• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 16
  • 12
  • 9
  • 2
  • 2
  • Tagged with
  • 172
  • 172
  • 43
  • 39
  • 39
  • 36
  • 35
  • 34
  • 33
  • 31
  • 26
  • 25
  • 25
  • 23
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The Dependence of the Sticking Property of a Carbon Gas-phase Atom on C(100) on the Incident Angle

Shui, Jin-Hua 12 July 2002 (has links)
We use the first-principles molecular-dynamics¡@simulation method (MD), which is based on the density functional theory (DFT) with local-density approximation (LDA), to calculate the sticking property of a carbon atom on hydrogen covered C(100) surface. We focused on trajectories and kinetic energy transfer of the gas-phase C atom for four incident angles of =0, £k/8, £k/6 and £k/4. We find that the calculated trajectories and the kinetic energy transfer of the gas-phase atom, Cn, overall are not very sensitive to the change of the incident angle. The insensitivity of the sticking property on the incident angle may be due to a large chemisorption energy, which bends the trajectory of Cn toward the surface, so that Cn is confined to move within a small range.
42

First-principles calculations of helium cluster formation in palladium tritides

Lin, Pei 20 May 2010 (has links)
The accumulation of helium atoms in metals or metal tritides is known to result in the formation of helium bubbles in the lattice and to cause degradation of the material. Helium is introduced either through neutron transmutation reaction or via the radioactive decay of tritium. We have performed first-principles calculations of interstitial helium inside Pd and Pd tritide using density functional theory (DFT) and the projector augmented-wave (PAW) method within the generalized gradient approximation (GGA). We model the growth process of an interstitial helium cluster and find that when the size of the cluster reaches to five atoms, the cluster can induce an energetically favorable vacancy with a self-trapping mechanism. The cluster growth mechanism of interstitial helium is addressed by investigating the associated energetics, cluster configurations, and electronic structural properties. In addition, we study the diffusion properties of helium in palladium-based compounds by performing the nudged elastic band (NEB) calculations. Our computational models propose that by loading the lattice with hydrogen atoms at certain concentration, or substituting with alloying metals can modify the diffusivity by increasing its migration barrier, which may impede the cluster formation in the beginning stage.
43

Atomistic simulations of intrinsic and extrinsic point defects in uranium

Beeler, Benjamin Warren 02 November 2011 (has links)
Uranium (U) exhibits a high temperature body-centered cubic (b.c.c.) allotrope that is often stabilized by alloying with transition metals such as Zr, Mo, and Nb for technological applications. One such application involves U-Zr as nuclear fuel, where radiation damage and diffusion (processes heavily dependent on point defects) are of vital importance. Metallic nuclear fuels swell under fission conditions, creating fission product gases such as helium, xenon and krypton. Several systems of U are examined within a density functional theory framework utilizing projector augmented wave pseudopotentials. Two separate generalized gradient approximations of the exchange-correlation are used to calculate defect properties and are compared. The bulk modulus, the lattice constant, and the Birch-Murnaghan equation of state for the defect free b.c.c. uranium allotrope are calculated. Defect parameters calculated include energies of formation of vacancies in the α and γ allotropes, as well as self-interstitials, Zr, He, Xe and Kr interstitial and substitutional defects. The results for vacancies agree very well with experimental and previous computational studies. The most probable self-interstitial site in γ-U is the <110> dumbbell and the most probable defect location for dilute Zr in γ-U is the substitutional site. The most likely position for Xe and Kr atoms in uranium is the substitutional site. Helium atoms are likely to be found in a wide variety of defect positions due to the comparable formation energies of all defect configurations analyzed.
44

Density Functional Theory Studies of Energetic Materials

Conroy, Michael W. 17 September 2009 (has links)
First-principles calculations employing density functional theory (DFT) were performed on the energetic materials PETN, HMX, RDX, nitromethane, and a recently discovered material, nitrate ester 1 (NEST-1). The aims of the study were to accurately predict the isothermal equation of state for each material, improve the description of these molecular crystals in DFT by introducing a correction for dispersion interactions, and perform uniaxial compressions to investigate physical properties that might contribute to anisotropic sensitivity. For each system, hydrostatic-compression simulations were performed. Important properties calculated from the simulations such as the equilibrium structure, isothermal equation of state, and bulk moduli were compared with available experimental data to assess the agreement of the calculation method. The largest contribution to the error was believed to be caused by a poor description of van der Waals (vdW) interactions within the DFT formalism. An empirical van der Waals correction to DFT was added to VASP to increase agreement with experiment. The average agreement of the calculated unit-cell volumes for six energetic crystals improved from approximately 9% to 2%, and the isothermal EOS showed improvement for PETN, HMX, RDX, and nitromethane. A comparison was made between DFT results with and without the vdW correction to identify possible advantages and limitations.  Uniaxial compressions perpendicular to seven low-index crystallographic planes were performed on PETN, HMX, RDX, nitromethane, and NEST-1. The principal stresses, shear stresses, and band gaps for each direction were compared with available experimental information on shock-induced sensitivity to determine possible correlations between physical properties and sensitivity. The results for PETN, the only system for which the anisotropic sensitivity has been thoroughly investigated by experiment, indicated a possible correlation between maximum shear stress and sensitivity. The uniaxial compressions that corresponded to the greatest maximum shear stresses in HMX, RDX, solid nitromethane, and NEST-1 were identified and predicted as directions with possibly greater sensitivity. Experimental data is anticipated for comparison with the predictions.
45

Amorphous and crystalline functional materials from first principles

Isaeva, Leyla January 2015 (has links)
This thesis deals with various functional materials from first-principles methods and is divided into two major parts according to the underlying atomic structure of the system under study. The first part of the thesis deals with the temperature-induced structural phase transitions in metallic  β'-AuZn and perovskite oxide LiOsO3. The former one, i.e. binary AuZn, belongs to a class of shape-memory alloys that regain their initial shape due to a reversible martensitic phase transformation. Here, by means of density functional and density functional perturbation theories, we show that the martensitic transition is due to coupling between the Fermi surface nesting and anomalies in the phonon dispersion relations. The other metallic system, perovskite LiOsO3, exhibits a ferroelectric-like transition and is currently the first and sole realization of the Anderson and Blount idea. By means of ab initio molecular dynamics simulations, we investigate the mechanism behind this structural phase transformation. Another part of the thesis is dedicated to modelling and characterization of topologically disordered materials on atomic level. The structural and electronic properties of amorphous W-S-N are addressed regarding its outstanding tribological properties, i.e. almost vanishing friction coefficient. Molecular dynamics “melt-and-quench” technique has been employed in order to construct a model structure of amorphous W-S-N. Further analysis of the atomic structure revealed a formation of quasi-free N2 molecules trapped in S cages, which, together with the complex atomic structure of W-S-N, is the key to ultra-low-friction in this functional material. In the last chapter of the thesis a magnetic class of amorphous materials is addressed. Magnetic order in amorphous Gd-Fe ferrimagnet has been shown to undergo magnezation switching driven by a femtosecond laser pulse. Here, we combine first-principles density functional theory and atomistic spin dynamics simulations to explore this phenomena. A possible mechanism behind magnetization reversal in Gd-Fe based on a combination of the Dzyaloshinskii-Moriya interaction and exchange frustration is proposed.
46

First principles study of point-like defects and impurities in silicon, carbon, and oxide materials

Kweon, Kyoung Eun, 1981- 10 March 2014 (has links)
Since materials properties are determined by the interactions between the constituent atoms, an accurate description of the inter-atomic interactions is crucial to characterize and control material properties. Particularly, a quantitative understanding of the formation and nature of defects and impurities becomes increasingly important in the era of nanotechnology, as the imperfections largely influence many properties of nanoscale materials. Indeed, due to its technological importance and scientific interest, there have been significant efforts to better understand their behavior in semiconductors and oxides, and their interfaces, yet many fundamental aspects are still ambiguous due largely to the difficulty of direct characterization. Hence, our study has focused on developing a better understanding of atomic-scale defects and impurities using first principles quantum mechanical calculations. In addition, based on the improved understanding, we have attempted to address some engineering problems encountered in the current technology. The first part of this thesis focuses on mechanisms underlying the transient enhanced diffusion of arsenic (As) during post-implantation annealing by examining the interaction of As with vacancies in silicon. In the second part, we address some fundamental features related to plasma-assisted nitridation of silicon dioxide; this study shows that oxygen vacancy related defects play an important role in (experimentally observed) peculiar nitridation at the Si/SiO2 interface during post O2 annealing. In the third part, we examine the interaction between vacancies and dopants in sp2–bonded carbon such as graphene and nanotube, specifically the formation and dynamics of boron-vacancy complexes and their influence on the electrical properties of host materials. In the fourth part, we study the interfacial interaction between amorphous silica (a-SiO2) and graphene in the presence of surface defects in a-SiO2; this study shows possible modifications in the electronic structure of graphene upon the surface defect assisted chemical binding onto the a-SiO2 surface. In the last part, we examine the structural and electronic properties of bismuth vanadate (BiVO4) which is a promising photocatalyst for water splitting to produce hydrogen; this study successfully explains the underlying mechanism of the interesting photocatalytic performance of BiVO4 that has been experimentally found to strongly depend on structural phase and doping. / text
47

Bi2O3およびその固溶体における酸化物イオン伝導 / Oxide ionic conduction in Bi2O3 and its solid solutions

設樂, 一希 23 March 2015 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第18983号 / 工博第4025号 / 新制||工||1620 / 31934 / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 田中 功, 教授 宇田 哲也, 教授 白井 泰治 / 学位規則第4条第1項該当
48

Theoretical Characterization of Functional Molecular Materials

Song, Xiuneng January 2012 (has links)
Nowadays, material, energy and information technologies are three pillar industries. The materials that have close relation with our life have also been the foundation for the development of energy and information technologies. As the new member of the material family, functional molecular materials have become increasingly important for many applications, for which the design and characterization by the theoretical modeling have played the vital role. In this thesis, three different categories of functional molecular materials, the endohedral fullerenes, the fullerene derivatives and the self-assembled monolayers (SAMs), have been studied by means of first principles methods. The non-metal endohedral fullerene N@C60 is a special endohedral fullerene that is believed to be relevant to the construction of future quantum computer. The energy landscape inside the N@C60 has been carefully explored by density functional theory (DFT) calculations. The most energy favorable potential energysurfaces (PESs) for the N atom to move within the cavity have been identified. The effect of the charging on the PESs has also been examined. It is found that the inclusion of dispersion force is essential in determining the equilibriumstructure of N@C60. Furthermore, the performance of several commonly useddensity functionals with or without dispersion correction has been verified for ten different endohedral fullerenes A@C60 with the atom A being either reactive nonmetal or nobel gases elements. It shows that the inclusion of the dispersion forcedoes provide better description for the binding energy (BE), however, none ofthem could correctly describe the energy landscape inside all the ten endohedral fullerenes exclusively. It thus calls for the further improvement of current density functionals for weak interacting systems. Soft X-ray spectroscopy is a powerful tool for studying the chemical and electronic structures of functional molecular materials. Theoretical calculations have been proven to be extremely useful for providing correct assignments for spectraof large systems. In this thesis, we have performed first principles simulations forthe near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectra (XPS) of fullerene derivatives and aminothiolates SAMs. Our calculatedspectra can accurately reproduce experimental results available for all the systemsunder investigations, and identify the species or structures that are responsible for those unexpected spectral features observed in experiments. We have suggested a modified building block (MBB) approach that allows to calculate NEXAFS spectraof a large number of fullerene derivatives with very small computational cost, and resolved the long standing puzzle around the experimental XPS and NEXAFS spectra of SAMs with aminothiolates. / <p>QC 20120523</p>
49

Local electronic structure analysis by site-selective ELNES using electron channeling and first-principles calculations

Muto, Shunsuke, Tatsumi, Kazuyoshi 02 1900 (has links)
No description available.
50

電子顕微鏡分光と第一原理計算によるリチウム電池正極の機能元素電子状態解析

UKYO, Yoshio, SASAKI, Tsuyoshi, KONDO, Hiroki, MUTO, Shunsuke, TATSUMI, Kazuyoshi, 右京, 良雄, 佐々木, 厳, 近藤, 広規, 武藤, 俊介, 巽, 一厳 01 July 2012 (has links)
No description available.

Page generated in 0.0283 seconds