination. However, the discrepance from the exciton size determined in this work can not be explained purely by this effect itself. Relating experimental and theoretical values of the exciton size and binding energy, an exciton size of 12.0 nm corresponds to a binding energy between 0.21 eV and 0.27 eV. Two-photon absorption experiments yield an exciton binding energy between 0.37 eV and 0.42 eV using a simplified cylindrical model. Further experimental and theoretical studies might clarify if an exciton binding energy between 0.21 eV and 0.27 eV is a realistic approach. In (6,5) carbon nanotubes, both radiative and nonradiative decay to the ground state appear to be influenced by multiple excitonic states as well as exciton diffusion. To better understand the relevant recombination processes, the stationary and time-resolved photoluminescence as well as the transient absorption was measured as a function of temperature. The stationary PL experiments suggest an exciton scattering between the optically active singlet state with A2 symmetry (hereinafter referred to as [B]) and a lower lying dark state [D]. Neglecting radiative recombination from [D], the data is well-explained by a dark-bright excitonic splitting of 5 meV and a nonthermal exciton distribution. With regard to the band structure of (6,5) carbon nanotubes, this gives rise to the presumption that [D] is the dipole forbidden A1 singlet state. This assumption explains the temperature dependent behaviour of the stationary photoluminescence quite well, but not the behaviour of the time-resolved photoluminescence. A model that is dominated solely by diffusion does not work either. Therefore, to interpret the PL decay, both exciton scattering between [B] and [D] and diffusion limited quenching at defects or tube ends have to be taken into account. The importance of exciton diffusion to defects or tube ends where non-radiative decay preferentially takes place can be proved by spectral- and time-resolved PL measurements. Depending on the available thermal energy and the height of the potential barriers in the considered system, diffusion can be restricted in that way that low energy excitons which are located in minimums of the potential energy landscape exhibit an almost twice longer PL lifetime than high energy excitons. The differences in transient absorption and time-resolved PL between 14 K and 35 K demonstrate that recovery to the ground state occurs from another state, different from the state [B] in radiative recombination. The nature of this dark state remains unclear. Due to inhomogeneous broadening, the FWHM of the absorption bands is a measurement of the height of the potential barriers and of the energetic exciton distribution in the excited state. In this work, the fact that transient absorption saturation behaviour of (6,5) carbon nanotubes and absorption band width follow the same trend could be shown by four different nanotube suspensions. The reason for this is that transient absorption saturation behaviour is governed by exciton-exciton annihilation. Due to their one-dimensional structure, carbon nanotubes are strongly influenced by environmental effects, resulting in a varying inhomogeneous broadening of the absorption bands and thus in different excited state potential barriers for various solvents and dispersion agents. Low potential barriers permit a long ranged exciton diffusion. Hence, efficient exciton-exciton annihilation takes place at comparatively low exciton densities and the transient absorption signal saturates at low pulse fluences.
18

Excitonic States and Optoelectronic Properties of Organic Semiconductors - A Quantum-Chemical Study Focusing on Merocyanines and Perylene-Based Dyes Including the Influence of the Environment / Exzitonische Zustände und optoelektronische Eigenschaften organischer Halbleiter – Eine quantenchemische Untersuchung mit Fokus auf Merocyaninen und perylenbasierten Farbstoffen unter Berücksichtigung der Umgebung

Walter, Christof January 2015 (has links) (PDF)
The scope of computational chemistry can be broadened by developing new methods and more efficient algorithms. However, the evaluation of the applicability of the methods for the different fields of chemistry is equally important. In this thesis systems with an unusual and complex electronic structure, such as excitonic states in organic semiconductors, a boron-containing bipolaron and the excited states of pyracene were studied and the applicability of the toolkit of computational chemistry was investigated. Concerning the organic semiconductors the focus was laid on organic solar cells, which are one of the most promising technologies with regard to satisfying the world's need for cheap and environmentally sustainable energy. This is due to the low production and material costs and the possibility of using flexible and transparent devices. However, their efficiency does still not live up to the expectations. Especially the exciton diffusion lengths seem to be significantly too short. In order to arrive at improved modules, a fundamental understanding of the elementary processes occurring in the cell on the molecular and supramolecular level is needed. Computational chemistry can provide insight by separating the different effects and providing models for predictions and prescreenings. In this thesis, the focus was laid on the description of excitonic states in merocyanines and perylene-based dyes taking the influence of the environment into account. At first, the photochemical isomerization between two configurations of 6-nitro BIPS observed experimentally was studied by first benchmarking several functionals against SCS-ADC(2) in the gas phase and subsequently calculating the excited-state potential energy surface. The geometries obtained from a relaxed scan in the ground state as well as from a scan in the excited state were used. The environment was included using different polarizable continuum models. It was shown that the choice of the model and especially the question of the state specificity of the approach is of vital importance. Using the results of the calculations, a two-dimensional potential energy surface could be constructed that could be used to explain the experimental findings. Furthermore, the importance of the excited-state isomerization as a potential deactivation channel in the exciton transport was pointed out. Then the assessment of the suitability of different merocyanines for optoelectronic applications with quantum-chemical methods was discussed. At first, the effect of the environment on the geometry, especially on the bond length alternation pattern, was investigated. It was shown that the environment changes the character of the ground-state wave function of several merocyanines qualitatively, which means that the results of gas-phase calculations are meaningless - at least when a comparison with solution or device data is desired. It was demonstrated that using a polarizable continuum model with an effective epsilon, a qualitative agreement between the calculated geometry and the geometry in the crystal structure can be obtained. Therefore, by comparing the bond length alternation in solution and in the crystal, a rough estimate of the effect of the crystal environment can be made. It was further shown that the connection between the HOMO energy and the open-circuit voltage is not as simple as it is often implied in the literature. It was discussed that it is not clear whether the HOMO of a single molecule or a $\pi$-stack containing several monomers should be used and if the environmental charges of the bulk phase or the interface should be included. Investigating the dependence of the HOMO energy on the stack size yielded no definitive trend. Furthermore, it was discussed that the effect due the optimization of the modules (solvent, bulk heterojunction) during the production masks any potential correlation between the HOMO energy and measured open-circuit values. Therefore, a trend can only be expected for unoptimized bilayer cells. It was concluded that ultimately, the importance of the HOMO energy should not be overestimated. The correlation between the exciton reorganization energy and the so-called cyanine limit, which is predicted by a simple two-state model, was also discussed. By referring to the results of VB calculations, it was discussed that the correlation indeed exists and is non-negligible, although the effect is not as strong as one might have expected. In this context, a potential application of a VB/MM approach was covered briefly. The importance of the molecular reorganization energy and the device morphology was also discussed. It was concluded that the optimization of merocyanines for organic optoelectronic devices is inherently a multiparameter problem and one cannot expect to find one particular parameter, which solely controls the efficiency. The perylene-based dyes were studied with a focus on the description of a potential trapping mechanism involving an intermolecular motion in a dimer. The aim was to find methods which can be applied to larger model systems than a dimer and take the effect of the environment into account. As a test coordinate the longitudinal shift of two monomers against each other was used. At first, it was demonstrated how the character of an excited state in a dimer can be defined and how it can be extracted from a standard quantum-chemical calculation. Then several functionals were benchmarked and their applicability or failure was rationalized using the character analysis. Two recipes could be proposed, which were applied to a constraint optimization (only intermolecular degrees of freedom) in the excited states of the PBI dimer and to the description of the potential energy surfaces of ground and excited states along a longitudinal displacement in the perylene tetramer, respectively. It was further demonstrated that the semi-empirical OMx methods fail to give an accurate description of the excited-state potential energy surfaces as well as the ground-state surface along the test coordinate. This failure could be attributed to an underestimation of overlap-dependent terms. Consequently, it could be shown that the methods are applicable to large intermolecular distances, where the overlap is negligible. The results of DFT calculations with differently composed basis sets suggested that adding an additional single p-function for each atom should significantly improve the performance. QM/MM methods are ideally suited to take the effect of the environment on a a dimer model system into account. However, it was shown that standard force fields also give an incorrect description of the interaction between the monomers along the intermolecular coordinate. This failure was attributed to the isotropic atom-atom interaction in the repulsion term of the Lennard-Jones potential. This was corroborated using two simple proof-of-principle anisotropy models. Therefore, a novel force field called OPLS-AA_O was presented that is based on OPLS-AA, but uses an anisotropic model for the repulsion. The model involves the overlap integral between the molecular densities, which are modeled as a sum of atom-centered p-type Gaussian functions. It was shown that using this force field an excellent agreement with the DFT results can be obtained when the correct parameters are used. These parameters, however, are not very generalizable, which was attributed to the simplicity of the model in its current state (using the same exponential parameter for all atoms). As a short excursion, the applicability of an MO-based overlap model was discussed. It was demonstrated that the repulsion term based on the density overlap can be used to correct the failure of the OMx methods for the ground states. This is in accord with the assumption that an underestimation of the overlap terms is responsible for the failure. It was shown that OPLS-AA_O also gives an excellent description of the longitudinal shift in a PBI tetramer. Using the tetramer as a test system and applying the recipe obtained in the TDDFT benchmark for the QM-part and OPLS-AA_O for the MM-part in conjunction with an electrostatic embedding scheme, a QM/MM description of the excited states of the PBI dimer including the effect of the environment could be obtained. In the last chapter the theoretical description of the Bis(borolyl)thiophene dianion and the excited states of pyracene were discussed. The electronic structure of the Bis(borolyl)thiophene dianion - a negative bipolaron - was elucidated using DFT and CASPT2 methods. Furthermore, an estimation of the extent of triplet admixture to the ground state due to spin-orbit coupling was given. In the second project the S1 and S2 states of pyracene were computed using SCS-CC2 and SCS-ADC(2) and an estimation for the balance between aromaticity and ring strain was given. This also involved computing the vibrational frequencies in the excited states. In both studies the results of the computations were able to rationalize and complete experimental results. / Die Anwendungsmöglichkeiten der Methoden der theoretischen Chemie können erweitert werden, indem neue Methoden und effizientere Algorithmen entwickelt werden. Es ist jedoch ebenso wichtig die Anwendbarkeit der Methoden für die verschiedenen Felder der Chemie zu evaluieren. In dieser Arbeit wurden Systeme mit einer komplexen und ungewöhnlichen Struktur, wie exzitonische Zustände in organischen Halbleitern, ein bor-basiertes Bipolaron und die angeregten Zustände von Pyracen untersucht und die Anwendbarkeit der verschiedenen Methoden evaluiert. Im Bezug auf die organischen Halbleiter wurde der Fokus auf organische Solarzellen gelegt, welche zu den vielversprechendsten Technologien gehören, um dem weltweiten Bedarf an billiger und ökologisch nachhaltiger Energie zu begegnen. Dies liegt an den niedrigen Produktionskosten und der Möglichkeit flexible und transparente Module zu verwenden. Ihre Wirkungsgrade werden den Erwartungen jedoch noch nicht gerecht. Vor allem die Exzitonendiffusionslängen scheinen deutlich zu gering zu sein. Um verbesserte Module zu erhalten ist ein fundamentales Verständnis der Elementarprozesse in der Zelle auf molekularem und supramolekularem Level vonnöten. Die theoretische Chemie kann dabei helfen dies zu erreichen, indem sie die verschiedenen Effekte separiert und Modelle für Vorhersagen und zur Vorauswahl geeigneter Verbindungen bereitstellt. In dieser Arbeit wurde der Fokus auf die Beschreibung von exzitonischen Zuständen in Merocyaninen und perylenbasierten Farbstoffen unter Berücksichtigung von Umgebungseinflüssen gelegt. Zunächst wurde die experimentell beobachtete photochemische Isomerisierung zwischen zwei Konfigurationen von 6-nitro BIPS untersucht, indem zuerst die Anwendbarkeit verschiedener Funktionale im Vergleich zu SCS-ADC(2) in der Gasphase überprüft wurde und anschließend die Potentialfläche des angeregten Zustands berechnet wurde. Es wurden sowohl die Geometrien aus einem relaxed scan im Grundzustand als auch von einem scan im angeregten Zustand verwendet. Umgebungseffekte wurden unter Verwendung verschiedener Kontinuumsansätze (polarizable continuum models) berücksichtigt. Es konnte gezeigt werden, dass die Wahl des Ansatzes und vor allem die Frage nach der Zustandsspezifizität des Kontinuumsansätze sehr entscheidend ist. Mit den Ergebnissen der Berechnungen konnte eine zweidimensionale Potenzialfläche konstruiert werden, mittels welcher die experimentellen Beobachtungen erklärt werden konnten. Außerdem wurde auf die Bedeutung der Isomerisierung im angeregten Zustand als einem potenziellen Deaktivierungskanal für den Exzitonentransport hingewiesen. Anschließend wurde die Möglichkeit einer Bewertung der Eignung verschiedener Merocyanine für optoelektonische Fragestellungen mit quantenchemischen Methoden diskutiert. Zunächst wurde der Einfluss der Umgebung auf die Geometrie und insbesondere auf die Bindungslängenalternanz untersucht. Es wurde gezeigt, dass die Umgebung die Wellenfunktion mehrerer Merocyanine qualitativ verändert, was bedeutet, dass Berechnungen in der Gasphase keinen Sinn machen - zumindest nicht, wenn die Ergebnisse mit Daten, die in Lösung oder in der Zelle erhalten wurden, verglichen werden sollen. Es konnte gezeigt werden, dass unter Verwendung eines Kontinuumsansatzes mit einer effektiven Dielektrizitätskonstante epsilon eine qualitative Übereinstimmung zwischen der berechneten Geometrie und der Geometrie in der Kristallstruktur erzielt werden kann. Dies ermöglicht es, durch einen Vergleich der Bindungslängenalternanz in Lösung und im Kristall eine grobe Abschätzung für den Einfluss der Kristallumgebung zu erhalten. Es wurde außerdem dargelegt, dass der Zusammenhang zwischen der Energie des HOMOs und der Leerlaufspannung nicht so eindeutig ist, wie es oft in der Literatur suggeriert wird. Es stellte sich die Frage, ob die HOMO-Energie eines einzelnen Moleküls oder eines Stapels bestehend aus mehreren Monomeren verwendet werden sollte und ob der Umgebungseffekt der Ladungen der Bulkphase oder der Grenzfläche berücksichtigt werden sollte. Die Untersuchung der Abhängigkeit der HOMO-Energie von der Anzahl der Monomere ergab keinen klaren Trend. Die Tatsache, dass die Optimierung des Moduls während des Produktionsprozesses (Solvent, Bulk-Hereojunction-Konzept) eine potenzielle Korrelation zwischen der HOMO-Energie und der Leerlaufspannung maskiert, wurde ebenfalls diskutiert. Deshalb kann eine Korrelation nur für nicht optimierte Zweischichtzellen erwartet werden. Es wurde der Schluss gezogen, dass die Bedeutung der HOMO-Energie letztendlich nicht überbewertet werden sollte. Der Zusammenhang zwischen der Exzitonenreorganisationsenergie und dem sogenannten Cyaninlimit, welcher von einem einfachen Zwei-Zustands-Model vorhergesagt wird wurde diskutiert. Unter Verweis auf die Ergebnisse von VB-Berechnungen konnte diskutiert werden, dass der Zusammenhang in der Tat existiert und nicht vernachlässigbar, aber auch nicht so groß ist, wie man vermutet haben könnte. In diesem Kontext wurde die potenzielle Anwendbarkeit eines VB/MM-Ansatzes kurz besprochen. Die Bedeutung der molekularen Reorganisationsenergie und der Morphologie der Zelle wurden ebenfalls diskutiert. Es wurde das Fazit gezogen, dass die Optimierung der Merocyanine für die Anwendung in organischen Halbleitern inhärent ein Multiparameterproblem ist und man nicht erwarten kann, einen einzelnen Parameter zu finden, der allein die Effizienz kontrolliert. Die perylenbasierten Farbstoffe wurden mit dem Fokus auf der Beschreibung eines potenziellen Exzitoneneinfangmechanismus, untersucht, welcher auf der intermolekularen Bewegung in einem Dimer basiert. Das Ziel war es Methoden zu finden, die auf größere Systeme anwendbar sind und den Umgebungseinfluss berücksichtigen können. Als Testkoordinate wurde die longitudinale Verschiebung der Monomere gegeneinander verwendet. Zunächst wurde gezeigt, wie der Charakter eines angeregten Zustandes in einem Dimer definiert werden kann und wie ein Maß für den Charakter ausgehend von einer normalen quantenchemischen Berechnung erhalten werden kann. Anschließend wurden verschiedene Funktionale evaluiert und ihre Anwendbarkeit beziehungsweise ihr Versagen mittels der Charakteranalyse rationalisiert. Zwei Ansätze konnten vorgeschlagen werden, welche auf eine Optimierung in den angeregten Zustände des Dimers mit Nebenbedingung (nur intermolekulare Freiheitsgrade) beziehungsweise auf eine Beschreibung der Potenzialflächen des Grundzustandes und der angeregten Zustände für die longitudinale Verschiebung in einem Perylentetramer angewendet wurden. Es wurde außerdem gezeigt, dass die semiempirischen OMx Methoden keine akkurate Beschreibung der Potenzialflächen der angeregten Zustände sowie des Grundzustandes für die Testkoordinate liefern. Dies konnte mit der Unterschätzung der intermolekularen Überlappterme begründet werden. Folglich war es möglich zu zeigen, dass die Methoden für intermolekulare Abstände, bei denen der Überlapp vernachlässigbar ist, anwendbar sind. Die Ergebnisse von DFT-Rechnungen mit unterschiedlich zusammengesetzten Basissätzen ließen ferner den Schluss zu, dass das Hinzufügen einer einzelnen p-Funktion an jedem Atom eine deutliche Verbesserung bringen sollte. QM/MM-Methoden sind ideal geeignet, um den Einfluss der Umgebung auf ein Dimer-Modellsystem zu berücksichtigen. Es wurde jedoch gezeigt, dass gängige Kraftfelder ebenfalls eine inkorrekte Beschreibung der Wechselwirkung zwischen den Monomeren entlang der intermolekularen Koordinate liefern. Dies wurde mit der isotropen Beschreibung der Atom-Atom-Wechselwirkung im Repulsionsterm des Lennard-Jones-Potenzials begründet. Diese Annahme wurde durch die Anwendung zweier Proof-of-Principle-Ansätze untermauert. Folglich wurde ein neues Kraftfeld, genannt OPLS-AA_O, eingeführt, welches auf OPLS-AA basiert, aber eine anisotrope Modellierung der Repulsion verwendet. Diese anisotrope Repulsion basiert auf dem Überlappintegral der molekularen Elektronendichten, welche als Summe aus atomzentrierten p-artigen Gaußfunktionen modelliert wird. Es wurde gezeigt, dass mit diesem Kraftfeld eine hervorragende Übereinstimmung mit den DFT-Ergebnissen erhalten werden kann, wenn die richtigen Parameter verwendet werden. Diese Parameter sind jedoch nicht sehr generalisierbar, was mit der Einfachheit des Models zu seinem momentanen Stand begründet wurde (Verwendung desselben Parameters im Exponenten bei allen Atomen). Als kurzer Exkurs wurde die Anwendbarkeit eines MO-basierten Überlappmodells diskutiert. Es konnte nachgewiesen werden, dass der Repulsionsterm, der auf der Dichteüberlappung basiert, auch als Korrekturterm für die Anwendbarkeit der OMx-Methoden bezüglich des Grundzustandes verwendet werden kann. Dies deckt sich mit der Annahme, dass eine Unterschätzung von Überlapptermen für das Versagen der semiempirischen Methoden verantwortlich ist. Es wurde gezeigt, dass OPLS-AA_O die Potenzialfläche für die longitudinale Verschiebung in einem PBI Tetramer exzellent beschriebt. Unter Verwendung des Tetramers als Testsytem und unter Anwendung eines der vorgeschlagenen TDDFT-Ansätze für den QM-Teil und OPLS-AA_O für den MM-Teil in Verbindung mit einem electrostatic embedding-Ansatz konnte eine QM/MM-Beschreibung der angeregten Zustände des PBI Dimers unter Berücksichtigung des Umgebungseinfluss erhalten werden. Im letzten Kapitel wurde die theoretische Beschreibung des Bis(borolyl)thiophendianions und von Pyracen diskutiert. Die elektronische Struktur des Bis(borolyl)thiophendianions wurde beschrieben unter Verwendung von DFT- und CASPT2-Methoden. Außerdem wurde eine Abschätzung des Ausmaßes der Triplettbeimischung zum Grundzustand durch die Spin-Bahn-Kopplung gegeben. Im zweiten Projekt wurden der S1- und S2- Zustand des Pyracens unter Verwendung von SCS-CC2 und SCS-ADC(2) berechnet und eine Abschätzung des Verhältnisses von Aromatizität und Ringspannung gegeben. Dies beinhaltete auch die Berechnung der Schwingungsfrequenzen im angeregten Zustand. In beiden Studien konnten die Ergebnisse der Berechnungen die experimentellen Daten vervollständigen und rationalisieren.
19

Implementation of new reaction pathway determining methods and study of solvent effects on the excited state nature of perylene based dyes / Implementierung neuer Reaktionspfad bestimmender Methoden und Untersuchung von Lösungsmitteleinflüssen auf die Natur der angeregten Zustände perylen-basierter Farbstoffe

Bellinger, Daniel January 2016 (has links) (PDF)
Two thematic complexes were addressed within this work. One part is related to improvements and new implementations into the CAST program package. Thereby the main focus laid on the delivery of a tool which can be used to characterize complex reactions and their mechanisms. But also within the new force field (FF) method (SAPT-FF) within the CAST program, several improvements were made. The second topic is related to the description of dye molecules and their spectral properties. The main focus within these studies was set on the influence of the environment on these properties. In the first topic improvements of the local acting NEB (nudged elastic band) methods were included and the number of available methods was extended. The initial pathway generation was improved by implementing the IDPP (image dependent pair potential) method and a new method was implemented for describing temperature dependent pathways. Additionally, improvements have been made to the optimization routines (global NEB). As a second part the Pathopt (PO) method was considerably improved. In the beginning of the work the original PO idea was used. In this approach one starts with a global optimization on one n-1 dimensional hyperplane which divides the reaction into two sub-areas for obtaining guesses of TSs (transition states). These found TS guesses were used to optimize to the ”true” TS. Starting from the optimized ones a relaxation to the next connected minima is done. This idea has been automatically implemented and extended to several number of hyperplanes. In this manner a group of pathsegments is obtained which needs to be connected, but within this work it was realized that such a procedure might be not very efficient. Therefore, a new strategy was implemented which is founded on the same constrained global optimization scheme (MCM) for which the user defines the number of hyperplanes generated. The number of such generated hyperplanes should be large enough 134 to describe the space between the concerning reactants in a sufficient way. The found minima are directly used to built up the reaction pathway. For this purpose a RMSD (root mean square deviation) criterion is used to walk along ways of minimal change from one to another hyperplane. To prove the implementations various test calculations were carried out and extensions included to prove the capabilities of the new strategy. Related to these tests a new strategy for applying the move steps in MCM (Monte Carlo with minimization) was realized which is also related to the question of the coordinates representation. We were able to show that the hopping steps in MCM can be improved by applying Cartesian steps in combination of random dihedral moves with respect to the constraint. In this way it was possible to show that a large variety of systems can be treated. An additional chapter shows the improvements of the SAPT-FF implementation and related test cases. It was possible to treat benzene dimer and cluster systems of different sizes consistently also in accordance with high level ab initio based approaches. Furthermore, we showed that the SAPT-FF with the right parameters outperforms the standard AMOEBA implementation which is the basis of the SAPT-FF implementation. In the last three chapters deal with the description of perlyene-based dyes. In the first smaller chapter ground state chemistry description of macro cycles of PBI (perylene bisimide) derivatives were investigated. Therefore, AFM (atomic force microscopy) based pictures were explained within our study. The methods to explain aggregation behavior in dependency of the ring size were MD simulations and configuration studies. The last two chapters deal with opto-electronic or photo-physical properties of PBI and PTCDA (perylene-3,4,9,10-tetracarboxylic dianhydride). In detail, we investigated the role of the environment and the aggregate or crystal surrounding by applying different models. In that way implicit and explicit solvation models, the size of aggregates and vibration motions were used. In the case of PBI the recent work is found on preliminary studies related to my bachelor thesis and extends it. It was shown that the direct influence of a polarizable surrounding, as well as explicit inclusion of solvent molecules on the overall description of the excitations and nature of the excited states is weaker as one might expect. However the inclusion of intra-molecular degrees of freedom showed a stronger influence on the state characteristics and can induce a change of the order of states within the dimer picture. For the PTCDA molecule the main focus was set on the description of the absorption spectrum of crystalline thin films. Related to this older works exist which already gave a description and assignment of the absorption band, but are based on different approaches compared to the one used in this work. We used the supermolecule ansatz, whereas the environment and different aggregate sizes were investigated. Within the dimer based approach we were able to show that using continuum solvation (IEFPCM/COSMO) based description for the environment the relative order of states remains unchanged. Similar to the PBI calculations the influence of the vibrational motions /distortions is larger. The simulation of the crystal environment by using QM/MM (quantum mechanics/molecular mechanics) approaches delivered that an asymmetric charge distribution might induce a localization of the excitation and a stronger mixing of states. For obtaining further insights we go beyond the dimer picture and aggregates of different sizes were used, whereas the simulations up to the octadecamer mono- and even dual-layer stack were carried out. Within these calculations it was shown that the H-coupling is dominating over a weaker J-coupling between different stacks. Additionally the calculations based on DFT (density functional theory) and semi-empirics showed that the lowest state in terms of energy are mostly of Frenkel type, whereas the higher lying states are CT ones which mix with embedded Frenkel type states. The first band of the absorption spectrum was explained by inclusion of vibrational motions within the stacks which induce an intensity gain of the first excited state. This intensity was not explainable by using the undistorted stacks. Also relaxations at the crystal surface might play a role, but are experimentally not explainable. / In der Arbeit wurden zwei große Themenkomplexe bearbeitet. Zum einen wurden Verbesserungen und neue Methoden in CAST, unserem Entwicklungstool, implementiert. Hierbei geht es vor allem darum ein Werkzeug bereit zu stellen, mit dem es möglich ist Reaktionen genauer zu charakterisieren. Aber auch neue Beschreibungen innerhalb der Kraftfeldmethoden (SAPT-FF) wurden bereitgestellt bzw. erweitert. Der zweite Themenkomplex behandelt die Beschreibung von Farbstoffmolekülen und ihrer spektralen Eigenschaften. Insbesondere liegt in dieser Studie der Fokus auf Umgebungseinflüsse. Im ersten Abschnitt wurden Erweiterungen in den lokalen Methoden, die auf NEB (nudged elastic band) basieren, implementiert. Hier wurde zum einen das Spektrum an Methoden erweitert. So wurde der initiale Vorschlag für den Startpfad durch Implementierung der IDPP (image dependent pair potential) Methode verbessert. Des Weiteren wurde eine Methode zur temperaturabhängigen NEB Beschreibung integriert, die auf Maximierung des Fluxes beruht. Auch wurden Verbesserungen hinsichtlich der Optimierungsroutinen durchgeführt. Der wesentliche Teil im ersten Themenbereich beschäftigt sich mit der Verbesserung und Automatisierung von Pathopt (PO). Zu Beginn der Arbeit wurde die ursprüngliche Idee aufgegriffen. Hierbei ermittelt man Vorschläge für Übergangszustände (¨UZ) durch eine globale Optimierung mit Nebendbedingungen auf einer n-1 dimensionalen Hyperfläche, die den Reaktionsraum teilt. Diese ¨UZ bilden den Startpunkt, um mittels einer ”uphill” Optimierung hin zum ”wirklichen ÜZ” zu gelangen. Ausgehend von diesen wurde in die nächst verknüpften Minima relaxiert. Diese Idee wurde automatisiert und auf mehrere Hyperflächen ausgeweitet. So erhält man eine Schar an Pfadsegmenten, die verknüpft werden müssen. Im Laufe der Arbeit, stellte sich jedoch heraus, dass diese Vorgehensweise nicht sehr effizient ist und daher wurde eine neue Idee verwirklicht. Diese beruht wiederum auf der globalen Optimierung mittels Monte Carlo mit Minimierung und Nebenbedingungen auf einer vom Nutzer bestimmten Anzahl an n-1 dimensionalen Hyperflächen. Nun wählt man diese Anzahl entsprechend groß genug aus, um den Raum zwischen den Reaktanden zu beschreiben. Die so gefundenen Mininima auf den n-1 Hyperflächen werden für die direkte Pfaderzeugung genutzt. Dies geschieht mittels eines RMSD (root mean square deviation) Kriteriums, um so den Weg der geringsten Änderungen anhand der Hyperflächen zu wählen. Im Zuge der Implementierung der Methode wurden zahlreiche Testrechnungen und Methodenerweiterungen durchgeführt, um die Funktionalität zu überpüfen und zu verbessern. Diese Verbesserungen liegen zum Bsp. in den Sprungstrategien bzw. der Wahl des Koordinatensystems. Hier konnte gezeigt werden, dass eine Verbindung unterschiedlicher Strategien für die Durchführung des ”Hüpfens” in Monte Carlo zu entscheidenden Verbesserungen führt. Diese Verbesserung besteht in der Verknüpfung von Kartesischen Schritten und zufälliger Veränderungen der Diederwinkel im Rahmen der Nebenbedingungen. Mit Hilfe dieser Verbesserungen konnte eine Vielzahl von Systemen behandelt werden. Ein weiteres Kapitel beschreibt Verbesserungen zum SAPT-FF (FF=Kraftfeld). Testrechnungen zu strukturellen Eigenschaften von Benzol Clustern belegen die Genauigkeit der Ansätze. Auch wurde aufgezeigt, dass das SAPT-verbesserte AMOEBA Kraftfeld der Standard Parametrisierung überlegen ist. Die letzten drei Abschnitte dieser Arbeit behandeln Perylen-basierte Farbstoffe. In einem ersten kleinen Kapitel geht es um die Grundzustandseigenschaften von PBI (Perylenbisimide) Makrozyklen und Erklärung von AFM (Atomic Force Mycroscopy) Messungen. Hier konnten wir mittels MD-Simluation (Molekular Dynamik) und deren Analyse, sowie Beschreibungen unterschiedlicher Konfigurationen, das Aggregationsverhalten in Abhängigkeit der Ringgröße genauer beleuchten. In den beiden letzten Kapiteln geht es um die optoelektronischen Eigenschaften bzw. die photophysikalische Beschreibung von PBI und PTCDA (Perylen-3,4,9,10-Tetracarboxyl Dianhydrid). Im Genaueren wurde die Rolle der Umgebung in Aggregat und Kristall durch unterschiedliche methodische Ansätze untersucht. So wurden implizite Solvensmodelle und explizite Solvatation, Aggregatgröße und vibronische Freiheitsgrade untersucht. In den Arbeiten zum PBI konnte gezeigt werden, dass ein direkter Einfluss durch die Beschreibung mittels impliziter Solvatation, als auch expliziter Solvensmoleküle, auf die Lage der Zustände auch in Hinsicht auf deren Charakterisik nicht auftritt. Berücksichtigt man intra-molekulare Freiheitsgrade, so wird die Lage der Zustände deutlich stärker beeinflusst und sogar ein Wechsel der Zustände wird induziert. Im Fall von PTCDA lag vor allem die Beschreibung und Erklärung der Absorptionsspektren von kristallinem PTCDA im Fokus. Hierzu gibt es ¨altere Arbeiten, die bestimmte Zuordnungen der Banden und ihrer Übergänge postuliert haben. In dieser Arbeit sollte diese Beschreibung im Rahmen eines Supermolekül Ansatzes geklärt und weiter beschrieben werden, wobei Umgebungseinflüsse und auch Eigenschaften verschiedener Aggregate untersucht wurden. Im Dimer Bild konnten wir zeigen, dass die Umgebung, beschrieben durch Continuums Ansätze (IEFPCM/COSMO) die Lage der Zustände nicht beeinflusst und im Wesentlichen nur Zustände mit großer Oszillatorstärke stabilisiert werden. Ähnlich wie im Falle des PBIs hat die Berücksichtigung vibronischer Freiheitsgrade einen wesentlich größeren Einguss. Die Simulation der Kristallumgebung durch QM/MM-Ansätze (Quantenmechanik/Molekularmechanik) ergab, dass eine asymmetrische Ladungsverteilung zu einer Lokalisierung der Anregung und einem stärkeren Durchmischen der Zustände fuhrt. Für eine noch weitergehende Beschreibung wurde das Dimer Bild verlassen und unterschiedliche Aggregate, bis hin zum Oktadekamer im mono- bzw. zweifach-Lagen-Aggregat untersucht. Hier konnte gezeigt werden, dass die Kopplung im H-Aggregat die dominierende Rolle einnimmt und die J-Aggregat Kopplung vernachlässigt werden kann. Zudem zeigen die Rechnungen, die mittels DFT (Dichtefunktionaltheorie) und semi-empirischen Ansätzen durchgeführt wurden, dass die energetisch niedriger liegenden Zustände im wesentlichen Frenkel Charakter aufweisen während die energetisch höher liegenden Zustände CT (Charge Transfer) Charakter haben. Das Auftreten der ersten Bande im Absorptionsspektrum wurde zudem auf das Vorhandensein von möglichen Schwingungsanregungen (mehrere Moden) zurückgeführt, da diese zu einer Zunahme an Intensität des ersten angeregten Zustandes führen, die ohne Berücksichtigung nicht in diesem Maße erhalten wird. Auch könnten Oberflächenrelaxationen eine Rolle spielen, wobei diese experimentell nicht beobachtbar sind.
20

Berechnung der zeitlichen Dynamik gekoppelter Exziton-Phonon-Systeme mit

Herfort, Ulrich 17 July 2000 (has links)
No description available.

Page generated in 0.0412 seconds