Spelling suggestions: "subject:"denite element analysis"" "subject:"bonite element analysis""
791 |
Stability Investigation Of Eti Copper Mine Tailings Dam Using Finite Element AnalysisTanriseven, Esra Nur 01 September 2012 (has links) (PDF)
In mining industry, waste storage is a very prominent issue / in this respect, safety of storage structures is one of the leading problems in the industry. Most of the tailings dams require remedial measures, throughout their lifespan to increase their reliability. The objective of the study is to investigate stability problems of formerly constructed but newly raised Eti Copper Mine tailings dam and alternative dam geometries for future raises. Plenty of methods were developed to analyze the reliability of structures / limit equilibrium methods, finite element methods and finite difference methods are among them. In this case, stability of the dam was analyzed with finite element method under static loading conditions. In order to determine input parameters properly, disturbed samples obtained at the field investigations were used. For this purpose, several laboratory experiments were conducted to determine natural moisture content, grain size distribution, specific gravity, Atterberg limits, maximum dry density and shear strength parameters of tailings and embankment material.
|
792 |
In-plane Compressive Response of Sandwich PanelsLindström, Anders January 2009 (has links)
The high specific bending stiffness of sandwich structures can with advantage be used in vehicles to reduce their weight and thereby potentially also their fuel consumption. However, the structure must not only meet the in-service requirements but also provide sufficient protection of the vehicle passengers in a crash situation. The in-plane compressive response of sandwich panels is investigated in this thesis, with the objective to develop a methodology capable of determining if the structural response is likely to be favourable in an energy absorption perspective. Experiments were conducted to identify possible initial failure and collapse modes. The initial failure modes of sandwich panels compressed quasi-statically in the in-plane direction were identified as global buckling, local buckling (wrinkling) and face sheet fracture. Global buckling promotes continued folding of the structure when compressed beyond failure initiation. Face sheet fracture and wrinkling can promote collapse in the form of unstable debond crack growth, stable end-crushing or ductile in-plane shear collapse. Both the unstable debond crack propagation and the stable end-crushing are related to debond crack propagation, whereas the ductile in-plane shear mode is related to microbuckling of the face sheets. The collapse behaviour of sandwich configurations initially failing due to wrinkling or face sheet fracture was investigated, using a finite element model. The model was used to determine if the panels were likely to collapse in unstable debond propagation or in a more stable end-crushing mode, promoting high energy absorption. The collapse behaviour is mainly governed by the relation between the fracture toughness of the core and the bending stiffness and strength of the face sheets. The model was successfully used to design sandwich panels for different collapse behaviour. The proposed method could therefore be used in the design process of sandwich panels subjected to in-plane compressive loads.During a crash situation the accelerations on passengers must be kept below life threatening levels. The extreme peak loads in the structure must therefore be limited. This can be achieved by different kind of triggering features.Panels with either chamfered face sheets or with grooves on the loaded edges were investigated in this thesis. The peak load was reduced with panels incorporating either of the two triggering features. Another positive effect was that the plateau load following failure initiation was increased by the triggers. This clearly illustrates that triggers can be used to promote favourable response in sandwich panels. Vehicles are harmful to the environment not only during in-serve use, but during their entire life-cycle. By use of renewable materials the impact on the environment can be reduced. The in-plane compressive response of bio-based sandwich panels was therefore investigated. Panels with hemp fibre laminates showed potential for high energy absorption and panels with a balsa wood core behaved particular well. The ductile in-plane shear collapse mode of these panels resulted in the highest energy absorption of all investigated sandwich configurations. / QC 20100728
|
793 |
Wood fibre deformation in combined shear and compressionDe Magistris, Federica January 2005 (has links)
Mechanical pulping for producing pulps from softwood suitable for printing grade papers, like news, is a highly energy-intensive process consuming around 2000 kWh/t in electrical energy. Due to increasing energy costs and environmental issues there is a high demand for decreasing this energy consumption. The mechanical treatment of wet wood pieces in a refiner, in the mechanical pulp plant, is a complex mechanical loading. This is a process occurring between rotating discs at high speed and temperatures of 140 °C - 160 °C, where by means of shear and compression forces the fibres are separated and then made flexible, fibrillated and collapsed for good bonding ability. In this process also fines are created giving the optical properties of the paper. In mechanical pulping only a fraction of the applied energy is used for the structural changes of the wood material. Thus fundamental studies of the loading modes of wood under refining conditions and in particular under combined shear and compression loading are desired to gain more information regarding the possibility of affecting the mechanical pulping in an energy efficient way. The possibilities to study the behaviour of wood under a combined shear and compression load were in this thesis investigated using two methods: the Iosipescu shear test and the Arcan shear test. In both apparatus different combinations of shear and compression load were achieved by different rotations of the shear test device itself. Measurements with the Iosipescu device on a medium density fibreboard showed good agreement between experimental results and numerical simulations. Finite element analysis on wood showed, however, that with the use of a homogeneous material in the model the level of strain reached would be ten times smaller than experimentally measured. This fact is probably due to the honeycomb structure of the wood cells that allows for different local deformations that could not be represented by a continuous material model. Thus to study the deformations on the fibre level of wood an experimental equipment that uses smaller samples was needed. With a modified Arcan shear device such deformations under combined shear and compression load and in pure compression were possible showing different deformation patterns. During pure compression the cell walls bend in a characteristic “S” shape, independently of the shape of the fibre cells and their cell wall thickness. Under combined shear and compression, however, mainly the corners of the fibre cells deform giving a “brick” shape to the cells. In a second deformation performed in compression, the fibre cells follow the same deformation pattern as given by the first deformation type whether in compression or in combined shear and compression. The interpretation is that permanent defects in the cells themselves are introduced already in the first load cycle of the wood samples. The energy used under the different loading conditions showed that the first deformation required the largest amount of energy, for all loading conditions. The deformation in compression required larger amounts of energy than the deformation in combined loads. For subsequent deformations less energy was needed for compression if a combined load had preceded it. Due to the fact that less energy is needed to start to deform wood in combined load than under compression load, the application of a combined load as a first cycle may thus be a way to permanently deform fibres using less energy. To investigate the critical parameters determining the permanent deformation of cells, a finite element model of a network of twelve cells was developed. Special care was given to the material properties to study how the variation of the fibril angle in the different layers affects the deformation pattern of the wood fibres under the different loading conditions. The model shows that whether modelled as homogeneous linear isotropic material or as an orthotropic material defined for every layer of the cells wall, no difference in the deformation of the network of the fibres was achieved. It is probable that the deformation type is more determined by the geometry of the fibres themselves than by their material properties / QC 20101005
|
794 |
On Design and Analysis of a Novel Transverse Flux Generator for Direct-driven Wind ApplicationSvechkarenko, Dmitry January 2010 (has links)
This thesis deals with the analysis of a permanent magnet synchronous generator suited for direct-drivenwind turbines inmegawatt class. The higher specific torque and power density of a transverse flux permanent magnet machine in comparison to conventional radial-flux machines make it a promising solution for direct-driven wind turbine generators. The novel transverse flux generator investigated in this work would allow a better utilization of the available nacelle space due to its more compact construction. The major part of the thesis deals with the finite element analysis and analytical calculations of transverse flux generators. The computations are performed for single units of the basic transverse flux topology (BTFM) and the one utilizing iron bridges (IBTFM). As the selection of the pole length in a transverse flux machine affects the pole-to-pole flux leakage and thus its performance, the topologies have been analyzed with respect to the varying dimensions in the direction of movement. The topologies utilizing IBTFM have been found to be superior to the BTFM with respect to the flux linkage (by 110%) and utilization of the magnets (by 84%). The machines with longest magnets gave the largest flux linkage, while machines with short magnets should be preferred for better magnet utilization. The four sets of dimensions have been selected for a dynamic finite element analysis. The power factor is evaluated for the topologies with the varying dimensions in the peripheral plane in static finite element analysis. The performance of the topologies with the best power factor in the studied range (0.62 in the BTFM and 0.57 in the IBTFM), as well as the topologies that give the highest power factor to magnet volume ratio, is compared with the dynamic simulations.The electromagnetic and cogging forces of the transverse-flux generator are estimated. The IBTFM is superior to the BTFM with respect to the force production, where the three-phase electromagnetic force is twice as large as in the BTFM. The force ripples of the three-phase electromagnetic force are found to be insignificant in both topologies. An analytical procedure based on the results from the finite element simulations is applied for evaluation of the transverse flux generators with different shapes and topologies. The effectiveness of each topology is investigated based on the estimation of the torque production in a certain nacelle volume. A toroidal generator with the iron-bridge topology is the most compact alternativefor a wind turbine as it has the highest torque-per-volume ratio. Furthermore, the analyticalmodel, including evaluation of the synchronous inductance, is developed and compared with the results obtained in the threedimensional finite element analysis. Themodel provides a good agreement for the studied set of dimensions. / QC 20101109
|
795 |
New Approach in Characterizing Accessory Drive Belts for Finite Element ApplicationsNassiri, Farbod 12 January 2011 (has links)
Multi-ribbed serpentine belt is the core of the automotive accessory drive system, which distributes the engine power to other auxiliary systems of the car. Development of a belt life model is of a significant importance to the accessory drive system manufacturers, in order to prevent any premature failures of these belts. However, any numerical analysis on the belt life is heavily dependent on gaining an understanding of stress distribution in the belts under the operational loading conditions.
The presented work demonstrates a new systematic approach for determining the hyperelastic material parameters of rubber with specific application in Finite Element Analysis (FEA) of serpentine accessory drive belts. This new approach can be used as a stand-alone tool by manufacturers to determine the stress distribution in the belt under operational conditions; the results of which can be applied to assess the life of accessory drive belts, in a relatively short time.
|
796 |
Influence of Rock Boundary Conditions on Behaviour of Arched and Flat Cemented Paste Backfill Barricade WallsCheung, Andrew 21 November 2012 (has links)
Current design of cemented paste backfill (CPB) barricades tends to be of unknown conservativeness due to limited understanding of their behaviour. Previous work done to characterize barricade response has not accounted for the effects of the surrounding rock stiffness, which can have significant impact on the development of axial forces which enhance capacity via compressive membrane action.
Parametric analyses were performed with the finite element analysis program Augustus-2 to determine the effects of various material and geometric properties on barricade capacity. Equations based on Timoshenko and Boussinesq solutions were developed to model rock stiffness effects based on boundary material properties. An iterative simulation process was used to account for secondary moment effects as a proof of concept.
It was found that, for a range of typical rock types, barricade capacity varied significantly. The commonly made design assumption of a fully rigid boundary resulted in unconservative overpredictions of strength.
|
797 |
New Approach in Characterizing Accessory Drive Belts for Finite Element ApplicationsNassiri, Farbod 12 January 2011 (has links)
Multi-ribbed serpentine belt is the core of the automotive accessory drive system, which distributes the engine power to other auxiliary systems of the car. Development of a belt life model is of a significant importance to the accessory drive system manufacturers, in order to prevent any premature failures of these belts. However, any numerical analysis on the belt life is heavily dependent on gaining an understanding of stress distribution in the belts under the operational loading conditions.
The presented work demonstrates a new systematic approach for determining the hyperelastic material parameters of rubber with specific application in Finite Element Analysis (FEA) of serpentine accessory drive belts. This new approach can be used as a stand-alone tool by manufacturers to determine the stress distribution in the belt under operational conditions; the results of which can be applied to assess the life of accessory drive belts, in a relatively short time.
|
798 |
Influence of Rock Boundary Conditions on Behaviour of Arched and Flat Cemented Paste Backfill Barricade WallsCheung, Andrew 21 November 2012 (has links)
Current design of cemented paste backfill (CPB) barricades tends to be of unknown conservativeness due to limited understanding of their behaviour. Previous work done to characterize barricade response has not accounted for the effects of the surrounding rock stiffness, which can have significant impact on the development of axial forces which enhance capacity via compressive membrane action.
Parametric analyses were performed with the finite element analysis program Augustus-2 to determine the effects of various material and geometric properties on barricade capacity. Equations based on Timoshenko and Boussinesq solutions were developed to model rock stiffness effects based on boundary material properties. An iterative simulation process was used to account for secondary moment effects as a proof of concept.
It was found that, for a range of typical rock types, barricade capacity varied significantly. The commonly made design assumption of a fully rigid boundary resulted in unconservative overpredictions of strength.
|
799 |
Thermal Management in Laminated Die Systems Using Neural NetworksSeo, Jaho 26 August 2011 (has links)
The thermal control of a die is crucial for the development of high efficiency injection moulds. For successful thermal management, this research provides an effective control strategy to find sensor locations, identify thermal dynamic models, and design controllers. By applying a clustering method
and sensitivity analysis, sensor locations are identified. The neural network and finite element analysis techniques enable the modeling to deal with various cycle-times for the moulding process and uncertain dynamics of a die. A combination of off-line training through finite element analysis and training using on-line learning algorithms and experimental data is used for the system
identification. Based on the system identification which is experimentally validated using a real system, controllers are designed using fuzzy-logic and self-adaptive PID methods with backpropagation (BP) and radial basis function (RBF) neural networks to tune control parameters. Direct adaptive inverse control and additive feedforward control by adding direct adaptive inverse control to self-adaptive PID controllers are also provided. Through a comparative study, each controller’s performance is verified in terms of response time and tracking accuracy under different
moulding processes with multiple cycle-times. Additionally, the improved cooling effectiveness of the conformal cooling channel designed in this study is presented by comparing with a conventional straight channel.
|
800 |
Design And Modeling Elastomeric Vibration Isolators Using Finite Element MethodArdic, Halil 01 February 2013 (has links) (PDF)
In this thesis, a process is developed for designing elastomeric vibration isolators in order to provide vibration isolation for sensitive equipment being used in ROKETSAN A.S.&rsquo / s products.
For this purpose, first of all, similar isolators are examined in the market. After that, appropriate elastomeric materials are selected and their temperature and frequency dependent dynamic properties are experimentally obtained. Parametric finite element model of the isolator is then constituted in ANSYS APDL using the properties of elastomeric materials and the conceptual design of the isolator. Then, according to design requirements, final design parameters of the vibration isolator are determined at the end of design iterations. In the next step, vibration isolator that was designed is manufactured using the elastomeric material chosen, by a local rubber company. Finally, design process is verified by comparing analysis and test results.
|
Page generated in 0.0747 seconds