• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 40
  • 31
  • 15
  • 15
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Application of Multiuser Detection to Spectrally Efficient MIMO or Virtual MIMO SC-FDMA Uplinks in LTE Systems.

Ben Salem, Aymen 20 December 2013 (has links)
Single Carrier Frequency Division Multiple Access (SC-FDMA) is a multiple access transmission scheme that has been adopted in the 4th generation 3GPP Long Term Evolution (LTE) of cellular systems. In fact, its relatively low peak-to-average power ratio (PAPR) makes it ideal for the uplink transmission where the transmit power efficiency is of paramount importance. Multiple access among users is made possible by assigning different users to different sets of non-overlapping subcarriers. With the current LTE specifications, if an SC-FDMA system is operating at its full capacity and a new user requests channel access, the system redistributes the subcarriers in such a way that it can accommodate all of the users. Having less subcarriers for transmission, every user has to increase its modulation order (for example from QPSK to 16QAM) in order to keep the same transmission rate. However, increasing the modulation order is not always possible in practice and may introduce considerable complexity to the system. The technique presented in this thesis report describes a new way of adding more users to an SC-FDMA system by assigning the same sets of subcarriers to different users. The main advantage of this technique is that it allows the system to accommodate more users than conventional SC-FDMA and this corresponds to increasing the spectral efficiency without requiring a higher modulation order or using more bandwidth. During this work, special attentions wee paid to the cases where two and three source signals are being transmitted on the same set of subcarriers, which leads respectively to doubling and tripling the spectral efficiency. Simulation results show that by using the proposed technique, it is possible to add more users to any SC-FDMA system without increasing the bandwidth or the modulation order while keeping the same performance in terms of bit error rate (BER) as the conventional SC-FDMA. This is realized by slightly increasing the energy per bit to noise power spectral density ratio (Eb/N0) at the transmitters.
32

The Application of Multiuser Detection to Spectrally Efficient MIMO or Virtual MIMO SC-FDMA Uplinks in LTE Systems.

Ben Salem, Aymen January 2014 (has links)
Single Carrier Frequency Division Multiple Access (SC-FDMA) is a multiple access transmission scheme that has been adopted in the 4th generation 3GPP Long Term Evolution (LTE) of cellular systems. In fact, its relatively low peak-to-average power ratio (PAPR) makes it ideal for the uplink transmission where the transmit power efficiency is of paramount importance. Multiple access among users is made possible by assigning different users to different sets of non-overlapping subcarriers. With the current LTE specifications, if an SC-FDMA system is operating at its full capacity and a new user requests channel access, the system redistributes the subcarriers in such a way that it can accommodate all of the users. Having less subcarriers for transmission, every user has to increase its modulation order (for example from QPSK to 16QAM) in order to keep the same transmission rate. However, increasing the modulation order is not always possible in practice and may introduce considerable complexity to the system. The technique presented in this thesis report describes a new way of adding more users to an SC-FDMA system by assigning the same sets of subcarriers to different users. The main advantage of this technique is that it allows the system to accommodate more users than conventional SC-FDMA and this corresponds to increasing the spectral efficiency without requiring a higher modulation order or using more bandwidth. During this work, special attentions wee paid to the cases where two and three source signals are being transmitted on the same set of subcarriers, which leads respectively to doubling and tripling the spectral efficiency. Simulation results show that by using the proposed technique, it is possible to add more users to any SC-FDMA system without increasing the bandwidth or the modulation order while keeping the same performance in terms of bit error rate (BER) as the conventional SC-FDMA. This is realized by slightly increasing the energy per bit to noise power spectral density ratio (Eb/N0) at the transmitters.
33

Protocol design for machine-to-machine networks

Aijaz, Adnan January 2014 (has links)
Machine-to-Machine (M2M) communications is an emerging communication paradigm that provides ubiquitous connectivity between devices along with an ability to communicate autonomously without human intervention. M2M communications acts as an enabling technology for the practical realization of Internet-of-Things (IoT). However, M2M communications differs from conventional Human-to-Human (H2H) communications due to its unique features such as massive number of connected devices, small data transmissions, little or no mobility, requirements of high energy efficiency and reliability, etc. These features create various challenges for existing communication networks which are primarily optimized for H2H communications. Therefore, novel solutions are required to meet the key requirements of M2M communications. In addition, enhancements are required at different layers of the protocol stack to support co-existence of M2M devices and H2H users. The main objective of this research is to investigate the challenges of M2M communications in two broad types of M2M networks; capillary M2M and cellular M2M networks. The primary focus is on developing novel solutions, algorithms, and protocol enhancements for successfully enabling M2M communications. Since cognitive radio technology is very promising for M2M communications, special emphasis is on capillary M2M networks with cognitive radio based Physical layer. Besides, the focus is also on exploring new frontiers in M2M communications. This thesis covers different aspects of M2M communications. Considering the motivation for cognitive M2M and service requirements of M2M devices, two cognitive MAC protocols have been proposed. The first protocol is centralized in nature and utilizes a specialized frame structure for co-existence with the primary network as well as handling different Quality-of-Service (QoS) requirements of M2M devices. The second protocol is a distributed cognitive MAC protocol, which is specially designed to provide high energy efficiency and reliability for M2M devices operating in challenging wireless environments. Both protocols explicitly account for the peculiarities of cognitive radio environments. The protocols have been evaluated using analytical modeling and simulation studies. Recently IETF has standardized a specially designed routing protocol for capillary M2M networks, known as RPL (Routing for Low Power and Lossy Networks). RPL is emerging as the de facto routing protocol for many M2M applications including the smart grid. On the other hand, the application of cognitive radio for smart grid communication is under active investigation in the research community. Hence, it is important to investigate the applicability and adaptation of RPL in cognitive radio environments. In this regard, an enhanced RPL based routing protocol has been proposed for cognitive radio enabled smart grid networks. The enhanced protocol provides novel modifications to RPL for protecting the primary users along with meeting the utility requirements of the secondary network. An important challenge in LTE-based cellular networks with M2M communications is the uplink radio resource management as available resources are shared between M2M devices and H2H users, having different and often conflicting QoS requirements. Apart from this, energy efficiency requirements become critically important. Further, the specific constraints of Single Carrier Frequency Division Multiple Access (SC-FDMA) complicate the resource allocation problem. In this respect, an energy efficient resource allocation algorithm for the uplink of LTE networks with M2M/H2H co-existence under statistical QoS guarantees has been developed, that is based on canonical duality theory. The proposed algorithm outperforms classical algorithms in terms of energy efficiency while satisfying the QoS requirements of M2M devices and H2H users. A new frontier in M2M communications is the nano-M2M communications, which is envisioned to create the Internet-of-Nano-Things (IoNT). Molecular communication (MC) is a promising communication technique for nano-M2M communications. In literature, no model for error performance of MC exists. Therefore, an error performance model has been developed that explicitly accounts for noise and interference effects. Since relaying and network coding based solutions are gaining popularity for nano-M2M networks, the error performance of a network coded molecular nano-M2M network has been evaluated as well. Finally, the thesis is concluded based on the overall picture of the research conducted. In addition, some directions for future work are included as well.
34

基於QoS限制於SC-FDMA上行資源排程之研究 / Qos-Costrained Scheduling for Uplink SC-FDMA

李昀峻, Lee, Yun Jun Unknown Date (has links)
隨著無線通訊技術快速的發展,使用者對無線傳輸及品質的要求日益提升。第三代合作夥伴計劃3rd Generation Partnership Project (3GPP)所提出的長期演進技術Long Term Evolution (LTE),是邁入第四代行動通訊系統(4G)的極佳選擇。其中以Single Carrier - Frequency Division Multiple Access (SC-FDMA)系統作為上行鏈路的主要通信技術。 然而,在上行SC-FDMA中有連續性資源塊配置的規定以及所配置之資源塊需使用相同調變技術的限制。一般而言資源分配的好壞會影響傳輸速率(data rate)與系統效能。因此,如何分配資源以改善傳輸速率與增進系統效能是本論文的研究重點。 目前,已有許多文獻在探討如何透過偵測頻率響應(frequency response),解決資源分配的問題。但我們發現,透過偵測頻率響應的好壞進行優先權排班,無法有效符合現實網路服務的實際需求。在本論文中,我們擬以三階段的演算法來改善系統中資源分配的問題。第一階段,在time domain排班時根據不同的Quality of Service (QoS)特性區分User Equipment (UE)。在第二階段frequency domain排班時依據通道品質好壞決定優先權以分配無線電資源給UE。最後,我們根據SC-FDMA的兩大重要限制,提出在LTE上行系統中資源分配方法,在滿足Guaranteed Bit Rate (GBR)服務之時間延遲的限制時,亦能提升整體系統效能。 在模擬分析中,我們利用NS3進行模擬實驗分析,將我們所提出的三階段演算法在不同比例之網路服務類別的要求下,與固定子載波動態資源分配機制以及適應性動態子載波分配機制進行比較。實驗結果顯示,我們的方法在VoIP的average delay time相較於適應性動態分配法最多可改善約82.9%,real time gaming最多可改善約84.9%,而整體系統頻帶利用率(spectrum utilization)相較於固定與適應性分配機制最多可提升約15.3%。 / Long Term Evolution (LTE) is the latest standard of 3rd Generation Partnership Project (3GPP), which is one of the most promising technology for 4G mobile networks. The goal of LTE is to provide high data rate transmission, scalable bandwidth, low latency, and high-mobility. To achieve this goal, the LTE employs Orthogonal Frequency Division Multiplexing (OFDM) for downlink data transmission and Single Carrier - Frequency Division Multiple Access (SC-FDMA) for uplink transmission. This thesis focuses on the resource allocation problem of LTE SC-FDMA system. We propose a three-stage approach to improve resource allocation performance. In the first stage, we design a time domain scheduling according to different QoS features and time delay requirement to distinguish user equipment (UE). In the second stage, we design a frequency domain scheduling based on channel state information to give priorities to UEs. Finally, we propose resource allocation methods for LTE uplink under the two constraints of SC-FDMA. The proposed methods are proved to be able to meet the real-time service delay constraints and enhance overall system performance. In the simulations, the proposed three stage algorithms are compared to fixed sub-carrier dynamic resource allocation algorithm and adaptive dynamic sub-carrier algorithm against different proportions of network services. Simulation results show that our method outperforms the other two methods in terms of throughput, transmission delay and packet loss ratio.
35

Mitigating the effect of soft-limiting for OFDM peak reduction

Bibi, Nargis January 2014 (has links)
Digital communication systems which use Orthogonal Frequency Division Multiplexing (OFDM) are now widely used and have many advantages. The main disadvantage is the requirement for highly linear analogue electronics including the high power amplifier (HPA). This requirement cannot be met in all circumstances because of the occurrence of symbols with high peak to average power ratio (PAPR). Such symbols may be non-linearly distorted by limiting. Approaches to solve this problem have been either to reduce the PAPR at the transmitter or to try to mitigate the effect of the non-linearity at the receiver. Soft-limiting, i.e. applying limiting in software prior to the HPA is a simple way to reduce the PAPR. It produces non-linear distortion which will cause an increase in the bit-error-rate (BER) at the receiver. This thesis surveys existing alternatives ways of reducing the effect of non-linearity and proposes some new ones. Two iterative receiver techniques, based on statistical analysis of the nature of the non-linearity, have been implemented and investigated. These are the ‘Bussgang Noise Cancellation’ (BNC) technique and the ‘Decision Aided Reconstruction’ (DAR) techniques. As these techniques are valid for any memory-less nonlinearity, an alternative form of limiting, named as Inverted-Wraparound (IWRAP) has been included in the BNC investigation. A new method is proposed which is capable of correcting the received time-domain samples that are clipped, once they have been identified. This is named the ‘Equation-Method’ and it works by identifying constellation symbols that are likely to be correct at the receiver. If there are a sufficient number of these and they are correctly identified, the FFT may be partitioned to produce a set of equations that may be solved for the clipped time-domain samples. The thesis proposes four enhancements to this new method which improve its effectiveness. It is shown that the best form of this method outperforms conventional techniques especially for severe clipping levels. The performance of these four enhancements is evaluated over channels with additive white Gaussian noise (AWGN) in addition to clipping distortion. A technique based on a ‘margin factor’ is designed to make these methods work more effectively in the presence of AWGN noise. A new combining algorithm referred as ‘HARQ for Clipping’ is presented where soft bit decisions are combined from multiple transmissions. ‘HARQ for Clipping’ has been combined with the best version of the Equation-Method, and the performance of this approach is evaluated in terms of the BER with different levels of AWGN. It has been compared to other approaches from the literature and was found to out-perform the BNC iterative receiver by 3dB at signal to noise ratios around 10dB. Without HARQ, the best version of the Equation-Method performs better than the BNC receiver, at signal-to-nose ratios above about 17dB.
36

Precoding for Interference Management in Wireless and Wireline Networks

Ganesan, Abhinav January 2014 (has links) (PDF)
Multiple users compete for a common resource like bandwidth to communicate data in interference networks. Existing approaches in dealing with interference limit the rate of communication due to paucity of shared resources. This limitation in the rate gets more glaring as the number of users in the network increases. For example, existing wireless systems either choose to orthogonalize the users (for example, Frequency Division Multiple Access (FDMA) systems or Code Division Multiple Access (CDMA) systems) or treat interference as Gaussian noise at the receivers. It is well known that these approaches are sub-optimal in general. Orthogonalization of users limit the number of available interference-free channels (known as degrees of freedom, abbreviated as DoF) and treating interference as noise means that the receiver cannot make use of the structure in the interfering signals. This motivates the need to analyze alternate transmit and decoding schemes in interference networks. This thesis mainly analyzes transmit schemes that use linear precoding for various configurations of interference networks with some practical constraints imposed by the use of finite input constellations, propagation delays, and channel state availability at the transmitters. The main contributions of this thesis are listed below. Achievable rates using precoding with finite constellation inputs in Gaussian Interference Channels (GIC) is analyzed. A metric for finding the approximate angle of rotation to maximally enlarge the Constellation Constrained (CC) capacity of two-user Gaussian Strong Interference Channel (GSIC) is proposed. Even as the Gaussian alphabet FDMA rate curve touches the capacity curve of the GSIC, with both the users using the same finite constellation, we show that the CC FDMA rate curve lies strictly inside the CC capacity curve at high powers. For a K-user MIMO GIC, a set of necessary and sufficient conditions on the precoders under which the mutual information between between relevant transmit-receive pairs saturate like in the single user case is derived. Gradient-ascent based algorithms to optimize the sum-rate achieved by precoding with finite constellation inputs and treating interference as noise are proposed. For a class of Gaussian interference networks with general message demands, identified as symmetrically connected interference networks, the expected sumspectral efficiency (in bits/sec/Hz) is shown to grow linearly with the number of transmitters at finite SNR, using a time-domain Interference Alignment (IA) scheme in the presence of line of sight (LOS) channels. For a 2×2 MIMO X-Network with M antennas at each node, we identify spacetime block codes that could be coupled with an appropriate precoding scheme to achieve the maximum possible sum-DoF of 4M 3 , for M = 3, 4. The proposed schemes are shown to achieve a diversity gain of M with SNR-independent finite constellation inputs. The proposed schemes have lower CSIT requirements compared to existing schemes. This thesis also makes an attempt to guarantee a minimum throughput when the zero-interference conditions cannot be satisfied in a wireline network with three unicast sessions with delays, using Precoding Based Network Alignment (PBNA). Three different PBNA schemes namely PBNA with time-varying local encoding coefficients (LECs), PBNA using transform approach and time-invariant LECs, and PBNA using transform approach and block time-varying LECs are proposed and their feasibility conditions analyzed.
37

Performance Analysis Of Multiple Access Schemes In A Wireless Packet Network

Sant, Jeetendra C 08 1900 (has links) (PDF)
No description available.
38

Modely systému LTE / LTE system models

Navrátil, Petr January 2013 (has links)
Master’s thesis is focused on part of mobile network named LTE. Project is analyzes the LTE physical layer, which is divided into four basic parts: Physical channels and modulation, Multiplexing and channel coding, Physical layer procedures, Physical layer measurements. Every part is described by actual 3GPP standard [1]. To understand the problem is expected a reader basic knowledge of OFDM systems, which the LTE system uses. The next part of this master’s thesis is dedicated to mathematic model physical layer of system LTE, created by program Matlab. This model is designed to measure errors in data transmission.
39

Performance Analysis Of Multiuser/Cooperative OFDM Systems With Carrier Frequency And Timing Offsets

Raghunath, K 12 1900 (has links)
Multiuser and cooperative orthogonal frequency division multiplexing(OFDM) systems are being actively researched and adopted in wireless standards, owing to their advantages of robustness to multipath fading, modularity, and ability to achieve high data rates. In OFDM based systems, perfect frequency and timing synchronization is essential to maintain orthogonality among the subcarriers at the receiver. In multiuser OFDM on the uplink, timing offsets (TOs) and/or carrier frequency offsets (CFOs) of different users, caused due to path delay differences between different users, Doppler and/or poor oscillator alignment, can destroy orthogonality among subcarriers at the receiver. This results in multiuser interference (MUI)and consequent performance degradation. In this thesis, we are concerned with the analysis and mitigation of the effect of large CFOs and TOs in multiuser OFDM systems, including uplink orthogonal frequency division multiple access (OFDMA),uplink single-carrier frequency division multiple access(SC-FDMA), and cooperative OFDM. Uplink OFDMA: In the first part of this thesis, we analytically quantify the effect of large CFOs and TOs on the signal-to-interference plus noise ratio(SINR) and uncoded bit error rate(BER) performance of uplink OFDMA on Rayleigh and Rician fading channels, and show analytical results to closely match with simulation results. Such an SINR/BER analysis for uplink OFDMA in the presence of both large CFOs as well as TOs has not been reported before. We also propose interference cancelling(IC) receivers to mitigate the performance degradation caused due to large CFOs and TOs of different users. SC-FDMA versus OFDMA: An issue with uplink OFDMA is its high peak-to-average power ratio(PAPR).Uplink SC-FDMA is proposed in the standards as a good low-PAPR alternative to uplink OFDMA; e.g., SC-FDMA has been adopted in the uplink of 3GPP LTE. A comparative investigation of uplink SC-FDMA and OFDMA from a sensitivity to large CFOs and TOs view point has not been reported in the literature. Consequently, in the second part of the thesis, we carry out a comparative study of the sensitivity of SC-FDMA and OFDMA schemes to large CFOs and TOs of different users on the uplink. Our results show that while SC-FDMA achieves better performance due to its inherent frequency diversity advantage compared to OFDMA in the case of perfect synchronization, its performance can get worse than that of OFDMA in the presence of large CFOs and TOs. We further show that use of low-complexity multistage IC techniques, with the knowledge of CFOs and TOs of different users at the receiver, can restore the performance advantage of SC-FDMA over OFDMA. Cooperative OFDM: Cooperative OFDM is becoming popular because of its ability to provide spatial diversity in systems where each node has only one antenna. In most studies on cooperative communications, perfect time synchronization among cooperating nodes is assumed. This implies that the transmissions from different cooperating nodes reach the destination receiver in orthogonal time slots. In practice, however, due to imperfect time synchronization, orthogonality among different nodes’ signals at the destination receiver can be lost, causing inter-symbol interference(ISI).In the third part of the thesis, we investigate cooperative OFDM communications using amplify-and-forward(AF) protocol at the relay, in the presence of imperfect timing synchronization. We derive analytical expressions for the ISI as function of timing offset for cooperative OFDM with AF protocol, and propose an IC receiver to mitigate the effects of timing offset induced ISI.
40

4G LTE : eMBMS with MBSFN Service Simulation using OPNET

Walid, Abdelrahman January 2014 (has links)
Long Term Evolution (LTE) known in the market as 4G LTE, it is an evolution of the GSM/UMTS standard. The overall aim of LTE was to provide a new radio access technology focusing on packet-switched data only. LTE has provided a new peak download rates, low data transfer latencies, and improved the support for mobility. 3Th Generation Partnership Project (3GPP) specialized that LTE released 10 and beyond known as LTE-advanced it is the second evolution of LTE. It has some services such as Coordinated Multipoint Transmission and Reception (CoMP), evolved Multimedia Broadcast and Multicast Service (eMBMS) with Multicast-Broadcast Single-Frequency Network (MBSFN). The development still continuous on LTE-advanced, it is intended to meet the requirement of advanced application that will become common in the wireless marketplace in future. The goals of this project is to simulate one of LTE-A services on LTE standard such as CoMP or/and eMBMS with MBSFN using OPENT LTE, and measure some statistic such as spectral efficiency and also some other statistics, describe centralization vs. decentralization in LTE, and synchronization in the base station in LTE. OPNET LTE support eMBMS with MBSFN, and don’t support CoMP, the simulation has been done by using eMBMS with MBSFN. Finally the objectives of the project has achieved, the result show that when eMBMS with MBSFN is implemented the throughput increased in the downlink to about 5.52 Mbps and in the uplink to about 5.18 Mbps, and also the system spectral efficiency increased in eNB1 from about 10.25 (bits/s/Hz/cell) to about 13.75 (bits/s/Hz/cell) and in eNB2 from about 10.25 (bits/s/Hz/cell) to about 17.25 (bits/s/Hz/cell). The project also answers if it is possible to have centralization in LTE, describe synchronization in the base station in LTE, and if OPNET is useful for big research.

Page generated in 0.0157 seconds