• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamische Strukturen am Zellcortex: Aktivierbarkeit und Akkumulation von Ezrin in Abhängigkeit von PIP2 / Dynamic structures at the cell cortex: activation and accumulation of ezrin depending on PIP2

Bosk, Sabine 18 March 2011 (has links)
No description available.
2

Verknüpfung zwischen Plasmamembran und Zytoskelett / Charakterisierung der Organisation von Ezrin und F-Aktin an artifiziellen Lipidmembranen / Linkage between Plama Membrane and Cytoskeleton / Characterizing the Organization of Ezrin and F-Actin on artificial Lipid Bilayers

Reinermann, Corinna 14 July 2016 (has links)
Die dynamische Verknüpfung zwischen Plasmamembran und dem unterliegenden Zytoskelett der Zelle ist fundamental für zelluläre Prozesse wie Zellmorphogenese, Zellmotilität und Zelladhäsion. Ezrin als Bestandteil der ERM (Ezrin, Radixin, Moesin) Proteinfamilie verbindet L-α-Phosphatidylinositol-4,5-bisphosphat (PIP2) der Plasmamembran mit filamentösem Aktin (F-Aktin) des Zytoskeletts. Die Ezrinbindung an F-Aktin wird reguliert über den Aktivierungsgrad des Proteins, welcher von der N-terminalen PIP2 Bindung und der Phosphorylierung des Threoninrests 567 abhängt. Aufgrund der Bindung an PIP2 und der Phosphorylierung wechselt Ezrin von einer inaktiven, N- und C-terminal assoziierten Konformation in einen aktivierten, geöffneten Zustand, welcher die C-terminale F-Aktinbindung ermöglicht. Ziel dieser Arbeit war es Aspekte der Verknüpfung zwischen Plasmamembran und Zytoskelett zu untersuchen. Basierend auf Bindung von Ezrin an PIP2-haltige artifizielle Lipidmembranen und der anschließenden F-Aktinbindung, wurden Bindungseigenschaften, die Organisation des F-Aktinnetzwerkes und die durch das Aktinnetzwerk beeinflusste Lipidmembranmechanik untersucht. Im ersten Abschnitt dieser Arbeit wurde der molekulare Aktivierungsprozess von Ezrin anhand der Charakterisierung von Bindungsaffinitäten und der Organisation von Ezrin an Lipidmembranen untersucht. Aufgrund einer reduzierten Proteinhöhe und FRET (FÖRSTER-Resonanzenergietransfer)-Effizienz im Fall der vollständigen Aktivierung (PIP2-Bindung und Phosphorylierung) wurde postuliert, dass Ezrin eine weniger dicht gepackte, geöffnete Konformation gebunden an Lipidmembranen ausbildet. Dies ermöglicht dem Protein C-terminal F-Aktin zu binden. Im zweiten Teil der Arbeit wurden Aktinnetzwerke an festkörperunterstützten Lipidmembranen (SLBs) immobilisiert und über Ezrin an PIP2- oder elektrostatisch an 1,2-Dioleoyl-sn-glycero-3-ethylphosphocholin (DOEPC)-haltige SLBs gebunden. Die Netzwerkorganisation wurde mit Hilfe der Fluoreszenzmikroskopie untersucht und unter Berücksichtigung der Immobilisierungsstrategie in Hinblick auf den Einfluss der Anzahl an Verknüpfungspunkten und aktinbindender Proteine (Fascin und α-Actinin) analysiert. Es konnte gezeigt werden, dass beide Immobilisierungsstrategien zu Aktinnetzwerken mit ähnlichen Eigenschaften führten, bezugnehmend auf Maschengröße und Filamentsegmentlänge. Die Aktinnetzwerkdichte konnte direkt über die Anzahl an Verknüpfungspunkten und aktinbindende Proteine (ABPs) reguliert werden, dies demonstriert die physiologische Relevanz der Ergebnisse. Es ist bekannt, dass die Aktindichte in Zellen über PIP2- und ABP-Konzentration gesteuert wird. Im dritten Teil der Arbeit wurde das etablierte Modelsystem auf poröse Substrate übertragen. Unter Kenntnis der vorangegangenen Teile der Arbeit wurde der Einfluss des F-Aktinnetzwerkes auf die Lipidmembranmechanik untersucht. Mit Hilfe der Rasterkraftmikroskopie wurden Indentationsexperimente an porenüberspannenden Lipidmembranen (PSLBs) durchführt, welche zeigten, dass ein aufliegendes F-Aktinnetzwerk die PSLBs versteift. Dies ließ sich auf die reduzierte laterale Mobilität der Lipide innerhalb der PSLBs aufgrund des Aktinnetzwerkes zurückführen, vergleichbar mit dem Picket-Fence-Modell der Plasmamembran bei welchem die Mobilität der Lipide und (Membran-)Proteine, aufgrund der Kompartimentierung der Membran durch das Aktin-Zytoskelett, eingeschränkt ist.
3

Dendritic Cell Podosome Dynamics Does Not Depend on the F-actin Regulator SWAP-70

Götz, Anne, Jessberger, Rolf 22 January 2014 (has links) (PDF)
In addition to classical adhesion structures like filopodia or focal adhesions, dendritic cells similar to macrophages and osteoclasts assemble highly dynamic F-actin structures called podosomes. They are involved in cellular processes such as extracellular matrix degradation, bone resorption by osteoclasts, and trans-cellular diapedesis of lymphocytes. Besides adhesion and migration, podosomes enable dendritic cells to degrade connective tissue by matrix metalloproteinases. SWAP-70 interacts with RhoGTPases and F-actin and regulates migration of dendritic cells. SWAP-70 deficient osteoclasts are impaired in F-actin-ring formation and bone resorption. In the present study, we demonstrate that SWAP-70 is not required for podosome formation and F-actin turnover in dendritic cells. Furthermore, we found that toll-like receptor 4 ligand induced podosome disassembly and podosome-mediated matrix degradation is not affected by SWAP-70 in dendritic cells. Thus, podosome formation and function in dendritic cells is independent of SWAP-70.
4

Dendritic Cell Podosome Dynamics Does Not Depend on the F-actin Regulator SWAP-70

Götz, Anne, Jessberger, Rolf 22 January 2014 (has links)
In addition to classical adhesion structures like filopodia or focal adhesions, dendritic cells similar to macrophages and osteoclasts assemble highly dynamic F-actin structures called podosomes. They are involved in cellular processes such as extracellular matrix degradation, bone resorption by osteoclasts, and trans-cellular diapedesis of lymphocytes. Besides adhesion and migration, podosomes enable dendritic cells to degrade connective tissue by matrix metalloproteinases. SWAP-70 interacts with RhoGTPases and F-actin and regulates migration of dendritic cells. SWAP-70 deficient osteoclasts are impaired in F-actin-ring formation and bone resorption. In the present study, we demonstrate that SWAP-70 is not required for podosome formation and F-actin turnover in dendritic cells. Furthermore, we found that toll-like receptor 4 ligand induced podosome disassembly and podosome-mediated matrix degradation is not affected by SWAP-70 in dendritic cells. Thus, podosome formation and function in dendritic cells is independent of SWAP-70.
5

Characterization of the neuronal proteolipids M6A and M6B and the oligodendroglial tetraspans PLP and TSPAN2 in neural cell process formation / Charakterisierung der neuronalen Proteolipide M6A und M6B und der oligodendroglialen Viertransmembranproteine PLP und TSPAN2 in der Bildung von neuralen zellulären Fortsätzen

Monasterio Schrader, Patricia Irene de 20 July 2011 (has links)
No description available.

Page generated in 0.0394 seconds