• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational models for coupled electronic-vibrational energy transfer in biological photosynthetic complexes

Lee, Mi Kyung 09 October 2018 (has links)
The specialized pigment-protein complexes involved in the first process of photosynthesis are light-harvesting structures that are composed of networks of chromophores in protein scaffolds. Though light-harvesting complexes vary in chromophore composition and protein structure, they are capable of transferring the absorbed energy as molecular excitation energy from chromophore to chromophore with maximal efficiency. Thus, numerous interdisciplinary studies focus on elucidating energy transfer mechanisms in these biological complexes and how the same principles can be applied to artificial photosynthetic and photovoltaic machines. From advanced spectroscopic measurements and theoretical models, the interaction between the excited electronic states and the nuclear vibrational degrees of freedom is now established to be crucial for efficient energy transfer. In light-harvesting complexes of plants and bacteria, it is now understood that the classical-like vibrational modes of the protein and solvent environment drive energy transfer between the energetically close electronic states of the chromophores. On the other hand, recent spectroscopic measurements on algae light-harvesting complexes discovered signatures of quantized, high frequency vibrational modes of the chromophore. Unfortunately, a deterministic interpretation of the data and the underlying Hamiltonian is hindered due to significant inhomogeneous spectral line-broadening. Though numerous model Hamiltonians have been proposed from theoretical work, various computational approximations employed in these studies necessitate empirical parameter tuning in order to obtain agreement with benchmark linear optical spectra. Thus in this work, we present a simple, but improved, computational prescription to compute the ensemble of Hamiltonians for four closely-related algae light-harvesting complexes. We verify the reliability of our proposed models by comparing simulated optical spectra with experimental measurements. We show that static disorder and inhomogeneous broadening are significant for phycobiliproteins due to large site energy fluctuations. We also show that the nuclear environment plays an important role in defining the trapping state, or the final energy acceptor. Finally, our work for the first time suggests that EET dynamics can be tuned by varying the titration states of the chromophores.
2

Ab initio analysis of spectral signatures in molecular aggregates

Kumar, Manav 28 February 2022 (has links)
Plants and bacteria both have specialized light-harvesting pigment-protein complexes, composed of a network of chromophores encompassed by a protein scaffold, that are involved in photosynthesis. While chromophore, as well as protein, composition and arrangement vary in these light-harvesting complexes, chromophores transfer energy as molecular excitation energy through their complex multi-chromophoric network with near perfect efficiency. Understanding the efficiency of this excitation energy transfer process has been the focus of many interdisciplinary studies. By elucidating the mechanisms involved in efficient excitation energy transfer in biological systems, we are able to guide the design of novel organic materials for their application in photovoltaic systems. Interdisciplinary studies of light-harvesting biological systems leverage advanced spectroscopic techniques and theoretical models to help explain the interaction be- tween excited electronic states. Difficulties in assigning the origin of spectral features in spectroscopy experiments arise from both homogeneous and inhomogeneous effects. Various computational studies have been able to provide theoretical models that help disentangle these effects and provide insight into the origin of some these spectral features. In this work, we present a computational approach that is used to calculate an ensemble of model Hamiltonians for a light-harvesting pigment-protein complex found in algae. To verify the reliability of our model, we compare various computed spec- tra with experimental measurements. Next, we extend our computational approach for parameterizing an ensemble of Hamiltonians for two configurationally unique or- ganic dimers. Finally, we examine the error of some of the approximations made while partitioning “system” and “bath” degrees of freedom when computing molecu- lar properties. Using these methods we are able to provide mechanistic interpretations and explanations of spectral signatures observed in various linear and nonlinear ex- perimental spectra.
3

From Excitons to Excimers: Understanding the Steady-State Absorption and Photoluminescence Features of Perylene Diimide Dyes

Bialas, April Lynn, 0000-0002-4210-3820 January 2022 (has links)
There is currently a great interest to develop and market organic electronic devices, and theoretical models are needed to provide physical insight and quality predictions when designing these materials. Many organic molecules absorb in the UV-vis region of light, and therefore, UV-vis spectroscopy is a relatively simple tool that can help experimentalists "see" the packing arrangements of the molecules within each material, as long as there is a solid theoretical understanding of the photophysics that links the interactions between molecules to changes in optical features. For example, the Kasha spectral shifts have been used for decades to identify J-aggregate and H-aggregate packing arrangements from red- and blue- spectral shifts, respectively. The innate presence of vibronic coupling in organic molecules gives rise to a unique set of additional spectral signatures that are far more reliable than the Kasha spectral shifts for inferring packing arrangements. Moreover, the Kasha shifts are based entirely on Coulomb coupling between molecules, which leads to the creation of delocalized Frenkel excitons. For many π-conjugated organic molecules, however, dispersion forces in π-conjugated chromophores encourage close packing distances of about 3.5-4 Å between organic monomers, which further introduces intermolecular couplings beyond the Coulomb coupling, due to intermolecular charge transfer (CT). Therefore, much theoretical research has focused on incorporating all these effects through a Frenkel-CT-Holstein Hamiltonian, in order to better understand how different packing arrangements within a given material can be identified through specific changes in steady-state absorption and photoluminescence features. In this thesis, the Frenkel-CT-Holstein model is specifically applied to study the absorption and photoluminescent spectra of various derivatives of perylene diimide (PDI), which are of great interest as non-fullerene acceptors in organic photovoltaic design. PDIs display a plethora of packing arrangements and corresponding spectral signatures just by varying the substituents within the PDI core. This thesis first aims to understand the exciton band structure of two different PDI micro-crystals that both experience similar Frenkel-CT interference, but with one system displaying dominant Coulomb interactions while the other undergoes dominant Frenkel-CT coupling. Both are close to what is called a “null”-point, and the work in this thesis explores the photoluminescent signature as a reliable means to track which side of the “null”-point the Frenkel-CT interference lies. While the Frenkel-CT-Holstein model is successful in modeling mostly absorption spectra of aggregates composed of PDI monomers, one challenge has been that aggregates of PDIs often exhibit so-called excimer features in their photoluminescence spectra, which the model cannot account for. Systems that emit broad, structureless and red-shifted excimer peaks typically display inefficient exciton transport in organic semiconductors. The bulk of this thesis has been to expand the model to account for excimer emission, which is made possible by utilizing a Holstein-Peierls (HP) Hamiltonian that incorporates the effects of both local vibronic coupling and nonlocal Frenkel-CT coupling to intermolecular motions within a dimer. The experimental spectra for two different PDI dimer systems that display different excimer features is successfully reproduced with the new theory. This thesis concludes by analyzing how nonlocal coupling, which account for changes in the Frenkel-CT mixing along an intermolecular vibrational mode, can lead to various types of excimers. Different phase relations within the electron and hole nonlocal coupling parameters can combine with different phase relations within the electron and hole Frenkel-CT coupling parameters, leading to a rich array of excimer properties, especially when combined with the additional effects of Coulomb coupling, as well as local intermolecular vibronic coupling, which can either enhance or diminish the excimer photoluminescence. Overall, the Holstein-Peierls approach offers insight into the roles of Frenkel and CT excitons in excimer formation, and highlights the importance of the magnitude and phase of the intermolecular electron and hole transfer integrals in the ground and excited state geometries in producing distinct excimer features. The model provides further insight into the origin of excimers, which lays a foundation for future theoretical and experimental studies in designing organic materials. / Chemistry
4

Effects of Charge-Transfer Excitons on the Photophysics of Organic Semiconductors

Hestand, Nicholas James January 2017 (has links)
The field of organic electronics has received considerable attention over the past several years due to the promise of novel electronic materials that are cheap, flexible and light weight. While some devices based on organic materials have already emerged on the market (e.g. organic light emitting diodes), a deeper understanding of the excited states within the condensed phase is necessary both to improve current commercial products and to develop new materials for applications that are currently in the commercial pipeline (e.g. organic photovoltaics, wearable displays, and field effect transistors). To this end, a model for pi-conjugated molecular aggregates and crystals is developed and analyzed. The model considers two types of electronic excitations, namely Frenkel and charge-transfer excitons, both of which play a prominent role in determining the nature of the excited states within tightly-packed organic systems. The former consist of an electron-hole pair bound to the same molecule while in the later the electron and hole are located on different molecules. The model also considers the important nuclear reorganization that occurs when the system switches between electronic states. This is achieved using a Holstein-style Hamiltonian that includes linear vibronic coupling of the electronic states to the nuclear motion associated with the high frequency vinyl-stretching and ring-breathing modes. Analysis of the model reveals spectroscopic signatures of charge-transfer mediated J- and H-aggregation in systems where the photophysical properties are determined primarily by charge-transfer interactions. Importantly, such signatures are found to be sensitive to the relative phase of the intermolecular electron and hole transfer integrals, and the relative energy of the Frenkel and charge-transfer states. When the charge-transfer integrals are in phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits J-aggregate characteristics including a positive band curvature, a red shifted main absorption peak, and an increase in the ratio of the first two vibronic peaks relative to the monomer. On the other hand, when the charge-transfer integrals are out of phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits H-aggregate characteristics including a negative band curvature, a blue shifted main absorption peak, and a decrease in the ratio of the first two vibronic peaks relative to the monomer. Notably, these signatures are consistent with those exhibited by Coulombically coupled J- and H-aggregates. Additional signatures of charge-transfer J- and H-aggregation are also discovered, the most notable of which is the appearance of a second absorption band when the charge-transfer integrals are in phase and the charge-transfer and Frenkel excitons are near resonance. In such instances, the peak-to-peak spacing is found to be proportional to the sum of the electron and hole transfer integrals. Further analysis of the charge-transfer interactions within the context of an effective Frenkel exciton coupling reveals that the charge-transfer interactions interfere directly with the intermolecular Coulombic coupling. The interference can be either constructive or destructive resulting in either enhanced or suppressed J- or H- aggregate behavior relative to what is expected based on Coulombic coupling alone. Such interferences result in four new aggregate types, namely HH-, HJ-, JH-, and JJ-aggregates, where the first letter indicates the nature of the Coulombic coupling and the second indicates the nature of the charge-transfer coupling. Vibronic signatures of such aggregates are developed and provide a means by which to rapidly screen materials for certain electronic characteristics. Notably, a large total (Coulombic plus charge-transfer) exciton coupling is associated with an absorption spectrum in which the ratio of the first two vibronic peaks deviates significantly from that of the unaggregated monomer. Hence, strongly coupled, high exciton mobility aggregates can be readily distinguished from low mobility aggregates by the ratio of their first two vibronic peaks. Analysis of the spatial dependence of the intermolecular interactions reveals that all four aggregate types (HH-, HJ-, JH-, JJ-) can be achieved by enforcing the appropriate crystalline packing arrangement. Such tunability is possible due of the different length scales over which the natures of the two coupling sources interconvert from J-like to H-like; whereas the nature of the Coulombic coupling is known to be sensitive to displacements on the order of half the molecular length, the nature of the charge-transfer mediated exciton coupling is sensitive to geometric displacements of approximately a carbon-carbon bond length. It is proposed that such sensitivity should allow for fine tuning of the total excitonic coupling via modifications in the packing structure, as determined, for example, by the side chains. Several examples of the different aggregate types are provided throughout this dissertation as the model is used to probe the excited state character of several relevant conjugated organic systems. Such examples include pentacene and 7,8,15,16-tetraazaterrylene (TAT) along with several derivatives from the perylene family. / Chemistry
5

Crystals and nanoparticles of a BODIPY derivative : spectroscopy and microfluidic precipitation / Cristaux et nanoparticules d'un dérivé du BODIPY : spectroscopie et précipitation en microfluidique

Liao, Yuanyuan 12 November 2013 (has links)
Pendant cette thèse nous avons travaillé sur deux aspects des nanoparticules organiques fluorescentes d’AdamBodipy : leur spectroscopie et leur production avec des tailles contrôlées. La structure cristallographique des cristaux d’Adambodipy a été obtenue par diffraction-X. Nous avons produit des microcristaux (100×10×1µm3) par précipitation dans des solutions de sursaturation faible. Nous avons mesuré leur spectroscopie sous microscope dans la gamme 380nm à 900nm. Les microcristaux sont biréfringents et dichroïques. Nous avons mesuré leur biréfringence en déterminant leurs indices de réfraction suivant les deux axes neutres par le méthode de Swanepoel. Nous avons mesuré des spectres d’absorption suivant les axes neutres. Nous avons calculé ces spectres d’absorption en utilisant la théorie du couplage dipolaire pour les exciton de Frenkel. La valeur du couplage intermoléculaire a été estimée par le modèle classique. Mais pour deux paires particulaires de la maille nous avons comparé cette estimation classique du couplage avec la valeur qui peut être déduite du calcul quantique du dimère par TDDFT. L’ordre de grandeur est vérifié. Le programme s’applique à des nanoparticules formées de N×N×N (N<11) mailles cristallines. Les spectres calculés reproduisent le dichroïsme, l’élargissement des spectres d’absorption, mais il apparaît que les spectres expérimentaux sont écrêtés par la faible dynamique de notre spectrophotomètre sous microscope. Le calcul du spectre de fluorescence prédit une bande polarisée selon la direction b de la maille. L’expérience en distingue deux autres décalée dans le rouge. L’étude de leur polarisation ainsi que de leur dynamique de fluorescence permet d’attribuer ces bandes rouges à des défauts dans la structure cristalline. Les spectres des nanoparticules produites dans la deuxième partie ne sont pas ceux de la forme cristalline. Nous avons pu reproduire ces spectres en introduisant un désordre d’orientation à l’intérieur la structure des N×N×N mailles. La focalisation hydrodynamique 3D, nous a permis de produire des nanoparticules de taille contrôlée sans qu’il y ait précipitation de l’AdamBodipy sur les parois. En réglant le rapport des flux entre la solution organique de colorant et la solution aqueuse non solvant, nous avons pu ajuster la taille des nanoparticules entre 100 et 300nm. La stabilité colloïdale des nanoparticules est assurée par du CTACl en dessous de la CMC. En effet au dessus de la CMC les nanoparticules coexistent avec des micelles chargées en colorant. Les spectroscopies d’absorption et de fluorescence des nanoparticules montrent qu’elles sont amorphes. Nous avons simulé la précipitation des nanoparticules par COMSOL en introduisant une l’hydrodynamique de mélange par diffusion mutuelle de l’eau et de l’éthanol et de diffusion du colorant dans ce mélange. Nos études de la solubilité de l’Adambodipy dans des mélanges organiques/eau, nous ont permis de déterminer la loi de solubilité et d’obtenir des cartes de la super-saturation dans le microdispositif. Nous avons utilisé l’imagerie de fluorescence pour suivre le processus de précipitation. Les images obtenues sont semblables à celles calculées par COMSOL On observe une précipitation à l’interface entre les deux solvants ainsi qu’une précipitation en masse après un temps de résidence qui dépend du rapport des flux. Les déclins de fluorescence collectés en différents points du canal microfluidique peuvent être attribués à trois espèces : le monomère, la nanoparticule et une espèce intermédiaire, un germe. / During this work, we have addressed two aspects of the properties of the fluorescent organic nanoparticles made of Adambodipy: their spectroscopy and their production with controlled sizes. We have produced micro-crystals (100x10x1µm3) by precipitation in solutions of low supersaturation. We have measured their spectroscopy under microscope in the range 380nm to 900nm. The microcrystals are birefringent and dichroic. By adding polarizers on a microscope we have measured their refraction index along the two neutral axes according to the method of Swanepoel. We have measured the two absorption spectra along the neutral axis. We have calculated these absorption spectra using the model of the dipolar coupling for Frenkel excitons. The amplitude of this coupling has been estimated according to the classic model. But for two particular pairs of the cell, we have compared this estimation with the value that can be deduced from the quantum calculation of a dimer by TDDFT. The calculated spectra reproduce the dichroism, the spectral broadening of the absorption spectra but not the experimental peak shape probably because our micro-spectrophotometer levels up at high absorbance. The calculated fluorescence spectra predict a polarized transition along the b direction of the cell. The experiment shows two other red shifted bands. The study of their polarization, as well as their fluorescence lifetime allows us to attribute them to defects in the crystal. The spectra of the nanoparticles produced in the second part of this work are not those of crystals. We have been able to reproduce them theoretically by introducing an orientation disorder inside the periodic structure. The 3D hydrodynamic focusing enables us to produce nanoparticles with controlled size without precipitation of Adambodipy on the wall. We have used the PDMS technology and we moved to a glass tube approach, in order to avoid the diffusion of fluorescence into the PDMS. By adjusting the flow ratio between the inner organic solution of the dye and outer aqueous solution, we can control the size of the nanoparticle between 100nm and 300nm. The stability of the colloidal suspension is maintained by the surfactant CTACl below the CMC. Indeed above the CMC, the nanoparticles exist together with dyes dispersed in micelles. We have simulated using COMSOL the precipitation of the nanoparticles. We have introduced in the calculation the hydrodynamic and mutual diffusion of water and ethanol, as well as the diffusion of the Adambodipy. From our studies of the solubility of Adambodipy in water/ethanol mixtures, we have obtained the saturation curve and we have built the supersaturation maps in the micro-device. We have used Fluorescence lifetime imaging microscopy to follow in situ the precipitation process. From the decay collected in different positions can be attributed to the coexistence of three species : the monomers, the nanoparticles and an intermediate species supposed to be the nuclei. The FLIM shows a precipitation in the diffusion area of the two solvents as well as a massive precipitation after a few hundred of millisecond. The FLIM images are very close to the COMSOL predictions.
6

Crystals and nanoparticles of a BODIPY derivative : spectroscopy and microfluidic precipitation

Liao, Yuanyuan 12 November 2013 (has links) (PDF)
During this work, we have addressed two aspects of the properties of the fluorescent organic nanoparticles made of Adambodipy: their spectroscopy and their production with controlled sizes. We have produced micro-crystals (100x10x1µm3) by precipitation in solutions of low supersaturation. We have measured their spectroscopy under microscope in the range 380nm to 900nm. The microcrystals are birefringent and dichroic. By adding polarizers on a microscope we have measured their refraction index along the two neutral axes according to the method of Swanepoel. We have measured the two absorption spectra along the neutral axis. We have calculated these absorption spectra using the model of the dipolar coupling for Frenkel excitons. The amplitude of this coupling has been estimated according to the classic model. But for two particular pairs of the cell, we have compared this estimation with the value that can be deduced from the quantum calculation of a dimer by TDDFT. The calculated spectra reproduce the dichroism, the spectral broadening of the absorption spectra but not the experimental peak shape probably because our micro-spectrophotometer levels up at high absorbance. The calculated fluorescence spectra predict a polarized transition along the b direction of the cell. The experiment shows two other red shifted bands. The study of their polarization, as well as their fluorescence lifetime allows us to attribute them to defects in the crystal. The spectra of the nanoparticles produced in the second part of this work are not those of crystals. We have been able to reproduce them theoretically by introducing an orientation disorder inside the periodic structure. The 3D hydrodynamic focusing enables us to produce nanoparticles with controlled size without precipitation of Adambodipy on the wall. We have used the PDMS technology and we moved to a glass tube approach, in order to avoid the diffusion of fluorescence into the PDMS. By adjusting the flow ratio between the inner organic solution of the dye and outer aqueous solution, we can control the size of the nanoparticle between 100nm and 300nm. The stability of the colloidal suspension is maintained by the surfactant CTACl below the CMC. Indeed above the CMC, the nanoparticles exist together with dyes dispersed in micelles. We have simulated using COMSOL the precipitation of the nanoparticles. We have introduced in the calculation the hydrodynamic and mutual diffusion of water and ethanol, as well as the diffusion of the Adambodipy. From our studies of the solubility of Adambodipy in water/ethanol mixtures, we have obtained the saturation curve and we have built the supersaturation maps in the micro-device. We have used Fluorescence lifetime imaging microscopy to follow in situ the precipitation process. From the decay collected in different positions can be attributed to the coexistence of three species : the monomers, the nanoparticles and an intermediate species supposed to be the nuclei. The FLIM shows a precipitation in the diffusion area of the two solvents as well as a massive precipitation after a few hundred of millisecond. The FLIM images are very close to the COMSOL predictions.
7

Odraz vibronické modulace ve dvoudimenzionálních elektronických spektrech malých molekulárních agregátů / Signatures of vibronic modulation of small molecular aggregates in two-dimensional electronic spectra

Perlík, Václav January 2019 (has links)
We studied the effects of underdamped vibrational modes on excitonic energy transfer in small molecular aggregates by means of ultrafast nonlinear spectroscopy. We developed a vibronic dynamical model to account for the interplay of electronic and vibrational coherence during excitation transport. Our model was aimed to simulate signals of a broad class of linear and third order spectroscopies (absorption, fluorescence, transient absorption (TA), transient grating (TG), two-dimensional spectroscopy (2D)) in the visible domain andaccounts for anharmonic vibrations, sub-exponential relaxation and nonlinear electron-vibrational coupling. We subsequently applied the model for several case studies, such as carotenoid to bacteriochlorophyll excitation transfer in light-harvesting 2 complex (LH2) of purple bacteria, excitation transfer in perylene dyads or vibrational dynamics in hypericin. We have paid particular attention for detailed interpretation of lineshapes of 2D spectrograms employing, e.g. phase analysis and center line (CL) slopes with emphasis to study interplay of electronic, vibrational modulations, or finite excitation pulse durations.
8

An Efficient Method for Computing Excited State Properties of Extended Molecular Aggregates Based on an Ab-Initio Exciton Model

Morrison, Adrian Franklin January 2017 (has links)
No description available.
9

Ultrafast exciton relaxation in quasi-one-dimensional perylene derivatives / Ultraschnelle Relaxation von Exzitonen in quasi-eindimensionalen Perylenderivaten

Engel, Egbert 07 February 2006 (has links) (PDF)
This thesis deals with exciton relaxation processes in thin polycrystalline films and matrix-isolated molecules of the perylene derivatives PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) and MePTCDI (N,N'-dimethylperylene-3,4,9,10-dicarboximide). Using femtosecond pump-probe spectroscopy, transient absorption spectra, excitonic relaxation in the lowest excited state subsequent to excitation, and exciton-exciton interaction and annihilation at high excitation densities have been addressed. Transient absorption spectroscopy in the range 1.2eV-2.6eV has been applied to thin polycrystalline films of PTCDA and MePTCDI and to solid solutions of PTCDA and MePTCDI molecules (monomers) in a SiO2 matrix. We are able to ascribe the respective signal contributions to ground state bleaching, stimulated emission, and excited state absorption. Both systems exhibit broad excited-state absorption features below 2.0eV, with dominant peaks between 1.8eV and 2.0eV. The monomer spectra can be consistently explained by the results of quantum-chemical calculations on single molecules, and the respective experimental polarization anisotropies for the two major transitions agree with the calculated polarizations. Dimer calculations allow to qualitatively understand the trends visible in the experimental results from monomers to thin films. The broad excited state absorption band between 1.8eV and 2.0eV allows to probe the population dynamics in the first excited state of thin films. We show that excitons created at the Gamma point relax towards the border of the Brillouin zone on a 100fs time scale in both systems. Excitonic relaxation is accelerated by increase of temperature and/or excitation density, which is attributed to stimulated phonon emission during relaxation in k-space. Lower and upper limits of the intraband relaxation time constants are 25fs (resolution limit) and 250fs (100fs) for PTCDA (MePTCDI). These values agree with the upper limit for the intraband relaxation time of 10ps, evaluated from time-resolved luminescence measurements. While the luminescence anisotropy is in full accordance with the predictions made by a luminescence anisotropy model being consistent with the exciton model of Davydov-split states, the pump-probe anisotropy calls for an explanation beyond the models presently available. At excitation densities 10^(19)cm^(-3), the major de-excitation mechanism for the relaxed excitons is exciton-exciton annihilation, resulting in a strongly reduced exciton life time. Three different models for the microscopic behavior have been tested: a diffusion-limited annihilation model in both three and one dimensions (with diffusion constant D as fit parameter) as well as a long-range single-step Förster-type annihilation model (with Förster radius RF as fit parameter). For PTCDA, the latter two, being structurally equivalent, allow to fit a set of multiexponential decay curves for multiple initial exciton densities with high precision. In contrast, the three-dimensional diffusion-limited model is clearly inferior. For all three models, we extract annihilation rates, diffusion constants and diffusion lengths (or Förster radii), for both room and liquid helium temperature. Temperature dependence and orders of magnitude of the obtained parameters D or RF correspond to the expectations. For MePTCDI, the 1D and the Förster model are in good agreement for a smaller interval of excitation densities. For a initial exciton densities higher than 5 x 10^(19)cm^(-3), the 3D model performs significantly better than the other two.
10

Theory of Transfer Processes in Molecular Nano-Hybrid Systems / A Stochastic Schrödinger Equation Approach for Large-Scale Open Quantum System Dynamics

Plehn, Thomas 19 March 2020 (has links)
Das Verstehen der elektronischen Prozesse in Nano-Hybridsystemen, bestehend aus Molekülen und Halbleiterstrukturen, eröffnet neue Möglichkeiten für optoelektronische Bauteile. Dafür benötigt es nanoskopische und gleichzeitig atomare Modelle und somit angepasste Rechenmethoden. Insbesondere "Standard"-Ansätze für die Dynamik offener Quantensysteme werden mit zunehmender Systemgröße jedoch sehr ineffizient. In dieser Arbeit wird eine neue Methode basierend auf einer stochastischen Schrödinger-Gleichung etablieren. Diese umgeht die numerischen Limits der Quanten-Mastergleichung und ermöglicht Simulationen von imposanter Größe. Ihr enormes Potenzial wird hier in Studien zu Anregungsenergietransfer und Ladungsseparation an zwei realistischen Nano-Hybridsystemen demonstriert: para-sexiphenyl Moleküle auf einer flachen ZnO Oberfläche (6P/ZnO), und ein tubuläres C8S3 Farbstoffaggregat gekoppelt an einen CdSe Nanokristall (TFA/NK). Im 6P/ZnO System findet nach optischer Anregung Energietransfer vom 6P Anteil zum ZnO statt. Direkt an der Grenzfläche können Frenkel-Exzitonen zusätzlich Ladungsseparation initiieren, wobei Elektronen ins ZnO transferiert werden und Löcher im 6P Anteil verbleiben. Beide Mechanismen werden mittels laserpulsinduzierter ultraschneller Wellenfunktionsdynamik simuliert. Danach wird die langsamere dissipative Lochkinetik im 6P Anteil studiert. Hierfür wird die eigene Simulationstechnik der stochastischen Schrödinger-Gleichung verwendet. Die Studie an der TFA/NK Grenzfläche basiert auf einer gigantischen equilibrierten Aggregatstruktur aus 4140 Molekülen. Ein generalisiertes Frenkel-Exzitonenmodell wird benutzt. Der Ansatz der stochastischen Schrödinger-Gleichung ermöglicht bemerkenswerte Einblicke in die Aggregat-interne Exzitonenrelaxation. Danach werden inkohärente Raten des Exzitonentransfers zum NK berechnet. Unterschiedliche räumliche Konfigurationen werden untersucht und es wird diskutiert, warum das Förster-Modell hier keine Gültigkeit besitzt. / Understanding the electronic processes in hybrid nano-systems based on molecular and semiconductor elements opens new possibilities for optoelectronic devices. Therefore, it requires for models which are both nanoscopic and atomistic, and so for adapted computational methods. In particular, "standard" methods for open quantum system dynamics however become very inefficient with increasing system size. In this regard, it is a key challenge of this thesis, to establish a new stochastic Schrödinger equation technique. It bypasses the computational limits of the quantum master equation and enables dissipative simulations of imposing dimensionality. Its enormous potential is demonstrated in studies on excitation energy transfer and charge separation processes in two realistic nanoscale hybrid systems: para-sexiphenyl molecules deposited on a flat ZnO surface (6P/ZnO), and a tubular dye aggregate of C8S3 cyanines coupled to a CdSe nanocrystal (TDA/NC). After optical excitation, the 6P/ZnO system exhibits exciton transfer from the 6P part to the ZnO. Close to the interface, Frenkel excitons may further initiate charge separation where electrons enter the ZnO and holes remain in the 6P part. Both mechanisms are simulated in terms of laser-pulse induced ultrafast wave packet dynamics. Afterwards, slower dissipative hole motion in the 6P part is studied. For this purpose, the own stochastic Schrödinger equation simulation technique is applied. The study on the TDA/NC interface is based on a gigantic equilibrated nuclear structure of the aggregate including 4140 dyes. A generalized Frenkel exciton model is employed. Thanks to the stochastic Schrödinger equation approach, energy relaxation in the exciton band of the TDA is simulated in outstanding quality and extend. Then, incoherent rates for exciton transfer to the NC are computed. Different spatial configurations are studied and it is discussed why the Förster model possesses no validity here.

Page generated in 0.0607 seconds