• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 610
  • 301
  • 296
  • 127
  • 85
  • 83
  • 76
  • 36
  • 19
  • 14
  • 11
  • 8
  • 8
  • 6
  • 5
  • Tagged with
  • 1777
  • 448
  • 420
  • 369
  • 312
  • 292
  • 287
  • 287
  • 227
  • 200
  • 170
  • 168
  • 168
  • 164
  • 142
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Dynamique linéarisée totale : Application aux robots parallèles / Total Linearized Dynamics : Application to Parallel Kinematic Machines

Prades, Julien 27 November 2018 (has links)
Les travaux de recherche de ce manuscrit se concentrent sur l’analyse des fréquences de vibrations des robots. Nos applications concernent plus particulièrement les architectures à cinématique parallèle. Dans un premier temps nous avons considéré les robots parallèles redondants en actionnement pour lesquels nous envisageons d’augmenter la fréquence de leurs oscillations en utilisant les efforts internes intrinsèques à ce type de structure. L’objectif est d’utiliser leur actionnement pour mettre en tension leur structure, et par conséquent, par analogie avec une corde vibrante, augmenter la fréquence de leurs oscillations. Nous avons étudié plusieurs robots plans redondants et nous montrons que dans le cadre de robots typiquement conçus pour être rigides,l’influence des efforts internes rajoutés n’a que peu d’importance. La suite de nos travaux soutient la proposition suivante : "les trajectoires très dynamiques influencent les fréquences des oscillations de la plateforme mobile". En effet, les robots parallèles quand ils sont conçus pour être légers, peuvent atteindre de grandes accélérations. Nous avons choisi de nous intéresser à l’étude de l’impact que peut avoir les effets dynamiques sur la fréquence des oscillations de la plateforme mobile de ces robots. Les robots considérés pour nos développements sont des robots parallèles plans, redondants en actionnement ou non. Nous proposons d’étudier cette influence en nous basant sur un développement au premier ordre du modèle dynamique. Cette linéarisation du modèle dynamique se veut plus complète que celles proposées dans la littérature. Nous expliquons et vérifions la validité de notre approche par une étude sur le lien entre accélération et vitesse et la fréquence d’oscillation pour les robots série PR (pendule sur glissière verticale) et RR (double pendule en rotation horizontale). Ensuite, nous généralisons notre modélisation au premier ordre et l’appliquons aux quatre robots PRR-2 PRR-3, PRR-4 et Dual-V pour voir si nous sommes capable d’en dégager une tendance concernant l’évolution des fréquences d’oscillation. Nous constatons que, en fonction des trajectoires, la dynamique a une influence faible mais visible, souvent positive sur l’augmentation des fréquences d’oscillation de la plateforme mobile. Cependant, les trajectoires et les lois horaires étant imposées, nous ne pouvons que subir cette influence. / The research work of this thesis manuscript focus on the analysis of the frequency of robots’ vibrations. Our applications mainly revolve around architectures with parallel kinematics. First we examined parallel robots which are redundant in actuation and for which we are considering an increase of their oscillations’ frequency using the internal forces inherent to this type of structure. The aim is to use their actuation is the tensioning of their structure, and consequently, by analogy with a vibrating-wire, to enhance theiroscillation frequency. We have studied several redundancy planar robots and we demonstrate that in the case of robots which are typically designed to be stiff, the impact of added internal forces is of low relevance. The continuation of our research supports the following proposal: “High dynamics trajectories have an impact on the oscillation frequency of the mobile platform.” Indeed parallel robots, when designed to be light, can reach greater accelerations. We chose to concentrate on the study of the impact that dynamic effects canhave on the oscillation frequency of those robots’ mobile platform. The robots examined for our developments are planar parallel robots whether they have redundant actuation or not. We offer to study this impact based on a prime order development of the dynamic model. This linearisation of the dynamic model is intended to be more complete than those suggested by literature. We explain and verify the validity of our approach with a study on the link between speed and oscillation frequency on PR robots (pendulum on a vertical sliding guide) and RR robots ( double pendulum rotating horizontally). Then we will generalize our first order model and apply it to the four robots ( PRR-2 PRR-3, PRR-4, and Dual-V) to see if we are able to identify a pattern regarding the evolution ofoscillation frequencies. We observe that, depending on the trajectories, the dynamics have a low but noticeable, and often positive, impact on the increase of oscillation frequency of the mobile platform. However, since the trajectories and speed input laws are imposed, we have no choice but to be subjected to this impact.
482

Metodologia de desenvolvimento de um manipulador hidráulico para atuação na indústria

Cesconeto, Emanuel Moutinho January 2018 (has links)
Este trabalho aborda o desenvolvimento de uma metodologia para a da determinação de parâmetros de projeto de uma classe de robôs industriais hidráulicos com atuadores lineares diretamente acoplados aos elos. Um robô típico desta classe pode ser dividido em três partes: a base, o braço e o punho, sendo que, no presente trabalho, é abordado o desenvolvimento do braço. São propostos métodos sistemáticos para a determinação das dimensões dos elos, dos cursos angulares das juntas, dos pontos de acoplamento dos atuadores, da estrutura principal dos elos, e para a sistematização do procedimento de especificação dos atuadores e unidades de potência hidráulica. Estes métodos dependem da predefinição por um projetista das necessidades técnicas das tarefas que o robô deve realizar, a partir dos quais os métodos então buscam a determinação dos parâmetros ótimos do braço para estas tarefas. Também é apresentada a cinemática direta, inversa, e a matriz Jacobiana, e é feito o equacionamento da dinâmica do braço em forma matricial, considerando a influência da inércia e peso dos atuadores, de modo a permitir a análise dos carregamentos e facilitar o controle. As equações propostas são verificadas com comparações com softwares comerciais e resultados disponíveis na literatura. Um programa computacional que implementa a metodologia deste trabalho foi desenvolvido e aplicado para determinar os parâmetros de dois braços propostos como estudo de casos. A metodologia se mostrou capaz de rapidamente especificar o braço adequado para cada caso, calculando as características de desempenho que deverão possuir se construídos. Estes dados podem ser aplicados para a construção de um robô hidráulico, ou para assistir o projetista a determinar se um robô hidráulico é adequado ou não para realizar as tarefas predefinidas. / This work presents the development of a methodology for the determination of the design variables of a class of hydraulic industrial robots with linear actuators directly coupled to the links. A typical robot of this class can be divided in three parts: the base, the arm and the wrist, of which the development of the arm is tackled in this work. Systematic methods are proposed for the determination of the links’ dimensions, the joints’ angular strokes, the coupling points for the actuators, the main structure of the links, and for the systematization of the procedure used to specify the actuators and pumps. These methods depend on the technical specifications, predefined by the designer, that are required for the arm to be able to perform a given set of tasks, and then seek the optimum parameters for the arm. The direct and inverse kinematics are also presented, as well as the Jacobian matrix, and the dynamics of the arm are calculated in matrix form, taking into consideration the inertia and weight of the actuators, so as to allow the analysis of the structural loads and facilitate the control. The proposed equations are verified via comparisons with commercial software and results found in the literature. A computer program that implements the methodology of this work was developed and used to determine the parameters of two proposed arms as a case study. The program was able to quickly specify the configurations for the arm of each case, and also calculate the performance characteristics the arms should possess if built. This data can be used to build a hydraulic arm, or even to help the designer to determine if a hydraulic robot is ideal or not for the given set of tasks.
483

Uma contribuição à modelagem experimental e teórica do processo de conformação hidrostática de tubos de aço inoxidável AISI 316 L. / A contribution to the experimental and theoretical modeling of AISI 316 L stainless steel tube hidroforming.

Abrantes, Jorge Paiva 25 May 2009 (has links)
O uso da simulação via método de elementos finitos (MEF) tem sido de suma importância para o desenvolvimento de processos de conformação hidrostática de tubos (CHT). Sua utilização reduz o método de tentativa e erro na definição do processo e grandes ganhos de produtividade são auferidos. Neste trabalho, a simulação via MEF em conjunto com o desenvolvimento analítico existente na literatura foi utilizada para o desenvolvimento de um método projeto de uma ferramenta simples para a CHT em matriz aberta e para uso em prensa comum. Obtida a ferramenta, foi possível a um baixo custo ser determinado experimentalmente os limites de conformação, o caminho de deformação e as dimensões do tubo expandido sendo possível compara-los com os resultados simulados via MEF. Esta comparação de resultados experimentais e simulados validou o procedimento de simulação e o método de projeto da ferramenta. Quanto ao carregamento, com a ferramenta obtida foram expandidos tubos por dois carregamentos distintos: só pressão e pressão e carga axial simultâneos permitindo assim comprovar a eficácia do segundo carregamento para a obtenção de razões de expansão maiores. Quanto às simulações, executadas em um programa comercial, elas foram desenvolvidas também para ambos os carregamentos. Ainda nestas simulações duas maneiras de aplicar-se a pressão foram avaliadas. Para a determinação dos limites de conformação do tubo fez-se uso da técnica denominada Circle Grid Analisys. Foi escolhido para estudo um tubo extrudado de aço inoxidável AISI 316 L submetido a tempera de solubilização. O método de projeto desenvolvido, numa primeira tentativa, utilizou como dado de entrada as propriedades do Aço AISI 316 L obtidos para chapas o que levou a diferenças entre os resultados simulados e experimentais. Assim foi necessário determinar-se as propriedades do aço AISI 316 L para a condição de tubo extrudado. Para a direção circunferencial utilizou-se o método de ensaios denominado Ring Hoop Tension Test, e para o sentido longitudinal o foi utilizado um ensaio de tração usual. Foram determinados inclusive os coeficientes de anisotropia. Com estes dados novas simulações, considerando a anisotropia do material, foram realizadas. Um aprimoramento do método de projeto foi realizado, sendo construída uma segunda versão da ferramenta para a CHT. Assim os novos resultados simulados foram obtidos e foram comparados com os resultados experimentais e os erros diminuíram significativamente. Como resultado final, para esta segunda versão de simulações, de projeto e ferramenta, os erros dos valores obtidos via simulação via MEF, no diâmetro e na espessura ficaram ao redor de 10%, assumindo o resultado experimental como padrão. Quanto ao limite de conformação os resultados simulados diferiram dos experimentais, porém o estado de deformação e os caminhos de deformação situaram-se no mesmo quadrante no plano das deformações (Curva CLC) para os dois carregamentos. Finalmente, quanto ao diâmetro externo do tubo para os dois carregamentos, o tubo em aço Inoxidável AISI 316 L atingiu diâmetros até 12,9% maiores para expansão por pressão e carga axial em relação àqueles expandidos somente por pressão, os quais foram assumidos como padrão. / The simulation using the finite elements method (FEM) has been of utmost importance for the tube hydroforming (THF) processes development. It reduces the try and error method in the process definition and great profits are gained. In this work, the FEM simulation together with the existing analytical THF theory in the literature was used to develop a process and a simple tool design for the THF, in open die arrangement and to be used in a common press. Gotten this tool, it was possible in a low cost, determine experimentally the forming limits, the strain paths and the evolution of geometry for a tube and then make it possible compares these experimental results with the simulated results obtained by FEM. This comparison of experimental and simulated results validated the simulation procedure and the tool design method. Relate the loads applied during the THF, two distinct load cases were possible: only pressure and simultaneous pressure and axial load, thus allowing proving the effectiveness of the second load case in obtain bigger expansion ratios. Relate to the simulations, they were run in commercial software and also the two load cases were simulated. Additionally in these simulations, two ways to apply the pressure had been evaluated. In the experiments, in the forming limits determination, the Circle Grid Analysis technique was used. A seamless stainless cold finished AISI 316 L solution annealed and quenched tube was chosen for evaluation. The tool design method, in a first attempt, uses the AISI 316 L steel properties obtained from sheets. Big differences between the FEM simulated and experimental results was gotten. Thus, it was necessary execute tensile tests in order to obtain the AISI 316 L steel properties for the seamless stainless cold finished, solution annealed condition. In such a way, a tensile tube test method called Ring Hoop Tension Test was used, to determined AISI 316 L steel properties in the transversal direction and a common tensile test was used for the longitudinal direction. Also, for both directions, anisotropy coefficients were also determined. With these new material properties set, new simulations including the anisotropy and a new improved tool design method were carried through, resulting in a new and improved tool version. Thus, new experiments were performed and compared with the new simulated results and the errors had diminished significantly. As final result, the errors in the diameter and in the thickness had been around of 10%, assuming the experimental result as standard. Relate the forming limits the results had differed, however the strain state and the strain path had been placed the same quadrant in a strain plane graphic (FLD diagram) for both load cases. Finally, relate to the tube expansion ratio, the tube external diameter increase 12,9% greater for tube expansion under pressure and axial load assuming the tube expansion under only pressure as standard.
484

Tetrahedral Meshes in Biomedical Applications: Generation, Boundary Recovery and Quality Enhancements

Ghadyani, Hamid R 30 March 2009 (has links)
Mesh generation is a fundamental precursor to finite element implementations for solution of partial differential equations in engineering and science. This dissertation advances the field in three distinct but coupled areas. A robust and fast three dimensional mesh generator for arbitrarily shaped geometries was developed. It deploys nodes throughout the domain based upon user-specified mesh density requirements. The system is integer and pixel based which eliminates round off errors, substantial memory requirements and cpu intensive calculations. Linked, but fully detachable, to the mesh generation system is a physical boundary recovery routine. Frequently, the original boundary topology is required for specific boundary condition applications or multiple material constraints. Historically, this boundary preservation was not available. An algorithm was developed, refined and optimized that recovers the original boundaries, internal and external, with fidelity. Finally, a node repositioning algorithm was developed that maximizes the minimum solid angle of tetrahedral meshes. The highly coveted 2D Delaunay property that maximizes the minimum interior angle of a triangle mesh does not extend to its 3D counterpart, to maximize the minimum solid angle of a tetrahedron mesh. As a consequence, 3D Delaunay created meshes have unacceptable sliver tetrahedral elements albeit composed of 4 high quality triangle sides. These compromised elements are virtually unavoidable and can foil an otherwise intact mesh. The numerical optimization routine developed takes any preexisting tetrahedral mesh and repositions the nodes without changing the mesh topology so that the minimum solid angle of the tetrahedrons is maximized. The overall quality enhancement of the volume mesh might be small, depending upon the initial mesh. However, highly distorted elements that create ill-conditioned global matrices and foil a finite element solver are enhanced significantly.
485

FEM Mesh Mapping to a SIMD Machine Using Genetic Algorithms

Dunkelberg, Jr., John S. 04 January 2001 (has links)
The Finite Element Method is a computationally expensive method used to perform engineering analyses. By performing such computations on a parallel machine using a SIMD paradigm, these analyses' run time can be drastically reduced. However, the mapping of the FEM mesh elements to the SIMD machine processing elements is an NP-complete problem. This thesis examines the use of Genetic Algorithms as a search technique to find quality solutions to the mapping problem. A hill climbing algorithm is compared to a traditional genetic algorithm, as well as a "messy" genetic algorithm. The results and comparative advantages of these approaches are discussed.
486

Graphically Driven Interactive Stress Reanalysis for Machine Elements in the Early Design Stage

Terdalkar, Sachin Sharad 18 August 2003 (has links)
"In this work a new graphically driven interactive stress reanalysis finite element technique has been developed so that an engineer can easily carry out manual geometric changes in a machine element during the early design stage. The interface allow an engineer to model a machine element in the commercial finite element code ANSYS® and then modify part geometry graphically to see instantaneous graphical changes in the stress and displacement contour plots. A reanalysis technique is used to enhance the computational performance for solving the modified problem; with the aim of obtaining results of acceptable accuracy in as short a period of time in order to emphasize the interactive nature of the design process. Three case studies are considered to demonstrate the effectiveness of the prototype graphically driven reanalysis finite element technique. The finite element type considered is a plane stress four-node quadrilateral based on a homogenous, isotropic, linear elastic material. The first two problems consider a plate with hole and plate with fillets. These two examples demonstrate that by changing the hole and fillet size/shape, an engineer can manually obtain an optimum design based on the stress concentration factor, i.e. engineer-driven optimization process. Each case study considered multiple redesigns. A combined approximation reanalysis method is used to solve each redesigned problem. The third case study considers a support bracket. The goal is to design the cantilever portion of the bracket to have uniform strength and to minimize the stress concentration at the fillet. The major beneficiaries of the work will be engineers working in product development and validation of components and structures, which are subjected to mechanical loads. The scientific and technological relevance of this work applies not only to the early stage of design, but to a number of other applications areas in which benefits may accrue. A company may have needs for a rapid analysis and re-analysis tool for fatigue assessment of components manufactured slightly out of tolerance. Typically this needs to be carried out under a very restrictive time scale."
487

Avaliação numérico-experimental da distribuição de tensões geradas pela contração de polimerização de resinas compostas / Numerical-experimental evaluation of the distribution of the stresses produced by polymerization shrinkage of composite resins

Baggio, Rafael 23 February 2010 (has links)
Made available in DSpace on 2017-07-24T19:22:13Z (GMT). No. of bitstreams: 1 Rafael Baggio.pdf: 2179064 bytes, checksum: 054756974bbbe9db77284217ea63ed04 (MD5) Previous issue date: 2010-02-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The purpose of this study was to evaluate the distribution of the stresses generated by the polymerization shrinkage of three composite resins [FiltekTM Z250 (3M ESPE, St. Paul, Minn., USA); FiltekTM Z350 (3M ESPE, St. Paul, Minn., USA) and P-90 (3M ESPE, St. Paul, Minn., USA)], with mechanical tests and finite element analysis (FEM). Ten samples of each composite resin were prepared in metal matrix of 25 X 2 X 2 mm and were tested in the flexural 3 points bend strength in a universal testing machine and a cross-head speed of 0.5 mm / min. After, more 10 samples of each composite resin were prepared in a metal matrix in the form of an hourglass measuring 10 x 3 x 1.5 mm with a central bottleneck of 1.5 mm were submitted to a tensile strength in an universal testing machine with a load cell of 10 N and a crosshead speed of 1.0 mm / min until material failure occurred. After, FEM analysis was made simulating the effects of a class V restoration. In the mechanical tests of tensile strength (MPa) and 3 points bend flexural strength (MPa) respectively, all composites obtained similar results, being to FiltekTM Z-250 (36.51 ± 8.14 and 158.51 ± 31.80), to FiltekTM Z-350 (34.43 ± 6.49 and 146.65 ± 18.83) and to FiltekTM P90 (37.35 ± 7.51 and 148.00 ± 26.24) with no statistical differences by Two-way ANOVA test andBonferroni (alpha = 0.05) post-hoc. In the FEM analysis, the silorane based resin (FiltekTM P90) showed lower values of tension produced by polymerization shrinkage and better able to dissipate it by the adjacent structures. / Este trabalho tem como objetivo avaliar a distribuição de tensões geradas pela contração de polimerização de 3 resinas compostas [FiltekTM Z-250 (3M ESPE, St. Paul, Minn., USA); FiltekTM Z-350 (3M ESPE, St. Paul, Minn., USA) e P90 (3M ESPE, St. Paul, Minn., USA)], através de testes mecânicos e análise por meio do método de elementos finitos. Inicialmente, 10 cp de cada resina composta foram confeccionados em matrizes metálicas de 25 X 2 X 2 mm e submetidos ao ensaio de resistência flexural de 3 pontos em uma Máquina de Ensaios Universal à uma velocidade de 0,5 mm/min. Para o teste de resistência à tração, foram confeccionados 10 cp para cada grupo de resina composta, mas agora em uma matriz metálica em forma de ampulheta medindo 10 x 3 x 1,5 mm com um estrangulamento central de 1,5 mm. Em seguida, as amostras foram submetidas ao teste de resistência à tração em uma Máquina de Ensaios Universal com uma célula de carga de 10 N a uma velocidade de 1,0 mm/min até que ocorreu a fratura no material. Com os dados obtidos em laboratório, uma simulação computacional foi realizada através do MEF, simulando os efeitos de uma restauração classe V na região cervical da face vestibular de um pré-molar. Nos testes mecânicos, após análise de variância ANOVA dois critério e pós-teste de Bonferroni com alfa igual a 0,05, não foram encontradas diferenças estatísticas para a resistência à tração (MPa) e resistência flexural (MPa) respectivamente entre as resinas FiltekTM Z-250 (36,51 ± 8,14 e 158,51 ± 31,80), FiltekTM Z-350 (34,43 ± 6,49 e 146,65 ± 18,83) e FiltekTM P90 (37,35 ± 7,51 e 148,00 ± 26,24). Na análise pelo método de elementos finitos, a resina à base de silorano (FiltekTM P90) obteve menores valores de tensões produzidas pela contração de polimerização e conseguiu uma melhor dissipação da mesma pelas estruturas adjacentes.
488

A moving mesh method for non-isothermal multiphase flows

Cheng, Zekang January 2019 (has links)
In this thesis, a numerical method is developed for simulating non-isothermal multiphase flows, which are important in many technical applications such as crystal growth and welding. The method is based on the arbitrary Lagrangian Eulerian method of Li (2013). The interface is represented explicitly by mesh lines, and is tracked by an adaptive moving unstructured mesh. The $P2-P1d$ finite element method (FEM) is used for discretisation and the incompressible Navier-Stokes equations are solved by the uzawa method. Firstly, a thorough study is presented on the method's capability in numerically representing the force balance condition on the interface. An inaccurate representation of this condition induces the non-physical spurious currents, which degrade the simulation accuracy especially when the viscous damping is weak (small Ohnesorge number, $Oh$). For the example of a circular/spherical droplet, the interfacial tension and the associated pressure jump are exactly balanced numerically and thus the static Laplace solution exists in our method. The stability of this solution is examined numerically. The amplitude of the dimensionless spurious currents is found to be around $10^{−15}$ for $Oh \geq 10^{−3} $. Another benchmark test is the axisymmetric oscillation of a freesurface droplet/bubble. The simulation results are in good agreement with the analytical solution for $Oh = 10^{−3}$. This is by far the first successful simulation of droplet/bubble oscillation with such weak viscous damping and it demonstrates the ability of our method in simulating flows with strong capillary forces. Secondly, a numerical treatment of interface topology changes is incorporated into our method for studying problems with interface breakup. Thanks to the adaptive mesh generator, the thin region between the interface boundary and another boundary consists of one layer of elements. The interface topology change is performed once the minimum distance between the two boundaries falls below a pre-set scale $l_{breakup}$ . The numerical implementation is verified through two different examples: dripping faucet and droplet coalescence. Remarkably good agreement has been obtained with the experimental results. The simulation of the low Oh dripping problem shows both the accuracy and robustness of our method. The simulation of droplet coalescence demonstrates the great advantage of our method in solving problems with a large disparity in length scales. Finally, an FEM solver for temperature is developed and the non-isothermal effects are included in our method for the purpose of simulating non-isothermal multiphase flows. The modified method is validated to be accurate through three benchmark examples: natural convection in a cavity, thermocapillary convection of two layers, and droplet migration subject to a temperature gradient. Our method is then applied to investigate the liquid bridge breakup with thermocapillary effect. The non-isothermal liquid bridge breakup in the viscous and inertial regimes are studied. It has been found that the inertial regime breakup exhibits different pinchoff shapes as the Capillary number increases, and that the viscous regime breakup is accelerated by the thermocapillary motion.
489

Modélisation et imagerie électrocardiographiques / Modeling and imaging of electrocardiographic activity

El Houari, Karim 14 December 2018 (has links)
L'estimation des solutions du problème inverse en Électrocardiographie (ECG) représente un intérêt majeur dans le diagnostic et la thérapie d'arythmies cardiaques par cathéter. Ce dernier consiste à fournir des images 3D de la distribution spatiale de l'activité électrique du cœur de manière non-invasive à partir des données anatomiques et électrocardiographiques. D'une part ce problème est rendu difficile à cause de son caractère mal-posé. D'autre part, la validation des méthodes proposées sur données cliniques reste très limitée. Une alternative consiste à évaluer ces méthodes sur des données simulées par un modèle électrique cardiaque. Pour cette application, les modèles existants sont soit trop complexes, soit ne produisent pas un schéma de propagation cardiaque réaliste. Dans un premier temps, nous avons conçu un modèle cœur-torse basse-résolution qui génère des cartographies cardiaques et des ECGs réalistes dans des cas sains et pathologiques. Ce modèle est bâti sur une géométrie coeur-torse simplifiée et implémente le formalisme monodomaine en utilisant la Méthode des Éléments Finis (MEF). Les paramètres ont été identifiés par une approche évolutionnaire et leur influence a été analysée par une méthode de criblage. Dans un second temps, une nouvelle approche pour résoudre le problème inverse a été proposée et comparée aux méthodes classiques dans les cas sains et pathologiques. Cette méthode utilise un a priori spatio-temporel sur l'activité électrique cardiaque ainsi que le principe de contradiction afin de trouver un paramètre de régularisation adéquat. / The estimation of solutions of the inverse problem of Electrocardiography (ECG) represents a major interest in the diagnosis and catheter-based therapy of cardiac arrhythmia. The latter consists in non-invasively providing 3D images of the spatial distribution of cardiac electrical activity based on anatomical and electrocardiographic data. On the one hand, this problem is challenging due to its ill-posed nature. On the other hand, validation of proposed methods on clinical data remains very limited. Another way to proceed is by evaluating these methods performance on data simulated by a cardiac electrical model. For this application, existing models are either too complex or do not produce realistic cardiac patterns. As a first step, we designed a low-resolution heart-torso model that generates realistic cardiac mappings and ECGs in healthy and pathological cases. This model is built upon a simplified heart torso geometry and implements the monodomain formalism by using the Finite Element Method (FEM). Parameters were identified using an evolutionary approach and their influence were analyzed by a screening method. In a second step, a new approach for solving the inverse problem was proposed and compared to classical methods in healthy and pathological cases. This method uses a spatio-temporal a priori on the cardiac electrical activity and the discrepancy principle for finding an adequate regularization parameter.
490

Modelling of corrosion electrochemistry in sweet environments relevant to oil and gas operations

Sanadhya, Sanskar January 2017 (has links)
The research reported in this doctoral thesis involves constructing physiochemical models that reproduce the transport behaviour of aqueous chemical species present in environments relevant to the oil and gas industry to gain an improved insight into the local electrochemistry near the electroactive surface (uniform corrosion) or inside the pit (pitting corrosion). The first part of the project involved constructing physiochemical models with one dimensional geometry with aqueous chemical species and chemical and electrochemical processes observed in oxygen (O2) containing brine environments to determine the changes in the local electrolyte composition and the potential within an initiated pit for a variety of external physical and chemical conditions. It was determined that the bottom of the pit suffers greatly from the effects of iR drop (Ohmic drop) if the pit geometry is taken to be macroscopic. The model was extended to include additional aqueous chemical species in conjunction with the chemical and electrochemical processes observed in carbon dioxide (CO2) rich environment to investigate the effects of CO2 on the local electrolyte chemistry at the bottom of the pit. It was found that the proton reduction electrochemical process on its own was incapable of supplying the high currents experimentally measured in CO2 environments via the buffering effect. The second part of the project was to investigate the influence of different experimental conditions on the polarisation behaviour of near static carbon steels in CO2 saturated brine electrolyte via multiple electrochemical measurement techniques. The key observation from this study was the presence of two distinct mass transport limited regions on the cathodic polarisation curve at natural pH (3.775). From the physiochemical model fitted to the experimental cathodic curve, the first mass transport limited region, occurring at lower cathodic potentials, was identified to be the direct reduction of carbonic acid while the second wave, occurring at slightly higher cathodic potentials, was shown to be the direct reduction of aqueous carbon dioxide. Based on the polarisation scans under forced convection, the rate of the direct reduction of carbon dioxide was determined to be under neither potential nor mass transport control. The third part of the project involved extending the existing one dimensional models to include the precipitation of salt films (iron chloride – FeCl2(s) and iron carbonate – FeCO3(s)) in O2 and CO2 saturated brine electrolyte respectively along with the capability to track their respective thickness. Furthermore, the ability of the underlying metal to undergo a change in its state from active to passive is implemented in the model via a set of rules based on the Pourbaix diagram. It was determined that the precipitation of salt films is greatly influenced by the mass transport with no or minimal thickness observed under even natural convection conditions. Furthermore the successful precipitation of salt film was determined to be a precursor step to the metal attaining passivation.

Page generated in 0.2918 seconds