1 |
Feuilletages Homogènes et billards polygonauxValdez, Ferran 21 June 2007 (has links) (PDF)
Dans cette thèse nous fournissons un nouveau cadre pour l'étude du jeu du billards sur un polygone. À un billard polygonal on associe canoniquement un feuilletage holomorphe sur l'espace affine complexe de dimension 2. La dynamique du billard est reliée au flot directionnel du champ complexe définissant ce feuilletage. Ce dictionnaire permet de réaliser et décrire les surfaces de translation associées au billard. Inversement, le billard permet de décrire certains feuilletages réels de l'espace projectif de dimension trois.
|
2 |
Flots transversalement de Lie.Caron, Patrick, January 1900 (has links)
Th. 3e cycle--Math. pures--Lille 1, 1980. N°: 833.
|
3 |
Topologie locale des espaces de feuilletages des variétés fermées de dimension 3Larcanché, Audrey 02 December 2004 (has links) (PDF)
Dans cette thèse, nous nous intéressons aux feuilletages orientables en surfaces des variétés fermées de dimension 3. Nous prouvons que deux tels feuilletages sur une variété fermée orientable sont homotopes s'ils sont tendus et suffisamment proches. Pour cela, nous établissons d'abord une version ''à paramètre'' d'un théorème de Thurston selon lequel il est possible de prolonger certains feuilletages du tore-surface au tore solide. Dans ce travail, nous construisons un tel prolongement et nous utilisons le théorème d'Herman sur la conjugaison des difféomorphismes du cercle à des rotations pour établir la continuité de ce prolongement par rapport aux feuilletages. Ensuite nous montrons que l'espace des feuilletages en surfaces transverses à une fibration au-dessus d'une surface fermée orientable est homotope à un point. Enfin, nous prouvons le résultat annoncé en utilisant une idée de Thurston et la construction précédente. Nous en déduisons quelques conséquences sur la topologie locale de l'espace des feuilletages en surfaces sur les variétés fermées de dimension 3.
|
4 |
Feuilletages mesurés et feuilletages transversalement affinesSaid, Ahmad 26 September 2013 (has links) (PDF)
On étudie les feuilletages transversalement affines des surfaces compactes, avec ou sans bord. On met en relation plusieurs méthodes de construction de tels feuilletages: application de premier retour et échanges d'intervalles affines (pour un feuilletage pas nécessairement orientable); mesure brisée sur un réseau ferroviaire; feuilletage mesuré sur le revêtement universel avec automorphismes du revêtement agissant de manière affine; recollement le long de leur bord de surfaces munies de feuilletages affines. On étudie l'injectivité des applications à image dans l'espace des classes d'équivalence des feuilletages transversalement affines qui résultent de ces diverses constructions.
|
5 |
Espaces de modules analytiques de fonctions non quasi-homogènes / Analytic moduli spaces of non quasi-homogeneous functionsLoubani, Jinan 27 November 2018 (has links)
Soit f un germe de fonction holomorphe dans deux variables qui s'annule à l'origine. L'ensemble zéro de cette fonction définit un germe de courbe analytique. Bien que la classification topologique d'un tel germe est bien connue depuis les travaux de Zariski, la classification analytique est encore largement ouverte. En 2012, Hefez et Hernandes ont résolu le cas irréductible et ont annoncé le cas de deux components. En 2015, Genzmer et Paul ont résolu le cas des fonctions topologiquement quasi-homogènes. L'objectif principal de cette thèse est d'étudier la première classe topologique de fonctions non quasi-homogènes. Dans le deuxième chapitre, nous décrivons l'espace local des modules des feuillages de cette classe et nous donnons une famille universelle de formes normales analytiques. Dans le même chapitre, nous prouvons l'unicité globale de ces formes normales. Dans le troisième chapitre, nous étudions l'espace des modules de courbes, qui est l'espace des modules des feuillages à une équivalence analytique des séparatrices associées près. En particulier, nous présentons un algorithme pour calculer sa dimension générique. Le quatrième chapitre présente une autre famille universelle de formes normales analytiques, qui est globalement unique aussi. En effet, il n'ya pas de modèle canonique pour la distribution de l'ensemble des paramètres sur les branches. Ainsi, avec cette famille, nous pouvons voir que la famille précédente n'est pas la seule et qu'il est possible de construire des formes normales en considérant une autre distribution des paramètres. Enfin, pour la globalisation, nous discutons dans le cinquième chapitre une stratégie basée sur la théorie géométrique des invariants et nous expliquons pourquoi elle ne fonctionne pas jusqu'à présent. / Let f be a germ of holomorphic function in two variables which vanishes at the origin. The zero set of this function defines a germ of analytic curve. Although the topological classification of such a germ is well known since the work of Zariski, the analytical classification is still widely open. In 2012, Hefez and Hernandes solved the irreducible case and announced the two components case. In 2015, Genzmer and Paul solved the case of topologically quasi-homogeneous functions. The main purpose of this thesis is to study the first topological class of non quasi-homogeneous functions. In chapter 2, we describe the local moduli space of the foliations in this class and give a universal family of analytic normal forms. In the same chapter, we prove the global uniqueness of these normal forms. In chapter 3, we study the moduli space of curves which is the moduli space of foliations up to the analytic equivalence of the associated separatrices. In particular, we present an algorithm to compute its generic dimension. Chapter 4 presents another universal family of analytic normal forms which is globally unique as well. Indeed, there is no canonical model for the distribution of the set of parameters on the branches. So, with this family, we can see that the previous family is not the only one and that it is possible to construct normal forms by considering another distribution of the parameters. Finally, concerning the globalization, we discuss in chapter 5 a strategy based on geometric invariant theory and explain why it does not work so far.
|
6 |
Feuilletages mesurés et feuilletages transversalement affines / Measured foliations and affine foliationsSaid, Ahmad 26 September 2013 (has links)
On étudie les feuilletages transversalement affines des surfaces compactes, avec ou sans bord. On met en relation plusieurs méthodes de construction de tels feuilletages: application de premier retour et échanges d'intervalles affines (pour un feuilletage pas nécessairement orientable) ; mesure brisée sur un réseau ferroviaire; feuilletage mesuré sur le revêtement universel avec automorphismes du revêtement agissant de manière affine ; recollement le long de leur bord de surfaces munies de feuilletages affines. On étudie l'injectivité des applications à image dans l'espace des classes d'équivalence des feuilletages transversalement affines qui résultent de ces diverses constructions. / We study the affine foliations on a compact surface in both cases : with a boundary and without a boundary. We connect between several ways of constructing these foliations. These ways are the first return map, the affine interval exchange (for a foliation which is not necessarily orientable), the train tracks with broken measures, the gluing affine foliations on surface with boundary, and the measured foliation on the universal covering with covering translation acting in affine ways. We study the injectivity of the applications with image in the space of equivalence classes of affine foliations which result from these various constructions.
|
7 |
Connexions plates logarithmiques de rang deux sur le plan projectif complexeCousin, Gaël 04 October 2012 (has links) (PDF)
Dans cette thèse on étudie les propriétés des connexions plates logarithmiques de rang 2 et leurs projectifies qui sont des feuilletages de Riccati, principalement sur le plan projectif. L'invariant principal d'un tel objet est sa représentation de monodromie, qui est une représentation vers SL2(C) ou PSL2(C) du groupe fondamental du complémentaire de son lieu polaire. Dans un premier temps, on étudie la propriété, pour un feuilletage de Riccati sur P2, d'être obtenu en tirant un en arrière un feuilletage de Riccati au dessus d'une courbe. Ensuite on s'intéresse aux feuilletages de Riccati qui ne sont pas construits de cette maniere et qui peuvent être obtenus a partir d'une solution algébrique de l'équation de Painleve VI. Nous les classons par orbites sous le groupe de Galois de Q ̄ sur Q. Finalement, on s'int ́eresse aux feuilletages transversalement projectifs : ces feuilletages s'obtiennent par restriction de feuilletages de Riccati a' des sections de leurs P1-fibres sous-jacents. On s'interesse particulierement aux feuilletages modulaires de Hilbert, dont on decrit assez finement la structure transverse. On conclut notre travail par l'exhibition de modeles birationnels sur P2 pour certains feuilletages modulaires de Hilbert.
|
8 |
Hamiltoniens, lagrangiens et sous-ensembles coïsotropes associés aux structures de Poisson / Hamiltonians, Lagrangians and coisotropic subsets associated to Poisson structuresTurki, Yahya 11 July 2016 (has links)
Cette thèse contient essentiellement deux chapitres principaux qui ont en commun de porter sur ce que l'on appelle en géométrie de Poisson les chemins cotangents. Dans le premier chapitre, nous introduisons pour chaque hamiltonien, un lagrangien sur les chemins à valeurs dans l'espace cotangent dont les points stationnaires indiquent si le champ de bivecteur est de Poisson ou au moins définit une distribution intégrable - une classe de champs de bivecteurs qui généralise les structures de Poisson tordus que nous étudions en détail. Nous traitons dans le deuxième chapitre d'un autre résultat classique à propos des chemins cotangents, dû à Klimčík, Strobl et étudiée par Cattaneo et Felder. Un bivecteur sur une variété $M$ est de Poisson si et seulement si l'ensemble $C_pi$ des chemins cotangents pour $pi$ est co"{i}sotrope dans la variété symplectique des chemins à valeurs dans $T^*M$. Notre but dans le deuxième chapitre est de reprendre la caractérisation des bivecteurs de Poisson, en travaillant avec des fonctions locales sur l'ensemble des chemins lisses, pour lesquels l'utilisation d'une variété de Banach peut être évitée. Ceci permet d'étendre au cas périodique / In this thesis, we study cotangents paths. In chapter 1 we introduce for every Hamiltonian a Lagrangian on paths valued in the cotangent space whose stationary points projects onto Hamiltonian vector fields. We show that the remaining components of those stationary points tell whether the bivector field is Poisson or at least defines an integrable distribution - a class of bivector fields generalizing twisted Poisson structures that we study in detail. In chapter 2, we establish a local function version of a result due to Klimčík and Strobl then Cattaneo and Felder claiming that a bivector field on a manifold $M$ is Poisson if and only if cotangent paths form a coisotropic submabifold of the infinite dimensional symplectic manifold of paths valued in $T^*M$. Our purpose in chapter 2 is to prove this result without using the Banach manifold setting used by Cattaneo and Felder, which fails in the periodic case because cotangent loops do not form a Banach sub-manifold. Instead, we use local functions on the path space, a point of view that allows to speak of a coisotropic set
|
9 |
Pièges dans la théorie des feuilletages : exemples et contre-exemplesRechtman, Ana 06 February 2009 (has links) (PDF)
Dans ce travail, nous nous intéressons à deux questions. La première est de savoir si les champs de vecteurs non singuliers et géodésibles sur une variété fermée de dimension trois ont des orbites périodiques. La seconde, étudie les relations entre les feuilletages moyennables et les feuilletages dont toutes les feuilles sont Folner. L'idée commune dans ces deux problèmes est l'utilisation de pièges: un outil qui nous permet de changer un feuilletage à l'intérieur d'une carte feuilletée.<br /> <br /> Dans le premier chapitre nous abordons la première question. On dit qu'un champ de vecteurs non singulier est géodésible s'il existe une métrique riemannienne sur la variété ambiante pour laquelle toutes les orbites sont des géodésiques. Soit X un tel champ de vecteurs sur une variété fermée de dimension trois. Supposons que la variété est difféomorphe à la sphère ou son deuxième groupe d'homotopie est non trivial. Pour ces variétés, on montre que si X est analytique réel ou s'il préserve une forme volume, il possède une orbite périodique. <br /><br />Le deuxième chapitre est dédié à la seconde question. En 1983, R. Brooks avait annoncé qu'un feuilletage dont presque toutes les feuilles sont Folner est moyennable. A l'aide d'un piège, on va construire un contre-exemple à cette affirmation, c'est-à-dire un feuilletage non moyennable dont toutes les feuilles sont Folner. <br />Nous cherchons ensuite des conditions suffisantes sur le feuilletage pour que l'énoncé de R. Brooks soit valable. Comme suggéré par V. A. Kaimanovich, une possibilité est supposer que le feuilletage soit minimal. On montre que cette hypothèse est suffisante en utilisant un théorème de D. Cass que décrit les feuilles minimales.
|
10 |
Classification des composantes connexes des strates de l'espace des modules des différentielles quadratiquesLanneau, Erwan 05 December 2003 (has links) (PDF)
Dans cette thèse, nous étudions la dynamique du flot géodésique de Teichmüller. L'origine de cet intérêt provient de l'étude d'une classe très importante de systèmes dynamiques : celle des échanges d'intervalles. Dans des travaux classiques, Masur et Veech montrent en 1982 que la dynamique de ces échanges d'intervalles est reliée avec la dynamique du flot géodésique de Teichmüller sur l'espace des modules des courbes complexes. L'espace des phases de ce flot peut être vu comme l'espace des modules des différentielles quadratiques sur une surface. Ces espaces sont naturellement stratifiés par le type des singularités des formes. De plus ces strates sont préservées par l'action de ce flot. Des résultats classiques affirment que ces strates sont des orbifolds complexes et sont non-vides et non-connexes en « général ». La motivation du travail expliqué dans cette thèse est donnée par le résultat fondamental, démontré indépendamment par Masur et par Veech (1982), qui affirme que le flot géodésique de Teichmüller agit de façon ergodique sur chaque composante connexe de chaque strate (normalisée), par rapport à une mesure invariante de masse finie. Kontsevich et Zorich ont classifié les composantes connexes des strates de l'espace des modules Hg des différentielles abéliennes. Dans cette thèse, nous donnons une description précise des composantes des strates dans le cas complémentaire de celui de Kontsevich- Zorich, c'est-à-dire de l'espace des modules Qg des différentielles quadratiques qui ne sont pas globalement le carré de différentielles abéliennes. Par ailleurs, nous donnons une formule explicite pour le calcul de la structure spin d'une différentielle quadratique de Qg en termes uniquement des singularités de la strate. Ceci contredit une conjecture de Kontsevich-Zorich sur la classification des composantes connexes non-hyperelliptiques de Qg par cette structure spin. En utilisant cette formule, nous donnons une application dans le contexte des billards dans un polygone rationnel.
|
Page generated in 0.0265 seconds