• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 19
  • 17
  • Tagged with
  • 90
  • 65
  • 39
  • 27
  • 23
  • 19
  • 15
  • 15
  • 15
  • 15
  • 13
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Nucleic acid-mediated fluorescence activation and chromophore assembly / Nukleinsäure-vermittelte Fluoreszenzaktivierung und Chromophorassemblierung

Dietzsch, Julia January 2022 (has links) (PDF)
Nucleic acids are not only one of the most important classes of macromolecules in biochemistry but also a promising platform for the defined arrangement of chromophores. Thanks to their precise organization by directional polar and hydrophobic interactions, oligonucleotides can be exploited as suitable templates for multichromophore assemblies with predictable properties. To expand the toolbox of emissive, base pairing nucleobase analogs several barbituric acid merocyanine (BAM) chromophores with tunable spectroscopic properties were synthesized and incorporated into RNA, DNA and glycol nucleic acid (GNA) oligonucleotides. A multitude of duplexes containing up to ten BAM chromophores was obtained and analysis by spectroscopic methods revealed the presence of dipolarly coupled merocyanine aggregates with properties strongly dependent on the chromophore orientation toward each other and the backbone conformation. These characteristics were exploited for various applications such as FRET pair formation and polymerase chain reaction (PCR) experiments. The observed formation of higher-order aggregates implies future applications of these new oligonucleotide-chromophore systems as light-harvesting DNA nanomaterials. Besides oligonucleotide templated covalent assembly of chromophores also non-covalent nucleic acid-chromophore complexes are a broad field of research. Among these, fluorogenic RNA aptamers are of special interest with the most versatile ones based on derivatives of the GFP chromophore hydroxybenzylidene imidazolone (HBI). Therefore, new HBI-derived chromophores with an expanded conjugated system and an additional exocyclic amino group for an enhanced binding affinity were synthesized and analyzed in complex with the Chili aptamer. Among these, structurally new fluorogenes with strong fluorescence activation upon binding to Chili were identified which are promising for further derivatization and application as color-switching sensor devices for example. / Nukleinsäuren sind nicht nur eine der wichtigsten Klassen biochemisch relevanter Makromoleküle, sondern stellen auch eine vielversprechende Plattform für die definierte räumliche Organisation kleiner funktioneller Moleküle, wie beispielsweise Chromophore, dar. Oligonu-kleotide können aufgrund ihrer präzise gegliederten Struktur, die durch gerichtete polare und hydrophobe Wechselwirkungen hervorgerufen wird, als nützliche Template für die mehrfache kovalente und nicht-kovalente Anordnung von Chromophoren zu Aggregaten mit vorhersagbaren spektroskopischen Eigenschaften genutzt werden. Obwohl eine Vielzahl solcher Chromophorsysteme bereits in der Literatur beschrieben ist, basieren die meisten Chromophordesigns nur auf hydrophoben Wechselwirkungen zwischen den einzelnen Chromophoren und lassen die intrinsische Fähigkeit kanonischer Nukleobasen, komplementäre Basenpaare zu bilden, außen vor. Allerdings liegt es auf der Hand, dass die Berücksichtigung dieser polaren Wechselwirkungen nicht nur zu einer Stabilisierung der Oligonukleotid-Sekundärstruktur führen kann, sondern auch die Interpretation spektroskopischer Effekte vereinfacht. Um das bekannte Spektrum emittierender Nukleobasen-Analoga zu erweitern und den zusätz-lichen Einfluss dieser polaren Wechselwirkungen auszunutzen, wurden im Zuge dieser Arbeit verschiedene, strukturell unterschiedliche Barbitursäure-Merocyanin-Chromophore (BAM) entworfen. Die Barbitursäure-Akzeptoreinheit dieser künstlichen Nukleobasensurrogate ähnelt der Watson-Crick-Basenpaarungsseite der natürlichen T- und U-Nukleobasen und soll somit die Basenpaarung mit Adenosin ermöglichen. Durch die Kombination dieses Akzeptors mit unterschiedlich aufgebauten aromatischen Donoreinheiten, wie zum Beispiel Indol und Benzothiazol, konnten Merocyanine mit interessanten spektroskopischen Eigenschaften erhalten werden. Da die Konstitution des Nukleinsäurerückgrates einen starken Einfluss auf die Strukturparameter und die thermodynamische Stabilität der resultierenden Duplexstruktur hat, wurden die synthetisierten BAM-Chromophore in Phosphoramiditbausteine für die kovalente Assemblierung innerhalb verschiedener Oligonukleotidsysteme umgewandelt. Neben der Synthese entsprechender DNA- und RNA-Nukleotide wurden die BAM-Chromophore auch als Glykolnukleinsäure-Bausteine (GNA) mit einem azyklischen Rückgrat hergestellt. Der erfolgreiche Einbau der erhaltenen künstlichen Nukleoside konnte durch Festphasensynthese erreicht werden, wobei über 100 modifizierte Einzelstränge erhalten werden konnten. Die Hybridisierung der künstlichen Oligonukleotid-Einzelstränge mit ihren jeweiligen Gegensträngen führte zu einer Vielzahl kurzer Duplexstrukturen mit bis zu zehn BAM-Chromophoren in unterschiedlicher Anordnung. Mithilfe verschiedenster spektroskopischer Methoden konnte ein Einblick in die strukturelle Organisation der Merocyanine innerhalb dieser Systeme erhalten werden, wobei sich die Bildung dipolar-gekoppelter Merocyanin-Dimere und -Multimere zeigte. Die hierfür erforderliche ungewöhnliche \textit{syn}-Konformation der BAM-Chromophore wurde weiterhin durch Oligonukleotid-NMR bestätigt. Erstaunlicherweise wiesen die spektroskopischen und thermodynamischen Eigenschaften BAM-modifizierter Nukleinsäuren eine starke Abhängigkeit von der Chromophororientierung und der Konformation des Rückgrates auf. Dieser Effekt konnte für verschiedene Anwendungen wie die Bildung von FRET-Paaren und die Verwendung als internes fluoreszentes Stop-Nukleotid in Polymerasekettenreaktionen ausgenutzt werden. Mithilfe von Rasterkraftmikroskopie wurde außerdem die Bildung von Aggregaten höherer Ordnung beobachtet, was eine zukünftige Verwendung dieser neuen Oligonukleotid-Chromophor-Systeme als Materialien für Lichtsammelkomplexe oder für die DNA-Nanotechnologie denkbar macht. Ein weiteres großes Forschungsfeld neben kovalenten Chromophoranordnungen mit Oligonukleotiden als Templat sind nicht-kovalente Nukleinsäure-Chromophorkomplexe. Insbesondere fluorogene RNA-Aptamere sind hier von großer Bedeutung wobei die wichtigsten auf der Fluoreszenzaktivierung von Derivaten 4-Hydroxybenzylidenimidazolon-Fluorophors (HBI), dem Chromophor des natürlich vorkommenden grün fluoreszierenden Proteins (GFP), beruhen. Allerdings zeigen viele der berichteten Aptamer-Ligand-Systeme signifikante Nachteile wie unter anderem unspezifische Bindung, eine starke Tendenz zu Photoisomerisierung oder ineffiziente Zellpermeabilität. Deshalb wurden im Zuge dieser Arbeit neue, von HBI abgeleitete Chromophore mit einem vergrößerten konjugierten $\uppi$-System und einer zusätzlichen exozykli-schen Aminogruppe für eine erhöhte Bindungsaffinität synthetisiert und im Komplex mit dem bekannten Chili-Aptamer untersucht. Einige dieser strukturell neuen Chromophore zeigten einen starken Anstieg der Emission bei Bindung an dieses Aptamer und wurden daher weiter charakterisiert. Sie stellen eine vielversprechende Möglichkeit für weitere Derivatisierung und die zukünftige Anwendung beispielsweise als schaltbare Aptamer-basierte Fluoreszenzsensoren dar.
42

Spektroskopische Untersuchungen an elektrisch und optisch erzeugten Exziton-Polariton-Kondensaten / Spectroscopic investigations of electrically and optically created exciton polariton condensates

Klaas, Martin January 2019 (has links) (PDF)
Eine technologisch besonders vielversprechende Art von Mikrokavitäten besteht aus einem optisch aktiven Material zwischen zwei Spiegeln, wobei das Licht auf Größe seiner Wellenlänge eingesperrt wird. Mit diesem einfachen Konzept Licht auf Chipgröße einzufangen entstand die Möglichkeit neue Phänomene der Licht-Materie Wechselwirkung zu studieren. Der Oberflächenemitter (VCSEL), welcher sich das veränderte Strahlungsverhalten aufgrund der schwachen Kopplung und stimulierten Emission zu Nutze macht, ist bereits länger kommerziell sehr erfolgreich. Er umfasst ein erwartetes Marktvolumen von ca. 5.000 Millionen Euro bis 2024, welches sich auf verschiedenste Anwendungen im Bereich von Sensorik und Kommunikationstechnologie bezieht. Dauerhaft hohe Wachstumsraten von 15-20% pro Jahr lassen auf weiteres langfristiges Potential von Mikrokavitäten in der technologischen Gesellschaft der nächsten Generation hoffen. Mit fortschreitender Entwicklung der Epitaxie-Verfahren gelang es Kavitäten solcher Qualität herzustellen, dass zum ersten Mal das Regime der starken Kopplung erreicht wurde. Starke Kopplung bedeutet in diesem Fall die Bildung eines neuen Quasiteilchens zwischen Photon und Exziton, dem Exziton-Polariton (Polariton). Dieses Quasiteilchen zeigt eine Reihe interessanter Eigenschaften, welche sowohl aus der Perspektive der Technologie, als auch aus der Sicht von Grundlagenforschung interessant sind. Bei systemabhängigen Teilchendichten erlaubt das Polariton ebenfalls die Erzeugung von kohärentem Licht über den Exziton-Polariton-Kondensatszustand (Kondensat), den Polariton-Laser. Die Eigenschaften des emittierten Lichtes ähneln denen eines VCSELs, allerdings bei einigen Größenordnungen geringerem Energieverbrauch, bzw. niedrigerer Laserschwelle, bei Wahl geeigneter Verstimmung von Exziton und Photon. Diese innovative Entwicklung kann daher unter anderem neue Möglichkeiten für besonders energiesparende Anwendungen in der Photonik eröffnen. Die vorliegende Doktorarbeit soll zur Erweiterung des Forschungsstandes in diesem Gebiet zwischen Photonik und Festkörperphysik beitragen und untersucht zum einen den anwendungsorientierten Teil des Feldes mit Studien zur elektrischen Injektion, beleuchtet aber auch den interessanten Phasenübergang des Systems über seine Kohärenz- und Spineigenschaften. Es folgt eine knappe überblicksartige Darstellung der Ergebnisse, die in dieser Arbeit genauer ausgearbeitet werden. Rauschanalyse und die optische Manipulation eines bistabilen elektrischen Polariton-Bauelements Aufbauend auf der Realisierung eines elektrischen Polariton-Lasers wurde in dieser Arbeit ein optisches Potential in das elektrisch betriebene Kondensat mit einem externen Laser induziert. Dieses optische Potential ermöglicht die Manipulation der makroskopischen Besetzung der Grundzustandswellenfunktion, welches sich als verändertes Emissionsbild im Realraum darstellt. Der polaritonische Effekt wird über Verschiebung der Emissionslinie zu höheren Energien durch Wechselwirkung des Exzitonanteils nachgewiesen. Diese experimentellen Beobachtungen konnten mit Hilfe eines Gross-Pitaevskii-Differentialgleichungsansatzes erläutert und theoretisch nachgebildet werden. Weiterhin zeigt der elektrische Polariton-Laser eine Bistabilität in seiner Emissionskennlinie an der polaritonischen Kondensationsschwelle. Die Hysterese hat ihren physikalischen Ursprung in der Lebenszeitabhängigkeit der Ladungsträger von der Dichte des Ladungsträgerreservoirs durch die progressive Abschirmung des inneren elektrischen Feldes. In dieser Arbeit wird zum tieferen Verständnis der Hysterese ein elektrisches Rauschen über den Anregungsstrom gelegt. Dieses elektrische Rauschen befindet sich auf der Mikrosekunden-Zeitskala und beeinflusst die Emissionscharakteristik, welche durch die Lebensdauer der Polaritonen im ps-Bereich bestimmt wird. Mit steigendem Rauschen wird ein Zusammenfall der Hysterese beobachtet, bis die Emissionscharakteristik monostabil erscheint. Diese experimentellen Befunde werden mit einem gekoppelten Ratengleichungssystem sowie mit Hilfe einer Gauss-verteilten Zufallsvariable in der Anregung modelliert und erklärt. Die Hysterese ermöglicht außerdem den Nachweis eines optischen Schalteffekts über eine zusätzliche Ladungsträgerinjektion mit einem Laser weit über der Bandkante des Systems, um den positiven Rückkopplungseffekt zu erzeugen. Im Bereich der Hysterese wird das System auf den unteren Zustand elektrisch angeregt und dann mit Hilfe eines nicht-resonanten Laserpulses in den Kondensatszustand gehoben. Polaritonfluss geleitet durch Kontrolle der lithographisch definierten Energielandschaft Polaritonen können durch den photonischen Anteil weiterhin in Wellenleiterstrukturen eingesperrt werden, worin sie bei der Kondensation gerichtet entlang des Kanals mit nahe Lichtgeschwindigkeit fließen. Dies geschieht mit der Besonderheit über ihren Exzitonanteil stark wechselwirken zu können. Die Möglichkeit durch Lithographie solche eindimensionalen Kanäle zu definieren, wurde bereits in verschiedenen Prototypen für Polaritonen benutzt und untersucht. In dieser Arbeit werden zwei verschiedene, neue Ansätze zur Lenkung von gerichtetem Polaritonfluss vorgestellt: zum einen über die sogenannte Josephson-Kopplung zwischen zwei Wellenleitern, realisiert über halbgeätzte Spiegel und zum anderen über eine Mikroscheibe gekoppelt an zwei Wellenleiter. Der Begriff der Josephson-Kopplung ist hier angelehnt an den bekannten Effekt in Supraleitern, welcher phänomenologische Ähnlichkeiten aufweist. Die Verwendung in der Polaritonik ist historisch gewachsen. Die Josephson-Kopplung ermöglicht die Beobachung von Oszillationen des Polariton-Kondensats zwischen den Wellenleitern, in Abhängigkeit der verbleibenden Anzahl Spiegelpaare zwischen den Strukturen, wodurch eine definierte Selektion des Auskopplungsarms ermöglicht wird. Die Mikroscheibe funktioniert ähnlich einer Resonanztunneldiode. Sie ermöglicht eine Energieselektion der transmittierten Moden durch die Diskretisierung der Zustände in den niederdimensionalen Strukturen. Es ergibt sich die Bedingung, dass nur energetisch gleiche Niveaus zwischen Strukturübergängen koppeln können. Gleichzeitig erlaubt die Mikroscheibenanordnung eine Umkehrung der Flussrichtung. Kohärenzeigenschaften und die Photonenstatistik von Polariton-Kondensaten unter photonischen Einschlusspotentialen Die Kohärenzeigenschaften der Emission von Polariton-Kondensaten ist seit längerem ein aktives Forschungsfeld. Die noch ausstehenden Fragen betreffen die Beobachtung hoher Abweichungen von traditionellen, auf Inversion basierenden Lasersystemen (z.B. VCSELs). Diese haben selbst bei schwellenlosen Lasern einen Wert der Autokorrelationsfunktion zweiter Ordnung von Eins. Polariton-Kondensate jedoch zeigen erhöhte Werte in der Autokorrelationsfunktion, welches auf einen Mischzustand zwischen kohärentem und thermischem Licht hinweist. In dieser Arbeit wurde ein systematischer Weg untersucht, die Kohärenzeigenschaften des Polariton-Kondensats denen eines traditionellen Lasers anzunähern. Dies geschieht über den lateralen photonischen Einschluss der Kondensate mittels lithographisch definierter Mikrotürmchen mit verschiedenen Durchmessern. In Kohärenzmessungen wird der Einfluss dieser Veränderung der Energielandschaft der Polariton-Kondensate auf die Autokorrelationseigenschaften zweiter Ordnung untersucht. Es wird ein direkter Zusammenhang zwischen großem Einschlusspotential und guten Korrelationseigenschaften nachgewiesen. Der Effekt wird theoretisch über den veränderten Einfluss der Phononen auf das Polariton-Relaxationsverhalten erklärt. Durch die stärkere Lokalisierung der Polaritonwellenfunktion in kleineren Mikrotürmchen wird die Streuwahrscheinlichkeit erhöht, was eine effizientere Relaxation in den Grundzustand ermöglicht. Dies verhindert zu starke Besetzungsfluktuationen der Grundmode in der Polariton-Lebenszeit, was bisher als Grund für die erhöhte Autokorrelation postuliert wurde. Weiterhin wird eine direkte Messung der Photonenstatistik eines Polaritonkondensats entlang steigender Polaritondichte im Schwellbereich vorgestellt. Die Photonenstatistik eines thermischen Emitters zeigt einen exponentiellen Verlauf, während ein reiner Laser Poisson-verteilt emittiert. Der Zwischenbereich, der für einen Laser am Übergang zwischen thermischer und kohärenter Lichtquelle vorhergesagt wird, kann durch eine Überlagerung der beiden Zustände beschrieben werden. Über eine Anpassungsfunktion der gemessenen Verteilungsfunktionen kann der Phasenübergang des Kondensats mit Hilfe dem Anteil der kohärenten Partikel im System verfolgt werden. Dadurch, dass der gemessene Übergang dem Paradigma der thermisch-kohärenten Zustände folgt, wurde nachgewiesen, dass bei rötlicher Verstimmung die Interaktionen keinen signifikanten Anteil an der Ausbildung von Kohärenz im Polaritonsystem spielen. Polarisationskontrolle von Polariton-Kondensaten Die Polarisationseigenschaften des durch Polaritonenzerfall emittierten Lichts korrespondieren zum Spinzustand der Quasiteilchen. Unterhalb der Kondensationsschwelle ist diese Emission durch Spin-Relaxation der Ladungsträger unpolarisiert und oberhalb der Schwelle bildet sich unter bestimmten Voraussetzungen lineare Polarisation als Ordnungsparameter des Phasenübergangs aus. Der Prozess der stimulierten Streuung kann die (zirkulare) Polarisation des Lasers auch bei Anregung auf höheren Energien auf dem unteren Polaritonast erhalten. Dies resultiert aus sehr schneller Einnahme des Grundzustands, welche eine Spin-Relaxation verhindert. Bisher wurde, nach unserem Kenntnisstand, nur teilweise Erhaltung zirkularer Polarisation unter nicht-resonanter Anregung beobachtet. In dieser Arbeit wird vollständige zirkulare Polarisationserhaltung, energetisch 130 meV vom Kondensatszustand entfernt angeregt, nachgewiesen. Diese Polarisationserhaltung setzt an der Kondensationsschwelle ein, was auf den Erhalt durch stimulierte Streuung hinweist. Unter dieser Voraussetzung der Spinerhaltung erzeugt die linear polarisierte Anregung (als Überlagerung zirkularem Lichts beider Orientierungen) elliptisch polarisiertes Licht. Dies geschieht, weil eine linear polarisierte Anregung durch Fokussierung eines Objektivs leicht elliptisch wird. Der Grad der Elliptizität wird sowohl durch die Verstimmung zwischen Photon und Exziton Mode beeinflusst, als auch durch die Dichte im System. Dies kann erklärt werden über das spezielle Verhalten der Relaxationsprozesse auf dem unteren Polaritonast, welche von der transversal-elektrischen und transversal-magnetischen (TE-TM) energetischen Aufspaltung abhängen. Weiterhin werden elliptische Mikrotürmchen untersucht, um den Einfluss dieses asymmetrischen photonischen Einschlusses auf die Kondensatseigenschaften herauszuarbeiten. Die Ellipse zwingt das Kondensat zu einer linearen Polarisation, welche sich entlang der langen Achse des Türmchens ausrichtet. In asymmetrischen Mikrotürmchen ist die Grundmode aufgespalten in zwei linear polarisierte Moden entlang der beiden orthogonal zueinander liegenden Hauptachsen, wobei die längere Achse das linear polarisierte Energieminimum des Systems bildet. Der Grad der linearen Polarisation nimmt mit geringerem Mikrotürmchendurchmesser und größerer Ellipzität zu. Dies geschieht durch erhöhten energetischen Abstand der beiden Moden. Bei Ellipsen mit einem langen Hauptachsendurchmesser von 2 Mikrometer und einem Achsenverhältnis von 3:2 kann ein nahezu vollständig linear polarisierter Zustand eines Polariton-Kondensats nachgewiesen werden. Damit wurde erforscht, dass auch unter nicht-resonanter Anregung Exziton-Polariton-Kondensate experimentell und theoretisch jeglichen Spinzustand unter entsprechenden Anregungsbedingungen annehmen können. / A technologically especially promising type of microcavities consists of an optical material between two mirrors, whereby light is trapped on the scale of its wavelength. With this simple concept of trapping light on the size of a chip arose the possibility to study new phenomena of light-matter interaction. The VCSEL, which takes advantage of the changed emission behavior due to weak coupling and stimulated emission, has been commercially successful for a long time. The market encompasses a volume of approximately 5000 million euros till 2024, which itself encompasses a plethora of different applications in the areas of sensors to communication technology. Continued high growth rates of up to 15-20% per year give rise to hope for an enduring potential of microcavities in the technological society of the next generation. Continued development of epitaxial methods finally allowed to fabricate cavities of such quality that the regime of strong-coupling was reached. Strong coupling means, in this case, the creation of a new quasi-particle between photon and exciton, the exciton-polariton. This quasi-particle shows a series of interesting properties, which are relevant from both the perspective of technology and basic science. At a system dependant particle density, the polariton allows creation of coherent light via the exciton-polariton condensate state, the polariton-laser. The properties of the emitted light resemble those of a VCSEL, albeit at magnitudes less energy consumption or laser threshold, at an advantageous detuning between exciton and photon. This innovative development has therefore opened up new possibilities for energy saving applications in photonics. This doctorial thesis contributes to science in this research area between photonics and solid-state physics and not only looks at the application relevant part of this field with studies regarding electrical injection, but also illuminates the interesting phase transition of the system via exploration of coherence and spin properties. Now follows a short summary of the results, which are developed in more detail in the main body of the work. Evaluation of noise impact and optical manipulation of a bistable electrical polariton device Building on the realisation of an electrical polariton laser, this work induces an optical potential with an external laser into the electrically driven condensate. This optical potential enables the manipulation of the macroscopic occupation of the groundstate wavefunction, which manifests itself in a changed emission structure in real space. The polaritonic effect is proven via the blueshift of the emission with increased interaction of the exciton part of the polariton. These experimental observations can be theoretically explained with a Gross-Pitaevskii equation approach. Furthermore, the electrical polariton-laser exhibits a bistability behavior at its polaritonic condensation threshold. The hysteresis originates in the lifetime dependance of the carriers on the density of the carrier reservoir by screening of the inner electrical field of the structure. In this work, to get a deeper understanding of the hysteresis, an electrical noise component is superpositioned to the injection current. The electrical noise is on the micrsecond time-scale and affects the emission characteristics which are given by the polariton lifetime on the order of picoseconds. With increased noise, the hysteresis progressively vanishes until the emission appears monostable. These experimental results are modelled with a rate equation approach with a Gaussian random distribution in the excitation. Moreover, the hysteresis allows the observation of an optical switch effect via additional carrier injection with an energetically far off laser to attain the positive feedback effect. In the region of the hystereis, the system is positioned at a lower state with electrical injection and then pushed into the condensate regime with a laser pulse. Polariton flow controlled by a lithographically defined energy landscape Polaritons can be trapped in waveguide structures due to their photonic part, along which they propagte upon condensation with close to the speed of light. This happens with the special property of being able to strongly interact via their exciton content. The possibility to define such channels has been used in a variety of different prototypes for polaritons. This work presents two new approaches to route polariton flow: first via a Josephson-like coupling between two waveguides, realized by partly etched mirrors and second with a microdisk potential coupled to two waveguides. Josephson coupling refers to the known effect in superconducters which shows some resemblance to the observed effect and which use of is historically motivated. Josephson coupling allows observation of oscillations of the polariton condensate between the waveguides, which depends on the remaining mirrorpairs between the structure, which ultimately allows routing into a specific exit arm. The microdisk functions in a similiar way to a resonance tunnel diode. It allows energy selection of the transmitted modes via the discretization of the states in the low-dimensional structures. This results in the condition that only energetically fitting modes are allowed to propagate between the structures. Additionally, the microdisk structure allows counter directional routing of the polariton flow. Coherence properties and the photonstatistics of trapped polariton condensates The coherence properties of the emission of polariton-condensates is a long-standing active research area. The remaining questions regard the observations of high deviations between traditional inversion based systems (e.g. VCSELs). These show, even in thresholdless lasers, a value of the second order autocorrelation function of one. Polariton condensates exhibit increased values, which hint at a mixed state between coherent and thermal light. In this work a systematic way has been investigated, which tries to approach the coherence properties of polariton condensates to those of a traditional laser. This happens via the lateral photonic confinement of the condensates in lithographically defined micropillars with different diameters. The influence of the changes of the energy landscape have been evaluated in coherence measurements of the second order autocorrelation function. A direct link between a high trapping potential and good coherence properties has been proven. The effect is theoretically explained in the changed influence of phonons onto the polariton relaxation mechanisms. Because of the stronger localisation of the polariton wavefunction in smaller micropillars, the probability to scatter is increased, which allows a more efficient relaxation into the ground state. This suppressses strong occupation fluctuations of the ground state in the polariton lifetime, which has been speculated to be the origin of the increased autocorrelation . Additionally, a direct measurement of the photon statistics of the polariton condensate along increased polariton densities is presented. The photon statistics of a thermal emitter shows an exponential relationship, while the emission of a laser is Poisson distributed. The regime in-between, which is proposed for a laser at its threshold, can be described as a mixture of those two states. By fitting a function to the measured distributions, the phase transition can be tracked via the coherent particle fraction present in the system. Because this transition follows the paradigm of the thermal-coherent mixture states, it was proven that interactions do not play a significant role in establishing coherence in a polariton condensate with a photonic detuning. Polarisation control of polariton condensates The polarisation properties of the light originating in decay of polaritons correspond to the spin state of the quasiparticle. Below condensation threshold, this emission is largely unpolarised due to spin relaxation and above threshold, under certain circumstances, linear polarisation can be observed as an order parameter of the phase transition. The process of stimulated scattering can preserve circular polarisation of the laser at excitations positioned on the lower polariton branch. This is due to the fast relaxation to the ground state which prevents spin relaxation. Up until now, up to our knowledge, only partial conservation of circular polarisation in non-resonant excitation has been observed. In this work, complete circular polarisation conservation has been proven, at excitation 130 meV above the condensate state. This polarisation conservation starts at condensation threshold, which hints at conservation due to stimulated scattering. Under these conditions, linear excitation (as a superposition between both circular components) creates elliptically polarised light. This happens due to the fact that linear excitation focused via an objective becomes slightly elliptical. The degree of elliptical polarisation is determined by the detuning between exciton and photon and the particle density present in the condensate system. This can be explained with the relaxation processes on the lower polariton branch, which depend on the energy splitting between TE and TM modes. Additionally, elliptical micropillars have been investigated, to work out the influence of asymetric photonic confinement on the condensation properties. The elliptical confinement forces the condensate into a linear polarisation, which establishes itself along the long axis of the micropillar. In asymmetric micropillars, the ground state is split into two linear polarised modes along both orthogonal main axes, whereby the long axis determines the energy minimum of the system. The degree of linear polarisation increases with decreasing micropillar diameter and increasing ellipticity. This happens due to increased energy difference between the two modes. The ellipses have a long axis diameter of 2 micrometers and an axis relation of 3:2, in which nearly fully linearly polarised condensates have been observed. With this it was investigated that non-resonant excitation of polariton condensates can experimentally and theoretically attain every spin state under fitting excitation conditions.
43

Strong light-matter coupling with 2D materials / Starke Licht-Materie Kopplung mit 2D Materialien

Lundt, Nils January 2019 (has links) (PDF)
This publication is dedicated to investigate strong light-matter coupling with excitons in 2D materials. This work starts with an introduction to the fundamentals of excitons in 2D materials, microcavities and strong coupling in chapter 2. The experimental methods used in this work are explained in detail in chapter 3. Chapter 4 covers basic investigations that help to select appropriate materials and cavities for the following experiments. In chapter 5, results on the formation of exciton-polaritons in various materials and cavity designs are presented. Chapter 6 covers studies on the spin-valley properties of exciton-polaritons including effects such as valley polarization, valley coherence and valley-dependent polariton propagation. Finally, the formation of hybrid-polaritons and their condensation are presented in chapter 7. / Diese Veröffentlichung beschäftigt sich mit starker Licht-Materie Kopplung mit Exzitonen in 2D Materialien. Dies Arbeit beginnt mit einer Einführung in Exzitonen in 2D Materialien, in Mikrokavitäten und starke Licht-Materie Kopplung (Kapitel 1). Die verwendeten, experimentellen Methoden werden in Kapitel 3 beschrieben. Kapitel 4 deckt Voruntersuchungen ab, die helfen die richtigen Materialien und Mikrokavitäten für die folgenden Experimente auszuwählen. In Kapitel 5 werden die Ergebnisse zur Erzeugung von Exziton-Polaritonen in verschiednen Materialen und Kavitäten gezeigt. Kapitel 6 beschäftigt sich mit Untersuchungen der Spin-Tal Eigenschaften der Exziton-Polaritonen, inkl. Effekte wie Tal Polarisation und Koherenz. Abschließend wird in Kapitel 7 die Erzeugung von Hybrid-Polaritonen und deren Kondensation dargestellt.
44

Elektrische und magnetische Felder zur Untersuchung und Manipulation von Exziton-Polaritonen / Electric and magnetic fields for analysis and manipulation of exciton-polaritons

Brodbeck, Sebastian January 2020 (has links) (PDF)
Starke Licht-Materie-Wechselwirkung in Halbleiter-Mikroresonatoren führt zur Ausbildung von Eigenmoden mit gemischtem Licht-Materie-Charakter, die als Polaritonen bezeichnet werden. Die besonderen Eigenschaften dieser bosonischen Quasiteilchen können zur Realisierung neuartiger Bauteile genutzt werden, wie etwa des Polariton-Lasers, der auf stimulierter Streuung beruht anstatt auf stimulierter Emission, durch die Photon-Lasing ausgelöst wird. Durch den direkten Zugang zu Polariton-Zuständen in spektroskopischen Experimenten, sowie durch die Möglichkeit mit vielfältigen Mitteln nahezu beliebige Potentiallandschaften definieren zu können, eröffnen sich zahlreiche weitere Anwendungsgebiete, etwa in der Quantensimulation bzw. -emulation. Mittels externer elektrischer und magnetischer Felder können Erkenntnisse über Polaritonen gewonnen werden, die in rein optischen Experimenten nicht zugänglich sind. Durch die Felder, die nicht mit rein photonischen Moden wechselwirken, kann auf den Materie-Anteil der Hybridmoden zugegriffen werden. Weiterhin können die Felder zur in-situ Manipulation der Polariton-Energie genutzt werden, was für die Erzeugung dynamischer Potentiale relevant werden könnte. Der Fokus dieser Arbeit liegt daher auf der Betrachtung verschiedener Phänomene der Licht-Materie-Wechselwirkung unter dem Einfluss äußerer Felder. Dazu wurden auf das jeweilige Experiment abgestimmte Strukturen und Bauteile hergestellt und in magneto-optischen oder elektro-optischen Messungen untersucht. Um elektrische Felder entlang der Wachstumsrichtung anlegen zu können, d.h. in vertikaler Geometrie, wurden dotierte Resonatoren verwendet, die mit elektrischen Kontakten auf der Probenoberfläche und -rückseite versehen wurden. In diesen Bauteilen wurde die Energieverschiebung im elektrischen Feld untersucht, der sogenannte Stark-Effekt. Dieser im linearen Regime bereits mehrfach demonstrierte Effekt wurde systematisch auf den nichtlinearen Bereich des Polariton-Lasings erweitert. Dabei wurde besonderes Augenmerk auf die Probengeometrie und deren Einfluss auf die beobachteten Energieverschiebungen gelegt. Die Untersuchungen von Proben mit planarer, semi-planarer und Mikrotürmchen-Geometrie zeigen, dass ein lateraler Einschluss der Ladungsträger, wie er im Mikrotürmchen erzielt wird, zu einer Umkehrung der Energieverschiebung führt. Während in dieser Geometrie mit zunehmender Feldstärke eine Blauverschiebung des unteren Polaritons gemessen wird, die durch Abschirmungseffekte erklärt werden kann, wird in planarer und semi-planarer Geometrie die erwartete Rotverschiebung beobachtet. In beiden Fällen können, je nach Verstimmung, Energieverschiebungen im Bereich von einigen hundert µeV gemessen werden. Die gemessenen Energieverschiebungen zeigen gute Übereinstimmung mit den Werten, die nach einem Modell gekoppelter Oszillatoren berechnet wurden. Weiterhin werden vergleichbare Energieverschiebungen unter- und oberhalb der Schwelle zum Polariton-Lasing beobachtet, sodass der Polariton-Stark-Effekt als eindeutiges Merkmal erachtet werden kann, anhand dessen optisch angeregte Polariton- und Photon-Laser eindeutig unterschieden werden können. Wird das elektrische Feld nicht entlang der Wachstumsrichtung angelegt, sondern senkrecht dazu in der Ebene der Quantenfilme, dann kommt es schon bei geringen Feldstärken zur Feldionisation von Elektron-Loch-Paaren. Um diese Feldgeometrie zu realisieren, wurde ein Verfahren entwickelt, bei dem Kontakte direkt auf die durch einen Ätzvorgang teilweise freigelegten Quantenfilme eines undotierten Mikroresonators aufgebracht werden. Durch das Anlegen einer Spannung zwischen den lateralen Kontakten kann die Polariton-Emission unterdrückt werden, wobei sich die Feldabhängigkeit der Polariton-Besetzung durch ein Modell gekoppelter Ratengleichungen reproduzieren lässt. Die neuartige Kontaktierung erlaubt es weiterhin den Photostrom in den Quantenfilmen zu untersuchen, der proportional zur Dichte freier Ladungsträger ist. Dadurch lässt sich zeigen, dass die zwei Schwellen mit nichtlinearem Anstieg der Emission, die in derartigen Proben häufig beobachtet werden, auf grundsätzlich verschiedene Verstärkungsmechanismen zurückgehen. An der zweiten Schwelle wird ein Abknicken des leistungsabhängigen Photostroms beobachtet, da dort freie Ladungsträger als Reservoir des Photon-Lasings dienen, deren Dichte an der Schwelle teilweise abgeklemmt wird. Die erste Schwelle hingegen, die dem Polariton-Lasing zugeordnet wird, hat keinen Einfluss auf den linear mit der Anregungsleistung ansteigenden Photostrom, da dort gebundene Elektron-Loch-Paare als Reservoir dienen. Mittels angepasster Ratengleichungsmodelle für Polariton- und Photon-Laser lässt sich der ermittelte Verlauf der Ladungsträgerdichte über den gesamten Leistungsbereich qualitativ reproduzieren. Abschließend wird durch ein magnetisches Feld der Einfluss der Licht-Materie-Wechselwirkung auf die Elektron-Loch-Bindung im Regime der sehr starken Kopplung beleuchtet. Durch die Messung der diamagnetischen Verschiebung wird der mittlere Elektron-Loch-Abstand von unterem und oberem Polariton für zwei Resonatoren mit unterschiedlich starker Licht-Materie-Wechselwirkung bestimmt. Bei geringer Kopplungsstärke werden die Hybridmoden in guter Näherung als Linearkombinationen der ungekoppelten Licht- und Materie-Moden beschrieben. Für den Resonator mit großer Kopplungsstärke wird eine starke Asymmetrie zwischen unterem und oberem Polariton beobachtet. Die diamagnetische Verschiebung des oberen Polaritons steigt mit zunehmender Verstimmung auf bis etwa 2,1 meV an, was fast eine Größenordnung über der Verschiebung des unteren Polaritons (0,27 meV) bei derselben Verstimmung liegt und die Verschiebung des ungekoppelten Quantenfilms um mehr als den Faktor 2 übersteigt. Das bedeutet, dass das untere Polariton durch eine Wellenfunktion beschrieben wird, dessen Materie-Anteil einen verringerten mittleren Elektron-Loch-Abstand aufweist. Im oberen Polariton ist dieser mittlere Radius deutlich größer als der eines Elektron-Loch-Paars im ungekoppelten Quantenfilm, was sich durch eine von Photonen vermittelte Wechselwirkung mit angeregten und Kontinuumszuständen des Quantenfilms erklären lässt. / Strong light-matter interaction in semiconductor microcavities leads to the formation of eigenmodes with mixed light-matter characteristics, so-called polaritons. The unique properties of these bosonic quasiparticles may be exploited to realize novel devices, such as polariton-lasers which rely on stimulated scattering instead of stimulated emission, which in turn triggers photon-lasing. Polariton states are directly accessible in spectroscopic experiments and can be subjected to almost arbitrary potential landscapes which could lead to numerous applications, for instance in quantum simulation or emulation. External electric and magnetic fields can be used to gain insights into polaritons that are not available in all-optical experiments. The matter part of the hybrid modes is accessed by the external fields that do not interact with purely photonic modes. Furthermore, in-situ manipulation of the polariton energy by external fields could be used to create dynamic potentials. This thesis is therefore focussed on studying different aspects of light-matter coupling under the influence of external fields. To this end, structures and devices tailored to the specific experiments were fabricated and investigated in electro-optical or magneto-optical measurements. Doped microcavities with electrical contacts on the sample surface and back side were used to apply electric fields along the growth direction, i.e. in vertical geometry. The energy shift in an electric field, the so-called Stark effect, was investigated in these devices. In this work, measurements of the polariton Stark effect, which has previously been demonstrated in the linear regime, were systematically extended to the nonlinear regime of polariton-lasing with special attention paid to the sample geometry and its influence on the observable energy shifts. Investigations of samples with planar, semi-planar and micropillar geometries show that lateral carrier confinement in a micropillar leads to an inversion of the energy shift. While in this geometry a blueshift with increasing field strength is measured, which can be explained by screening effects, the expected redshift is restored in planar and semi-planar geometries. In both cases, detuning-dependent energy shifts of up to hundreds of µeV are observed in good agreement with values calculated with a model of coupled harmonic oscillators. Furthermore, comparable shifts below and above the polariton-lasing threshold are observed both in the semi-planar and in the micropillar geometry. The polariton Stark effect may therefore be considered as criterion to unambiguously distinguish optically excited polariton- and photon-lasers. If the electric field is not oriented along the growth direction but perpendicular to it, i.e. in the plane of the quantum wells, then field ionization of electron-hole pairs occurs already at low field strengths. To realize this field geometry, a process was developed to deposit electrical contacts directly onto the quantum wells of an undoped microcavity which are partially exposed in an etching step. The polariton emission can be suppressed by applying voltage to the lateral contacts and the dependency of the polariton occupation upon the electric field is reproduced using a set of coupled rate equations. This novel contacting technique furthermore allows to measure the photocurrent in the quantum wells which is proportional to the free carrier density. The two thresholds of nonlinear emission, which are commonly observed in similar samples, can then be shown to rely on fundamentally different gain mechanisms. A kink in the power dependence of the photocurrent is observed at the second threshold, where free carriers act as reservoir for photon-lasing which is why their density is partially clamped at threshold. The first threshold on the other hand, which is attributed to polariton-lasing, has no influence on the linear increase of the photocurrent with increasing excitation power, since there bound electron-hole pairs act as reservoir. The experimentally determined power dependence of the photocurrent is reproduced qualitatively over the whole range of excitation powers using adapted rate equation models for polariton- and photon-lasers. Finally, a magnetic field is used to reveal the impact of light-matter interactions on electron-hole coupling in the regime of very strong coupling. By measuring the diamagnetic shift, the average electron-hole separations of lower and upper polariton are determined for two microcavities with different light-matter coupling strengths. At small coupling strength, describing the hybrid modes as linear combinations of uncoupled light and matter modes is a valid approximation. At large coupling strength, significant asymmetries between lower and upper polariton are observed. With increasing detuning, the upper polariton diamagnetic shift increases up to 2.1 meV, almost an order of magnitude larger than the lower polariton shift (0.27 meV) at the same detuning and more than twice as large as the bare quantum well diamagnetic shift. Thus, the lower polariton is described by a wavefunction with a matter part exhibiting a decreased average electron-hole separation. For the upper polariton, this average radius is much larger than that of an electron-hole pair in the uncoupled quantum well which can be explained by photon-mediated interactions with excited and continuum states of the quantum well.
45

Simulationen zur transienten Absorptionsspektroskopie an Energie- und Ladungstransfersystemen / Simulations on transient absorption spectroscopy of energy and charge transfer systems

Glaab, Fabian January 2022 (has links) (PDF)
Anregungsinduzierte Ladungstransferprozesse gemischtvalenter Verbindungen in einem, bzw. zwei Vibrationsfreiheitsgraden werden mithilfe vibronischer Modellsysteme untersucht. Anhand transienter und linearer Absorptionsspektren werden die berechneten mit experimentell bestimmten Daten verglichen. Eine detailliertere theoretische Analyse erfolgt unter den Gesichtspunkten der Populations- und Wellenpaketdynamik. Darüber hinaus wird der Prozess der Exziton-Exziton-Annihilierung mithilfe eines elektronischen Modellsystems untersucht. Zu diesem Zweck werden, zusätzlich zu den oben genannten Methoden, spektroskopische Signale unterschiedlicher Emissionsrichtungen zum Vergleich herangezogen. / Optically induced charge transfer processes of mixed-valence compounds in one or two vibrational degrees of freedom respectively are studied using vibronic model systems. Calculated and experimentally determined data are compared based on transient as well as linear absorptions spectra. By means of population and wave-packet dynamics a more detailed theoretical analysis is performed. Furthermore, the process of exciton-exciton annihilation is studied using an electronic model system. Therefore, in addition to the methods mentioned above, spectroscopic signals in different directions of emission are compared.
46

Topological Modes and Flatbands in Microcavity Exciton-Polariton Lattices / Topologische Moden und Flachbänder in Mikrokavitäts-Exziton-Polariton-Gittern

Harder, Tristan H. January 2022 (has links) (PDF)
The fascination of microcavity exciton-polaritons (polaritons) rests upon the combination of advanced technological control over both the III-V semiconductor material platform as well as the precise spectroscopic access to polaritonic states, which provide access to the investigation of open questions and complex phenomena due to the inherent nonlinearity and direct spectroscopic observables such as energy-resolved real and Fourier space information, pseudospin and coherence. The focus of this work was to advance the research area of polariton lattice simulators with a particular emphasis on their lasing properties. Following the brief introduction into the fundamental physics of polariton lattices in chapter 2, important aspects of the sample fabrication as well as the Fourier spectroscopy techniques used to investigate various features of these lattices were summarized in chapter 3. Here, the implementation of a spatial light modulator for advanced excitation schemes was presented. At the foundation of this work is the capability to confine polaritons into micropillars or microtraps resulting in discrete energy levels. By arranging these pillars or traps into various lattice geometries and ensuring coupling between neighbouring sites, polaritonic band structures were engineered. In chapter 4, the formation of a band structure was visualised in detail by investigating ribbons of honeycomb lattices. Here, the transition of the discrete energy levels of a single chain of microtraps to the fully developed band structure of a honeycomb lattice was observed. This study allows to design the size of individual domains in more complicated lattice geometries such that a description using band structures becomes feasible, as it revealed that a width of just six unit cells is sufficient to reproduce all characteristic features of the S band of a honeycomb lattice. In particular in the context of potential technological applications in the realms of lasing, the laser-like, coherent emission from polariton microcavities that can be achieved through the excitation of polariton condensates is intriguing. The condensation process is significantly altered in a lattice potential environment when compared to a planar microcavity. Therefore, an investigation of the polariton condensation process in a lattice with respect to the characteristics of the excitation laser, the exciton-photon detuning as well as the reduced trap distance that represents a key design parameter for polaritonic lattices was performed. Based on the demonstration of polariton condensation into multiple bands, the preferred condensation into a desired band was achieved by selecting the appropriate detuning. Additionally, a decreased condensation threshold in confined systems compared to a planar microcavity was revealed. In chapter 5, the influence of the peculiar feature of flatbands arising in certain lattice geometries, such as the Lieb and Kagome lattices, on polaritons and polariton condensates was investigated. Deviations from a lattice simulator described by a tight binding model that is solely based on nearest neighbour coupling cause a remaining dispersiveness of the flatbands along certain directions of the Brillouin zone. Therefore, the influence of the reduced trap distance on the dispersiveness of the flatbands was investigated and precise technological control over the flatbands was demonstrated. As next-nearest neighbour coupling is reduced drastically by increasing the distance between the corresponding traps, increasing the reduced trap distance enables to tune the S flatbands of both Lieb and Kagome lattices from dispersive bands to flatbands with a bandwidth on the order of the polariton linewidth. Additionally to technological control over the band structures, the controlled excitation of large condensates, single compact localized state (CLS) condensates as well as the resonant excitation of polaritons in a Lieb flatband were demonstrated. Furthermore, selective condensation into flatbands was realised. This combination of technological and spectroscopic control illustrates the capabilities of polariton lattice simulators and was used to study the coherence of flatband polariton condensates. Here, the ability to tune the dispersiveness from a dispersive band to an almost perfect flatband in combination with the selectivity of the excitation is particularly valuable. By exciting large flatband condensates, the increasing degree of localisation to a CLS with decreasing dispersiveness was demonstrated by measurements of first order spatial coherence. Furthermore, the first order temporal coherence of CLS condensates was increased from τ = 68 ps for a dispersive flatband, a value typically achieved in high-quality microcavity samples, to a remarkable τ = 459 ps in a flatband with a dispersiveness below the polarion linewidth. Corresponding to this drastic increase of the first order coherence time, a decrease of the second order temporal coherence function from g(2)(τ =0) = 1.062 to g(2)(0) = 1.035 was observed. Next to laser-like, coherent emission, polariton condensates can form vortex lattices. In this work, two distinct vortex lattices that can form in polariton condensates in Kagome flatbands were revealed. Furthermore, chiral, superfluid edge transport was realised by breaking the spatial symmetry through a localised excitation spot. This chirality was related to a change in the vortex orientation at the edge of the lattice and thus opens the path towards further investigations of symmetry breaking and chiral superfluid transport in Kagome lattices. Arguably the most influential concept in solid-state physics of the recent decades is the idea of topological order that has also provided a new degree of freedom to control the propagation of light. Therefore, in chapter 6, the interplay of topologically non-trivial band structures with polaritons, polariton condensates and lasing was emphasised. Firstly, a two-dimensional exciton-polariton topological insulator based on a honeycomb lattice was realised. Here, a topologically non-trivial band gap was opened at the Dirac points through a combination of TE-TM splitting of the photonic mode and Zeeman splitting of the excitonic mode. While the band gap is too small compared to the linewidth to be observed in the linear regime, the excitation of polariton condensates allowed to observe the characteristic, topologically protected, chiral edge modes that are robust against scattering at defects as well as lattice corners. This result represents a valuable step towards the investigation of non-linear and non-Hermitian topological physics, based on the inherent gain and loss of microcavities as well as the ability of polaritons to interact with each other. Apart from fundamental interest, the field of topological photonics is driven by the search of potential technological applications, where one direction is to advance the development of lasers. In this work, the starting point towards studying topological lasing was the Su-Schrieffer-Heeger (SSH) model, since it combines a simple and well-understood geometry with a large topological gap. The coherence properties of the topological edge defect of an SSH chain was studied in detail, revealing a promising degree of second order temporal coherence of g(2)(0) = 1.07 for a microlaser with a diameter of only d = 3.5 µm. In the context of topological lasing, the idea of using a propagating, topologically protected mode to ensure coherent coupling of laser arrays is particularly promising. Here, a topologically non-trivial interface mode between the two distinct domains of the crystalline topological insulator (CTI) was realised. After establishing selective lasing from this mode, the coherence properties were studied and coherence of a full, hexagonal interface comprised of 30 vertical-cavity surface-emitting lasers (VCSELs) was demonstrated. This result thus represents the first demonstration of a topological insulator VCSEL array, combining the compact size and convenient light collection of vertically emitting lasers with an in-plane topological protection. Finally, in chapter 7, an approach towards engineering the band structures of Lieb and honeycomb lattices by unbalancing the eigenenergies of the sites within each unit cell was presented. For Lieb lattices, this technique opens up a path towards controlling the coupling of a flatband to dispersive bands and could enable a detailed study of the influence of this coupling on the polariton flatband states. In an unbalanced honeycomb lattice, a quantum valley Hall boundary mode between two distinct, unbalanced honeycomb domains with permuted sites in the unit cells was demonstrated. This boundary mode could serve as the foundation for the realisation of a polariton quantum valley Hall effect with a truly topologically protected spin based on vortex charges. Modifying polariton lattices by unbalancing the eigenenergies of the sites that comprise a unit cell was thus identified as an additional, promising path for the future development of polariton lattice simulators. / Die Faszination von Exziton-Polaritonen (Polaritonen) basiert auf der einzigartigen Kombination aus technologischer Kontrolle über die III-V Halbleiterplattform und umfassendem spektroskopischen Zugang zu polaritonischen Zuständen, die aufgrund ihrer inhärenten Nichtlinearität und vielfältigen Observablen, wie zum Beispiel Real- und Fourierraumspektren, Pseudospin und Kohärenz, Zugang zu diversen offenen Fragen und komplexen physikalischen Phänomenen bieten. Im Fokus dieser Arbeit lag die Weiterentwicklung von Polaritongittern als Simulatoren für diverse physikalische Phänomene. Dabei wurde insbesondere die das kohärente, Laser-artige Licht, das von Polaritonkondensaten ausgesendet wird, untersucht. Die Arbeit beginnt mit einer kurzen Zusammenfassung der für das Verständnis relevanten physikalischen Grundlagen in Kapitel 2, gefolgt von einer Beschreibung der Probenherstellung sowie der spektroskopischen Methoden, die für die Untersuchung der polaritonischen Gitter verwendet wurden, in Kapitel 3. Hier wurde insbesondere die Implementierung eines Spatial Light Modulators für die Erzeugung beliebig definierbarer Anregungsmuster präsentiert. Diese Arbeit basiert auf der Fähigkeit, Einschlusspotentiale in Form von Mikrotürmchen oder Mikrofallen für Polaritonen zu erzeugen, die zu einem diskretisierten Modenspektrum führen. Wird nun ein Gitter aus solchen Türmchen oder Fallen hergestellt, führt die Kopplung zwischen benachbarten Gitterpositionen zur Ausbildung von Bandstrukturen. Die Ausbildung einer solchen Bandstruktur wurde in Kapitel 4 anhand von Streifen eines Honigwabengitters veranschaulicht. Dabei konnte der Übergang vom diskreten Energiespektrum einer eindimensionalen Kette bis hin zur vollständig ausgebildeten Bandstruktur eines Honigwabengitters dargestellt werden. Diese systematische Untersuchung ermöglicht das gezielte Design neuer, komplizierterer Gittergeometrien, die aus verschiedenen Domänen bestehen, da gezeigt werden konnte, dass eine Domänengröße von sechs Einheitszellen ausreicht, um eine Bandstruktur zu erzeugen. Neben der Ausbildung von Bandstrukturen in Gittern ist das Phänomen der Polaritonkondensation, das zur Emission von kohärenter Strahlung führt, besonders spannend, da es in direktem Bezug zu möglichen technologischen Anwendungen als Laser steht. Da sich der Kondensationsprozess in einem Gitter grundsätzlich vom Kondensationsprozess in einer planaren Kavität unterscheidet, wurde dieser detailliert untersucht. Hierbei wurde insbesondere der Einfluss des Anregungslasers, der Verstimmung zwischen Exziton und Photon, sowie des reduzierten Fallenabstandes, der einen wichtigen Parameter im Design neuer Gitter darstellt, untersucht. Im Rahmen dieser Untersuchung konnte die Polaritonkondensation in mehrere Bänder nachgewiesen werden. Außerdem wurde selektive Kondensation in ein gewünschtes Band durch die Wahl einer geeigneten Verstimmung zwischen Exziton und Photon erreicht. Abschließend konnte eine Verringerung der Kondensationsschwelle in einem Gitter gegenüber einer planaren Kavität nachgewiesen werden. Ein bemerkenswertes Phänomen, das zum Beispiel in den Bandstrukturen von Lieb- und Kagomegittern auftritt, sind Flachbänder, deren Einfluss auf Polaritonen und Polaritonkondensate, insbesondere in Bezug zu ihren Kohärenzeigenschaften, in Kapitel 5 untersucht wurde. Abweichungen von einem Gittersimulator, der sich mit einem Tight Binding Modell, das nur Kopplung zwischen nächsten Nachbarn berücksichtigt, beschreiben lässt, führen dazu, dass Flachbänder entlang bestimmter Richtungen in der Brillouinzone dispersiv werden. Mit einer Untersuchung des Einflusses des reduzierten Fallenabstandes auf Flachbänder konnte technologische Kontrolle über diese Dispersivität gezeigt werden. Da die Kopplung zwischen übernächsten Nachbarn mit steigendem Abstand zwischen den Fallen stark abnimmt, lassen sich die Flachbänder in den S Bändern von Lieb und Kagomegittern von dispersiven in nahezu perfekte Flachbänder, deren Bandbreite in der Größenordnung der polaritonischen Linienbreite liegt, überführen, indem der reduzierte Fallenabstand vergrößert wird. Zusätzlich zur technologischen Kontrolle über die Dispersivität der Flachbänder wurde die kontrollierte Anregung von großen Flachbandkondensaten, Kondensaten in einzelnen Compact Localised States (CLS), sowie die resonante Anregung von Polaritonen in einem Lieb Flachband demonstriert. Insbesondere für das Flachband des Kagomegitters konnte selektive Kondensation realisiert werden. Diese Kombination aus technologischer und spektroskopischer Kontrolle verdeutlicht das Potential polaritonischer Gittersimulatoren. Aufbauend auf der Kontrolle über polaritonische Flachbänder wurde die Kohärenz von Flachbandkondensaten untersucht. In diesem Zusammenhang erwies sich die Kombination aus der Möglichkeit, die Dispersivität des Flachbandes zu beeinflussen, und der selektiven Kondensation als besonders wertvoll. Durch interferometrische Messungen an großen Flachbandkondensaten konnte gezeigt werden, dass sich die Kohärenz mit abnehmender Dispersivität des Flachbandes auf einen CLS lokalisiert. Außerdem konnte eine Steigerung der Kohärenzzeit von τ = 68 ps, einem für hochwertige Mikrokavitäten typischen Wert, in einem dispersiven Flachband zu beeindruckenden τ = 459 ps in einem Flachband, dessen Dispersivität kleiner als die polaritonische Linienbreite ist, gezeigt werden. Passend zu dieser deutlichen Steigerung der Kohärenzzeit erster Ordnung konnte eine Abnahme der Kohärenzfunktion zweiter Ordnung von g(2)(τ =0) = 1.062 zu g(2)(0) = 1.035 beobachtet werden. Neben den mit einem Laser vergleichbaren Emissionseigenschaften können Polaritonkondensate Gitter aus Vortices ausbilden. Im Rahmen dieser Arbeit wurden zwei verschiedene Vortexgitter nachgewiesen. Außerdem konnte durch Symmetriebrechung mittels eines lokalisierten Anregungslasers chiraler, superfluider Randtransport realisiert werden. Diese Chiralität konnte mit einer Änderung der Vortexausrichtung am Rand des Gitters in Verbindung gebracht werden und motiviert daher weitere Untersuchungen zu Symmetriebrechung und chiralem, superfluidem Transport in Kagomegittern. Das vermutlich einflussreichste Konzept in der Festkörperphysik der letzten Jahrzehnte ist die Idee einer topologischen Ordnung, die auch einen neuen Freiheitsgrad zur Kontrolle der Propagation von Licht bietet. Daher wurde in Kapitel 6 das Zusammenspiel aus topologisch nicht-trivialen Bandstrukturen und Polaritonen, Polarionkondensaten und Lasern untersucht. Zuerst wurde ein zweidimensionaler, polaritonischer, topologischer Isolator, der auf einem Honigwabengitter basiert, realisiert. Die topologisch nicht-triviale Bandlücke wurde durch eine Kombination aus einer Modenaufspaltung zwischen der transversal-elektrischen und der transversal-magnetischen Komponente der photonischen Mode sowie einer Zeeman-Aufspaltung der exzitonischen Mode geöffnet. Da die Bandlücke zu klein gegenüber der Linienbreite war, um sie im linearen Regime nachweisen zu können, wurden Polaritonkondensate angeregt. Mithilfe dieser Kondensate war es möglich, die charakteristischen, topologisch geschützten, chiralen Randmoden, die robust gegenüber Rückstreuung und Streuung an Defekten sowie den Ecken des Gitters sind, nachzuweisen. Dieses Ergebnis stellt einen wichtigen Schritt in der Untersuchung nicht-linearer und nichthermitischer, topologischer Systeme dar, da Mikrokavitäten eine intrinsische Nichtlinearität aufweisen und Polaritonen untereinander wechselwirken können. Neben dem fundamentalen Interesse wird das Feld der topologischen Photonik vor allem durch die Suche nach neuen technologischen Anwendungen vorangetrieben. Eine wichtige Forschungsrichtung ist dabei die Entwicklung neuer Laser. In dieser Arbeit war der Ausgangspunkt für die Untersuchung topologischer Laser das Su-Schrieffer-Heeger (SSH) Modell, da es eine einfache, gut verstandene Geometrie und eine große topologische Bandlücke bietet. Die Kohärenzeigenschaften des topologischen Randdefekts in SSH Ketten wurden detailliert untersucht und ein Grad zeitlicher Kohärenz zweiter Ordnung von g(2)(0) = 1.07 erreicht. Für einen Mikrolaser mit einem Durchmesser von nur d = 3.5 µm ist dies ein sehr gutes Ergebnis. Besonders vielversprechend in der Entwicklung topologischer Laser ist allerdings vor allem die kohärente Kopplung vieler Laser mithilfe einer propagierenden, topologisch geschützten Mode. Um diese Kopplung zu untersuchen wurde eine topologisch nichttriviale Mode an der Domänengrenze zwischen zwei kristallinen, topologischen Isolatoren implementiert. Nachdem selektive Laseremission aus dieser Mode erreicht wurde, wurden insbesondere die Kohärenzeigenschaften untersucht. Dabei konnte gezeigt werden, dass 30 vertikal emittierende Laser, die eine geschlossene, hexagonale Domänengrenze bilden, kohärent gekoppelt werden können. Dieser erste Nachweis eines topologisch geschützten Gitters aus gekoppelten, vertikal emittieren Lasern überzeugt vor allem durch die Kombination der kompakten Bauform und einfachen Bündelung der Laseremission vertikal emittierenden Laser mit dem topologischen Schutz der zwischen den Lasern propagierenden Mode. Zuletzt wurde in Kapitel 7 untersucht, wie die Bandstrukturen von Lieb- und Honigwabengittern durch die Einführung eines Energieunterschiedes zwischen den Untergittern gezielt verändert werden können. In Liebgittern bietet diese Technologie einen Weg, die Kopplungsumgebung des Flachbandes drastisch zu ändern, da das Flachband nun nicht mehr einen Dirac-Punkt mit linearer Dispersion schneidet, sondern ein dispersives Band an einem Potentialminimum berührt. In Honigwabengittern konnte eine Quantum Valley Hall Mode an der Grenzfläche zwischen zwei Domänen mit invertiertem Untergitter gezeigt werden. Diese Mode könnte die Basis für die Entwicklung eines Quantum Valley Hall Zustandes mit echtem topologischem Schutz auf der Basis von Vortizes bilden. Eine Variation der Eigenenergien der Untergitter stellt also einen vielversprechenden, weiteren Weg für zukünftige Experimente mit polaritonischen Gittersimulatoren dar.
47

Coherent Higher-Order Spectroscopy: Investigating Multi-Exciton Interaction / Kohärente Spektroskopie höherer Ordnung: Untersuchung der multi-exzitonen Wechselwirkung

Lüttig, Julian Konstantin January 2023 (has links) (PDF)
The goal of this thesis was the development and application of higher-order spectroscopic techniques. In contrast to ordinary pump–probe (PP) and two-dimensional (2D) spectroscopy, higher-order coherently detected spectroscopic methods measure a polarization that has an order of nonlinearity higher than three. The key idea of the techniques in this thesis is to isolate the higher-order signals from the lower-order signals either by their excitation frequency or by their excitation intensity dependence. Due to the increased number of interactions in higher-order spectroscopy, highly excited states can be probed. For excitonic systems such as aggregates and polymers, the fifth-order signal allows one to directly measure exciton–exciton annihilation (EEA). In polymers and aggregates, the exciton transport is not connected to a change of the absorption and can therefore not be investigated with conventional third-order techniques. In contrast, EEA can be used as a probe to study exciton diffusion in these isonergetic systems. As a part of this thesis, anisotropy in fifth-order 2D spectroscopy was investigated and was used to study geometric properties in polymers. In 2D spectroscopy, the multi-quantum signals are separated from each other by their spectral position along the excitation axis. This concept can be extended systematically to higher signals. Another approach to isolate multi-quantum signals in PP spectroscopy utilizes the excitation intensity. The PP signal is measured at specific excitation intensities and linear combinations of these measurements result in different signal contributions. However, these signals do not correspond to clean nonlinear signals because the higher-order signals contaminate the lower-order multi-quantum signals. In this thesis, a correction protocol was derived that uses the isolated multiquantum signals, both from 2D spectroscopy and from PP spectroscopy, to remove the contamination of higher-order signals resulting in clean nonlinear signals. Using the correction on the third-order signal allows one to obtain annihilation-free signals at high excitation intensities, i.e., with high signal-to-noise ratio. Isolation and correction in PP and 2D spectroscopy were directly compared by measuring the clean third-order signals of squaraine oligomers at high excitation intensities. Furthermore, higher-order PP spectroscopy was used to isolate up to the 13th nonlinear order of squaraine polymers. The demonstrated spectroscopic techniques represent general procedures to isolate clean signals in terms of perturbation theory. The technique of higher-order PP spectroscopy needs only small modifications of ordinary PP setups which opens the field of higher-order spectroscopy to the broad scientific community. The technique to obtain clean nonlinear signals allows one to systematically increase the number of interacting (quasi)particles in a system and to characterize their interaction energies and dynamics. / Das Ziel dieser Arbeit war die Entwicklung and Anwendung von spektroskopischen Techniken höherer Ordnung. Im Gegensatz zu herkömmlicher Anrege-Abfrage- und zweidimensionalen (2D) Spektroskopie, wird in kohärenzdetektierten spektroskopischen Methoden höherer Ordnung eine Polarisation gemessen, die höher als drei ist. Die Schlüsselidee der Techniken dieser Arbeit ist die Trennung Signale höherer Ordnung von den Signalen niedrigerer Ordnung, entweder durch ihre Anregungsfrequenz oder durch ihre Abhängigkeit zur Anregungsintensität. Durch die erhöhte Anzahl an Interaktionen in der Spektroskopie höherer Ordnung können auch hoch angeregte Zustände untersucht werden. Für exzitonische Systeme wie Aggregate und Polymere erlaubt das Signal fünfter Ordnung die direkte Messung der Exziton-Exziton-Annihilierung (EEA). In Polymeren und Aggregaten ist der Exziton-Transport nicht mit einer Änderung des Absoprtionsspektrums verbunden und kann daher nicht mit konventionellen Techniken dritter Ordnung untersucht werden. Im Gegensatz dazu kann EEA, die mit Spektroskopie fünfter Ordnung gemessen wird, als Sonde verwendet werden, um Exziton-Diffusion zu untersuchen. Als ein Teil dieser Arbeit wurde die Anisotropie in der 2D-Spektroskopie fünfter Ordnung untersucht, und es wurde gezeigt, dass diese geometrische Eigenschaften von Polymeren bestimmen kann. In der 2D-Spektroskopie werden die sogenannten Multiquantensignale durch ihre Position entlang der Anregungsachse von anderen Signalen getrennt. Dieses Konzept kann systematisch zu höheren Signalen erweitert werden, die durch ihre spezifische Anregungsfrequenz in dem 2D-Spektrum isoliert werden. Ein anderer Ansatz, um Multiquantensignale in der Anrege-Abfrage-Spektroskopie zu isolieren, nutzt die Anregungsintensität. Das Anrege-Abfrage-Signal wird bei spezifischen Anregungsintensitäten gemessen und Linearkombinationen dieser Messungen resultieren in verschiedenen Signalbeiträgen. Allerdings entsprechen diese Signale nicht reinen nichtlinearen Signalen, weil die Signale höherer Ordnung die Multiquantensignale niedriger Ordnung kontaminieren. In dieser Arbeit wurde ein Korrekturprotokoll entwickelt, das die isolierten Multiquantensignale sowohl in der 2D- als auch in Anrege-Abfrage-Spektroskopie nutzt, um die Kontamination durch Signale höherer Ordnung zu entfernen. Die Anwendung dieser Korrektur auf das Signal dritter Ordnung erlaubt es, annihilierungsfreie Signale bei hoher Anregungsintensität, d.h. mit hohem Signal-zu-Rausch-Verhältnis zu erhalten. Isolation und Korrektur in Anrege-Abfrage- und 2D-Spektroskopie wurden direkt miteinander verglichen, indem das kontaminierungsfreie Signal dritter Ordnung von Squarain-Oligomeren bei hoher Anregungsintensität gemessen wurde. Des Weiteren wurde Anrege-Abfrage-Spektroskopie höherer Ordnung eingesetzt, um nichtlineare Signale bis zur 13ten Ordnung in Squarain-Polymeren zu isolieren. Die gezeigten spektroskopischen Techniken stellen allgemeine Verfahren zur Isolierung verschiedener Signale im Sinne der Störungstheorie dar. Die Technik der Anrege-Abfrage-Spektroskopie höherer Ordnung erfordert nur geringfügige Änderungen an gewöhnlichen Anrege-Abfrage-Experimenten und erlaubt es, die Spektroskopie höherer Ordnung in vielen weiteren wissenschaftlichen Gebieten anzuwenden. Der Ansatz kontaminierungsfreier nichtlinearer Signale gibt die Möglichkeit, die Anzahl der wechselwirkenden Teilchen systematisch zu erhöhen und ihre Wechselwirkungsenergien und Dynamiken zu messen.
48

Ultrafast exciton relaxation in quasi-one-dimensional perylene derivatives / Ultraschnelle Relaxation von Exzitonen in quasi-eindimensionalen Perylenderivaten

Engel, Egbert 07 February 2006 (has links) (PDF)
This thesis deals with exciton relaxation processes in thin polycrystalline films and matrix-isolated molecules of the perylene derivatives PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) and MePTCDI (N,N'-dimethylperylene-3,4,9,10-dicarboximide). Using femtosecond pump-probe spectroscopy, transient absorption spectra, excitonic relaxation in the lowest excited state subsequent to excitation, and exciton-exciton interaction and annihilation at high excitation densities have been addressed. Transient absorption spectroscopy in the range 1.2eV-2.6eV has been applied to thin polycrystalline films of PTCDA and MePTCDI and to solid solutions of PTCDA and MePTCDI molecules (monomers) in a SiO2 matrix. We are able to ascribe the respective signal contributions to ground state bleaching, stimulated emission, and excited state absorption. Both systems exhibit broad excited-state absorption features below 2.0eV, with dominant peaks between 1.8eV and 2.0eV. The monomer spectra can be consistently explained by the results of quantum-chemical calculations on single molecules, and the respective experimental polarization anisotropies for the two major transitions agree with the calculated polarizations. Dimer calculations allow to qualitatively understand the trends visible in the experimental results from monomers to thin films. The broad excited state absorption band between 1.8eV and 2.0eV allows to probe the population dynamics in the first excited state of thin films. We show that excitons created at the Gamma point relax towards the border of the Brillouin zone on a 100fs time scale in both systems. Excitonic relaxation is accelerated by increase of temperature and/or excitation density, which is attributed to stimulated phonon emission during relaxation in k-space. Lower and upper limits of the intraband relaxation time constants are 25fs (resolution limit) and 250fs (100fs) for PTCDA (MePTCDI). These values agree with the upper limit for the intraband relaxation time of 10ps, evaluated from time-resolved luminescence measurements. While the luminescence anisotropy is in full accordance with the predictions made by a luminescence anisotropy model being consistent with the exciton model of Davydov-split states, the pump-probe anisotropy calls for an explanation beyond the models presently available. At excitation densities 10^(19)cm^(-3), the major de-excitation mechanism for the relaxed excitons is exciton-exciton annihilation, resulting in a strongly reduced exciton life time. Three different models for the microscopic behavior have been tested: a diffusion-limited annihilation model in both three and one dimensions (with diffusion constant D as fit parameter) as well as a long-range single-step Förster-type annihilation model (with Förster radius RF as fit parameter). For PTCDA, the latter two, being structurally equivalent, allow to fit a set of multiexponential decay curves for multiple initial exciton densities with high precision. In contrast, the three-dimensional diffusion-limited model is clearly inferior. For all three models, we extract annihilation rates, diffusion constants and diffusion lengths (or Förster radii), for both room and liquid helium temperature. Temperature dependence and orders of magnitude of the obtained parameters D or RF correspond to the expectations. For MePTCDI, the 1D and the Förster model are in good agreement for a smaller interval of excitation densities. For a initial exciton densities higher than 5 x 10^(19)cm^(-3), the 3D model performs significantly better than the other two.
49

Wavefunction-based method for excited-state electron correlations in periodic systems - application to polymers

Bezugly, Viktor 26 February 2004 (has links) (PDF)
In this work a systematic method for determining correlated wavefunctions of extended systems in the ground state as well as in excited states is presented. It allows to fully exploit the power of quantum-chemical programs designed for correlation calculations of finite molecules. Using localized Hartree-Fock (HF) orbitals (both occupied and virtual ones), an effective Hamiltonian which can easily be transferred from finite to infinite systems is built up. Correlation corrections to the matrix elements of the effective Hamiltonian are derived from clusters using an incremental scheme. To treat the correlation effects, multireference configuration interaction (MRCI) calculations with singly and doubly excited configurations (SD) are performed. This way one is able to generate both valence and conduction bands where all correlation effects in the excited states as well as in the ground state of the system are taken into account. An appropriate size-extensivity correction to the MRCI(SD) correlation energies is developed which takes into account the open-shell character of the excited states. This approach is applicable to a wide range of polymers and crystals. In the present work trans-polyacetylene is chosen as a test system. The corresponding band structure is obtained with the correlation of all electrons in the system being included on a very high level of sophistication. The account of correlation effects leads to substantial shifts of the "center-of-mass" positions of the bands (valence bands are shifted upwards and conduction bands downwards) and a flattening of all bands compared to the corresponding HF band structure. The method reaches the quantum-chemical level of accuracy. Further an extention of the above approach to excitons (optical excitations) in crystals is developed which allows to use standard quantum-chemical methods to describe the electron-hole pairs and to finally obtain excitonic bands.
50

Wavefunction-based method for excited-state electron correlations in periodic systems - application to polymers

Bezugly, Viktor 25 February 2004 (has links)
In this work a systematic method for determining correlated wavefunctions of extended systems in the ground state as well as in excited states is presented. It allows to fully exploit the power of quantum-chemical programs designed for correlation calculations of finite molecules. Using localized Hartree-Fock (HF) orbitals (both occupied and virtual ones), an effective Hamiltonian which can easily be transferred from finite to infinite systems is built up. Correlation corrections to the matrix elements of the effective Hamiltonian are derived from clusters using an incremental scheme. To treat the correlation effects, multireference configuration interaction (MRCI) calculations with singly and doubly excited configurations (SD) are performed. This way one is able to generate both valence and conduction bands where all correlation effects in the excited states as well as in the ground state of the system are taken into account. An appropriate size-extensivity correction to the MRCI(SD) correlation energies is developed which takes into account the open-shell character of the excited states. This approach is applicable to a wide range of polymers and crystals. In the present work trans-polyacetylene is chosen as a test system. The corresponding band structure is obtained with the correlation of all electrons in the system being included on a very high level of sophistication. The account of correlation effects leads to substantial shifts of the "center-of-mass" positions of the bands (valence bands are shifted upwards and conduction bands downwards) and a flattening of all bands compared to the corresponding HF band structure. The method reaches the quantum-chemical level of accuracy. Further an extention of the above approach to excitons (optical excitations) in crystals is developed which allows to use standard quantum-chemical methods to describe the electron-hole pairs and to finally obtain excitonic bands.

Page generated in 0.0545 seconds