• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 8
  • 7
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 78
  • 51
  • 45
  • 41
  • 22
  • 21
  • 17
  • 17
  • 16
  • 16
  • 14
  • 13
  • 11
  • 11
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Optimalizace tloušťky plechů montované ocelové nádrže / Sheet thickness optimization of the bolted steel tank

Konečný, Jiří January 2016 (has links)
This thesis deals with bolted steel tanks, especially modification one of them. This modification is realized in cooperation with Kohimex spol. s r.o., which is assembling theese tanks for many years. The thesis continues on the bachelor one called "ASSEMBLED STEEL TANKS", which has already dealt with this issue. At the beginning of the thesis the issue of tanks is explained. Furthermore, there is made description of the tank modification details. At the next stage, the work presents stress-strain states of the tank, first for the current tank and then for the modified option. On the basis of completed analysis is made economic evaluation of design modified tank option due to the current tank. The results of this study allow better issue understanding of bolted tanks designing or they give impuls to improve the current way of designing.
62

Simulation numérique des opérations d’installation pour les fermes d’éoliennes offshore / Numerical simulation of installation operations for offshore wind farms

Wuillaume, Pierre-Yves 15 January 2019 (has links)
L’éolien offshore est l’énergie marine la plus avancée et utilisée dans le monde. Afin d’accroître l’énergie extraite du vent, les dimensions des éoliennes deviennent plus importantes et les parcs éoliens sont installées de plus en plus loin des côtes, où les mers sont plus agitées et les vents plus forts. De fait, les opérations marines sont plus complexes et plus chères et les fenêtres météo sont écourtées et se raréfient. Dans le cadre de cette thèse, un logiciel de simulation numérique des opérations marines est développé, en particulier pour des applications de descentes et de remontées de colis lourds. L’Algorithme aux Corps Rigides Composites, implémenté dans le logiciel InWave, est utilisé pour modéliser le système multicorps. Un modèle de câble et de treuil est développé, suivant la théorie multicorps utilisée, et comparé à la théorie câble classique dite « lumped mass ». Les efforts hydrodynamiques ainsi que les interactions hydrodynamiques sont modélisés par une théorie potentiel instationnaire satisfaisant l’hypothèse de faible perturbation, dite « weak-scatterer ». L’approche « weak-scatterer » du logiciel WS_CN est étendue aux simulations multi-flotteurs et validée par comparaison avec des données expérimentales. InWave et WS_CN sont couplés afin de résoudre l’interaction houle-structure pour des systèmes multicorps articulés en mer. Un couplage fort est adopté pour sa robustesse. L’équation de couplage est établie et validée via des comparaisons avec WS_CN. Le logiciel ainsi crée se nomme InWaveS_CN et utilise un code d’intégration en Python. Une nouvelle stratégie de maillage, basée sur un algorithme de découpe de maillages et une méthode par avance de front, est développée dans WS_CN. Enfin, des essais en bassin d’une opération de redressement ont été menés à l’ECN. La comparaison entre les simulations numériques et les données expérimentales offre une première et prometteuse validation d’InWaveS_CN. / Offshore wind represents the most advanced and used marine energy in the world. To increase the wind power extraction, turbines grow in size and wind farms are installed further offshore in presence of rough seas and strong winds. Marine operations become more challenging and expensive, weather windows are shorter and less frequent. This PhD work focuses on the development of a numerical tool to simulate marine operations with consistency, in particular lowering and lifting operations. The Composite-Rigid-Body Algorithm, implemented in the numerical tool InWave, is used to model multibody systems. A cable model and a winch model are developed following this multibody approach and compared to the classical low-order lumped mass theory. Hydrodynamic loads and hydrodynamic interactions are simulated using an unsteady potential flow theory based on the weakscatterer hypothesis, implemented in the numerical tool WS_CN. This approach is extended to multibody simulations and validated with comparisons to experimental data. InWave and WS_CN are coupled to solve wavestructure interaction for articulated multibody systems with large relative motions in waves. A tight coupling is selected for its robustness. The coupling equation is derived and validated from comparisons with WS_CN. This leads to the creation of a new numerical tool, InWaveS_CN, using Python as glue code language. A new mesh strategy, based on the coupling between a panel cutting method and an advance front method, is developed in WS_CN. Experiments of an upending operation were conducted at Ecole Centrale de Nantes. The comparison between the numerical simulations and the experimental data leads to a first and promising validation of InWaveS_CN.
63

<b>Influence of Surface Features on Tribological and Fatigue Performance of Machine Components</b>

Kushagra Singh (12988043) 29 August 2023 (has links)
<p><a href="">This work investigates the effect of surface features such as roughness, pits, and cracks on the tribological and fatigue behavior of machine components. It comprises of three main investigations: (i) effect of roughness on non-contacting fatigue, (ii) lubricated contact fluid structure interaction (FSI) behavior in presence of surface cracks, and (iii) the equivalence between non-contacting and contacting fatigue and the effect of roughness.</a></p><p>For the first investigation, a novel microstructure-based approach was developed to model surface roughness. It used a finite element fatigue damage model to predict the effects of roughness on tensile fatigue. AISI 4130 steel specimens with different surface finishes were fabricated and tested in axial fatigue using an MTS machine. The experimental results demonstrated the detrimental effect of roughness on fatigue lives, which was predicted by the model accurately.</p><p>In the second investigation, a partitioned CFD-FEM based FSI solver was developed using Ansys Multiphysics software to model and investigate elastohydrodynamically lubricated contacts typical in gears and cylindrical roller bearings. The FSI model relaxes Reynolds assumptions, and uses Navier-Stokes equations to determine the lubricant flow and utilizes finite element method to model the structural response. The FSI model was evaluated for robustness under various operating conditions. The effect of material plasticity, subsurface features, etc. were also investigated. The model was then extended to investigate the effects of surface cracks in rolling/sliding EHL line contacts. Using CFD based approach enabled the investigation of surface cracks with inclined geometries, overcoming the limitations of standard Reynolds-based solvers. The effects of crack geometry parameters such as crack location, crack length, crack width, crack tip radius and crack orientation on fluid pressure distribution were studied. This investigation identified the crack geometries that affect the contact fatigue behavior by predicting the location and severity of stress concentrations in the material.</p><p>Finally, the relationship between contacting fatigue and non-contacting fatigue was investigated. A test rig was designed and developed to simulate rolling contact fatigue (RCF) surface damage. Experimental investigation revealed that the RCF surface damage stress-life (SN) results can be predicted using torsional fatigue results 10 times faster. A computational contact mechanics model was developed to incorporate the effect of roughness in this prediction, and corroborated against experimental RCF results at different roughness levels.</p>
64

SPH Simulation of Fluid-Structure Interaction Problems with Application to Hovercraft

Yang, Qing 02 May 2012 (has links)
A Computational Fluid Dynamics (CFD) tool is developed in this thesis to solve complex fluid-structure interaction (FSI) problems. The fluid domain is based on Smoothed Particle Hydro-dynamics (SPH) and the structural domain employs large-deformation Finite Element Method (FEM). Validation tests of SPH and FEM are first performed individually. A loosely-coupled SPH-FEM model is then proposed for solving FSI problems. Validation results of two benchmark FSI problems are illustrated (Antoci et al., 2007; Souto-Iglesias et al., 2008). The first test case is flow in a sloshing tank interacting with an elastic body and the second one is dam-break flow through an elastic gate. The results obtained with the SPH-FEM model show good agreement with published results and suggest that the SPH-FEM model is a viable and effective numerical tool for FSI problems. This research is then applied to simulate a two-dimensional free-stream flow interacting with a deformable, pressurized surface, such as an ACV/SES bow seal. The dynamics of deformable surfaces such as the skirt/seal systems of the ACV/SES utilize the large-deformation FEM model. The fluid part including the air inside the chamber and water are simulated by SPH. A validation case is performed to investigate the application of SPH-FEM model in ACV/SES via comparison with experimental data (Zalek and Doctors, 2010). The thesis provides the theory of the SPH and FEM models incorporated and the derivation of the loosely-coupled SPH-FEM model. The validation results have suggested that this SPH-FEM model can be readily applied to skirt/seal dynamics of ACV/SES interacting with free-surface flow. / Ph. D.
65

Cloud CEIB I+D. Sistema de gestión y extracción de conocimiento de la imagen médica

Salinas Serrano, José María 20 June 2013 (has links)
No description available.
66

Σχεδιασμός, ανάλυση και βελτιστοποίηση συστήματος απάντλησης πετρελαίου από ναυάγια σε μεγάλα βάθη

Μαζαράκος, Δημήτριος 08 January 2013 (has links)
Η παρούσα διδακτορική διατριβή αναπτύσσεται ο υδροδυναμικός και δομικός (μηχανολογικός) σχεδιασμός μιας υποθαλάσσιας κατασκευής για την απάντληση πετρελαίου σε μεγάλα βάθη. Η κατασκευή αποτελείταια από 6 διαφορετικά τμήματα. Ο μηχανολογικός σχεδιασμός ξεκίνησε με την προσαρμογή κατάλληλων προδιαγραφών για το κάθε εξάρτημα. Το πρώτο εξάρτημα από το οποίο ξεκίνησε η ανάλυση είναι τα καλώδια ενίσχυσης των οποίων το φορτίο προέντασης είναι ήδη γνωστό από τα κριτήρια σχεδιασμού και τον αρχικό σχεδιασμό και περιορίζεται στους 1000 τόνους (10000 kN). Πραγματοποιήθηκε η τελική επιλογή του υλικού και των χαρακτηριστικών που έπρεπε να έχει ώστε να ανταποκρίνεται στις απαιτήσεις του θαλάσσιου περιβάλλοντος. Ο κατακόρυφος αγωγός με βάση την φιλοσοφία ανάπτυξης του συστήματος θα έπρεπε να αποτελείται από επιμέρους τμήματα αγωγών πεπερασμένου μήκους, κατασκευασμένους από πολυαιθυλένιο οι οποίοι καλύπτουν το συνολικό επιχειρησιακό βάθος. Η αλληλεπίδραση του θαλασσίου ρεύματος με τον αγωγό (Fluid Structure Interaction) για την κάθε διαφορετική ταχύτητα του θαλασσίου προφίλ ώστε να αποφευχθεί η πιθανότητα εμφάνισης επαγώμενων στροβίλων που θα μπορούσαν να οδηγήσουν σε ανεπιθύμητες ταλαντώσεις και σε κόπωση (Vortex Induced Vibration, VIV) τέθηκε σε πρώτη πρωτεραιότητα. Ο συνδυασμός αναλυτικών σχέσεων και πειραματικών δεδομένων από την βιβλιογραφία χρησιμοποιήθηκαν για να υπολογιστεί το μήκος των επιμέρους τμημάτων των αγωγών ώστε να περιοριστούν οι υψηλές εγκάρσιες μετατοπίσεις λόγω των ταλαντώσεων. Η μελέτη της διφασικής ροής πετρελαίου/ νερού σε κώδικα πεπερασμένων όγκων (FLUENT) πραγματοποιήθηκε τόσο για κατακόρυφη όσο και για κεκλιμένη θέση του αγωγού για να επιβεβαιωθεί ότι το αργό πετρέλαιο διατηρεί ανωστική πορεία προς την επιφάνεια ξεπερνώντας τις δυνάμεις τριβής που αναπτύσσονται λόγω της επαφής με τα τοιχώματα των αγωγών. Η ταχύτητα του μίγματος της εσωτερικής ροής καταγράφεται ώστε να ελεγχθεί η εσωτερική μεταβολή της πίεσης του αγωγού. Πιθανή υψηλή διαφοροποίηση της υδροστατικής πίεσης στο εσωτερικό του αγωγού σε σχέση με το εξωτερικό θα οδηγούσε σε επιπλέον φορτία στην δομή του αγωγού (ο αγωγός θα λειτουργούσε τοπικά ως πιεστικό δοχείο). Η προσομοίωση της εξωτερικής ροής γύρω από τμήμα του αγωγού με τα καλώδια ενίσχυσης τοποθετημένα στην περιφερειά του σε κώδικα πεπερασμένων όγκων FLUENT πραγματοποιήθηκε για τον προσδιορισμό των υδροδυναμικών συντελεστών στο εύρος ταχυτήτων 0.1-0.7 m/sec. Επίσης η μοντέλοποίηση αυτή έδειξε κατά πόσο η θέση των νημάτων επιρεάζει ή όχι την δημιουργία επαγώμενων στροβίλων γύρω από τον αγωγό. Η δομική ανάλυση με χρήση πακέτου πακέτου πεπερασμένων στοιχείων (NASTRAN/ PATRAN) έδειξε τα επίπεδα των μέγιστων τάσεων και μετατοπίσεων που αναπτύσσονται λόγω της ύπαρξης της δυναμικής πίεσης η οποία και καταπονεί τοπικά τους αγωγούς. Η αποθηκευτική δεξαμενή (πλωτήρας και συλλέκτης) σχεδιάστηκε με χρήση βασικών υπολογισμών ώστε να επιτευχθεί η κατάλληλη χωρητικότητα αλλά και η προδεγεγραμμένη άνωση. Ο προσδιορισμός των υδροδυναμικών συντελεστών πραγματοποιήθηκε σε FLUENT έτσι ώστε να διερευνηθεί το ροικό πεδίο γύρω από την δεξαμενή καθώς και το μέγεθος των δυνάμεων που μεταφέρονται στο σύστημα από την αλληλεπιδρασή της με το θαλάσσιο ρεύμα. Η δομή του πλωτήρα σχεδιάστηκε με χρήση βασικών δομικών υπολογισμών και η συνολική του συμπεριφορά κάτω από τα φορτία υδροστατικής πίεσης ελέγχθηκε με πεπερασμένα στοιχεία (NASTRAN/ PATRAN). Η δομή του συλλέκτη διαστασιολογήθηκε με βάση την επίδραση της δυναμικής πίεσης ένεκα της ροής γύρω του. Επίσης παρατίθονται οι βασικές δομικές αναλύσεις των συνδέσμων που χρησιμοποιήθηκαν για την ένωση των διαφόρων τμημάτων πλωτήρα και συλλέκτη. Το μοντέλο πλήρους κλίμακας αναπτύχθηκε με βάση τα πειράματα της υδροσήραγγας που πραγματοποιήθηκαν στην MARIN και με βάση του μοντέλου δυναμικής απόκρισης που δημιουργήθηκε στο ORCAFLEX από την SIREHNA. Σκοπός του μοντέλου πλήρους κλίμακας (με την χρήση NASTRAN/PATRAN) ήταν να εξομοιώσει την απόκριση του μοντέλου του ORCAFLEX το οποίο είχε ρυθμιστεί με βάση την υδροσήραγγα ώστε να υπολογιστούν οι δυνάμεις που μεταφέρονται στους δακτυλίους ενίσχυσης και τα φορτία (δυνάμεις και ροπές) που μεταφέρονται στο ενδιάμεσο στοιχείο. Τα δύο μοντέλα θα έπρεπε να εμφανίζουν την ίδια μέγιστη μετατόπιση ώστε να θεωρηθούν όμοια. Στην φάση αυτή τα καλώδια ενίσχυσης που μοντελοποιούνται με μονοδιάστατα στοιχεία στο NASTRAN/PATRAN . Το ενδιάμεσο στοιχείο αποτέλεσε το εξάρτημα στο οποίο μεταφέρονται τα φορτία του αγωγού στο σημείο σύνδεσης (δυνάμεις και οι ροπές) καθώς και οι δυνάμεις από τα καλώδια ενίσχυσης. Η δομική του ανάλυση περιλαμβάνει την διαστασιολόγηση του με βασικούς υπολογισμούς και την χρήση πεπερασμένων στοιχείων για τον έλεγχο τοπικών υπεφορτίσεων που δεν ήταν εφικτό να προσδιοριστούν με αναλυτικές σχέσεις. Ο θόλος επιρεάζεται από την ταχύτητα των θαλασσίων ρευμάτων που κινούνται γύρω του και αποτελούν τις κύριες δυνάμεις που τον επιρεάζουν. Η μοντελοποίηση της δυναμικής πίεσης πάνω στον αγωγό γίνεται με την χρήση υδροδυναμικού μοντέλου σε FLUENT ενώ η δομική του αντοχή προσδιορίστηκε με χρήση μοντέλου πεπερασμένων στοιχείων σε NASTRAN/ PATRAN. Οι δυνάμεις μεταφέρονταν στα καλώδια ενίσχυσης του θόλου που με την σειρά τους τις μμετέφεραν στο σύστημα αγκύρωσης στον βυθό. Το σύστημα αγκύρωσης διαστασιολογείται με αναλυτικούς υπολογισμούς από την βιβλιογραφία με βάση την μέγιστη δύναμη που μεταφέρεται από τα καλώδια αγκύρωσης του θόλου. Οι διαστάσεις του είναι συνάρτηση τόσο της σύστασης του βυθού όσο και της μέγιστης επιτρεπόμενης διάστασης που επιλέγεται από τα πλοία που συμμετέχουν στην ανάπτυξη του συστήματος. Τα βασικά συμπεράσματα που προέκυψαν από την ανάλυση ήταν η δυνατότητα της περαιτέρω ανάπτυξης του συστήματος σε ρηχά και πολύ βαθιά ύδατα καθώς και η ανάγκη για την μείωση του χρόνου κατασκευής ώστε να αυξηθεί η αποδοτικότητα του συστήματος. / In this PhD work, the mechanical design of a Sub sea Oil Recovery Structure is carried out. The structure is consisted of 6 different parts. The mechanical design methodology starts with the calculation of the diameter of the mooring lines for a tension force of 10000 kN. The fluid/ structure interaction is a design aspect for the Riser tube. Analytical equations were used to identify the dimensions of each riser tube’s part in order to avoid Vortex Induced Vibrations (VIV). As a second step, the oil upward movement into the riser tube was investigated. The buoyancy flow was examined using CFD analysis for both, vertical and inclined tube position to confirm that the crude oil could overcome the frictional forces due to contact with the internal tube’s wall. The external flow field around the riser tube, with the mooring lines along its periphery, was investigated in order to calculate the hydrodynamic coefficients for a range from 0.1 to 0.7 m/sec. This analysis was necessary since it helps to quantify the hydrodynamic load for the structural analysis. The structural analysis for the riser tube parts was performed using FEM and it was used for the study of the behavior under “local” loads such as the sea current’s dynamic pressure. The Buffer Bell’s analysis is based on the prediction of hydrodynamic coefficients (obtained from CFD analysis) and the use of a FE model for the structural analysis of the Buffer Bell hull subject to the hydrostatic pressure. The maximum displacement of the system due to the sea currents was also examined. A scale model test was performed in a water tunnel and a dynamic response model was created in order to predict the system’s behavior under operational loads and during the deployment phase. Additional, a FE model was developed to predict the loads (forces and moments) acting on the stiffening rings and the dome interface unit during the operational scenario. This FE model was compared with the Dynamic Response Model for the maximum displacement criterion. The maximum loads (forces and moments) from the Maximum Displacement FE model was used for the calculation of the dimensions of the stiffening ring and the dome interface unit. Finite element models were developed for these two components. A CFD analysis was performed to investigate the pressure distribution over the surface of the Dome. This pressure load and the reaction forces resulted from the analysis of the Dome Interface Unit were used to calculate the stresses faced by the Dome and the total force applied on the mooring system. For the dimensioning of the anchoring system, the highest force calculated for the mooring lines was chosen. The volume of cement for the anchoring system was calculated in order to withstand this force. Analytical equations were used to secure the anchor’s stability on different types of seabed (cohesion or cohesion less). At the end, the maximum calculated force on the mooring line was compared against the force resulted during the first step in order to confirm that fracture does not occur. The conclusions from this analysis is that the system can be applied to all depths (shallow waters, ultra deep waters) but also the final erection time should be minimized in order to increase the system’s efficiency.
67

Multidisciplinary design and optimisation of liquid containers for sloshing and impact

Kingsley, Thomas Charles 24 January 2006 (has links)
The purpose of this study is to perform an investigation of the numerical methods that may contribute to the design and analysis of liquid containers. The study examines several of these methods individually, namely Computational Fluid Dynamics (CFD) analysis of sloshing and Finite Element Methods (FEM) analysis of impact, to evaluate their contribution to the design cycle. Techniques that enhance the use of the various methods are presented and examined to demonstrate effectiveness. In the case of sloshing analysis, experimental tests performed add to the understanding of the phenomena at hand and qualifies the validity of the numerical method used (CFD). As a final contribution, the study presents a method of utilising impact analysis tools, FEM, and CFD in a Multidisciplinary Design Optimisation (MDO) environment. This is an introductory attempt at demonstrating a single coupled multidisciplinary method of designing liquid containers. The results of the study demonstrate a number of valuable numerical techniques that may be used in the design of liquid containers. The presented Total Deviation Value (TDV) proves to be an effective single quantification of sloshing performance and the CFD tools used to determine the value demonstrate sufficient ability to reproduce the sloshing event itself. More advanced experimental facilities would provide a more in-depth understanding of the limitations of the CFD analysis. The use of numerical optimisation adds a valuable dimension to the use of numerical simulations. Significant design improvements are possible for several design variables without performing exhaustive studies and provide interesting information about design trends. Finally, the use of multiple disciplines, FEM and CFD, in conjunction with the available numerical optimisation routines offers a powerful multidisciplinary design tool that can be adapted to any base geometry and is capable of finding optimal trade offs between the two disciplines according to the designer’s needs. This study provides a platform for further investigations in the use and coupling of sloshing and impact analysis in the design of industrial liquid container applications. / Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2006. / Mechanical and Aeronautical Engineering / unrestricted
68

Étude du ballottement de fluide dans les réservoirs à carburant : approches numérique et expérimentale / Study of liquid sloshing in fuel tanks : numerical and experimental investigation

Brandely, Anaïs 26 May 2016 (has links)
L’émergence de bruits auparavant inaudibles dans les réservoirs à carburants automobiles requiert des constructeurs une meilleure compréhension des phénomènes physiques intervenants au sein de leurs produits. Dans cette thèse, différents travaux ont été conduits autour de l’étude du ballottement de fluide dans une cuve rigide rectangulaire partiellement remplie de fluide et soumise à une excitation extérieure. La première partie présente un état de l’art sur le sloshing suivant trois approches complémentaires - approche analytique, approche numérique et approche expérimentale - permettant d’orienter les travaux. Dans une deuxième partie, une étude préliminaire sur le sloshing dans une cuve rectangulaire soumise à une excitation harmonique forcée est réalisée. La confrontation des résultats numériques entre une approche linéaire - basée sur la théorie d’écoulement potentiel tenant compte de la viscosité du fluide [Schotté et Ohayon, 2013] - et une approche non linéaire commerciale – basée sur la résolution des équations de Navier-Stokes - permet de définir un paramètre de linéarité. Ce dernier permet de déterminer les cas de sloshing qui nécessitent une résolution non linéaire et ceux pour lesquels la théorie linéaire suffit pour prédire le phénomène. La troisième partie de ce document présente une étude expérimentale du ballottement de fluide dans une cuve rectangulaire rigide soumise à un freinage automobile. Deux niveaux de remplissage créant deux types d’impacts contre les parois (avec et sans enfermement de poche d’air) ont été analysés. Les essais menés ont permis de mesurer les forces engendrées par le mouvement du fluide, les pressions d’impact en paroi ainsi que le champ de vitesse par méthode Particle Image Velocimetry (PIV). Ce chapitre constitue une importante base de données expérimentales ayant permis d’étudier précisément le phénomène physique. L’étude est complétée par une confrontation des résultats expérimentaux avec des résultats Computational Fluid Dynamics (CFD). Enfin, pour conclure ce mémoire, une étude du sloshing dans un réservoir en tenant compte de la Fluid-Structure Interaction (FSI) est présentée. Le choix du couplage a été porté sur un schéma partitionné itératif faible avec, dans un premier temps, une approche potentielle instationnaire, puis avec une approche Volume Of Fluid (VOF) pour la physique fluide. Les limites d’un tel couplage dans le cas d’étude d’un réservoir partiellement rempli de fluide et attaché de manière flexible en fonction du rapport de masse fluide-réservoir ont été mises en évidence. La correction du schéma de couplage par l’effet de masse ajoutée présentée dans [Song et al., 2013] permet la résolution d’un système couplé quel que soit le rapport de masse en jeu et améliore de manière significative la convergence en réduisant également fortement le temps de calcul. / The present thesis focuses on an investigation of the sloshing phenomenon in a partially filled fuel tank submitted to a harmonic excitation motion. In the first part, the confrontation of numerical results between a linear approach - taking into account viscosity - and a nonlinear approach based on a commercial code leads to define a parameter of linearity. This parameter allows determining cases of sloshing who require non-linear resolution and those who need a linear theory to predict the phenomenon. An experimental study of fluid sloshing in a rectangular tank submitted to an automotive braking is conducted. Tests leaded allow measuring global forces engendered by the motion of the fluid, pressure of fluid impact and velocity field by PIV. This chapter provides an important data base and helps to investigate on the physical phenomenon. This study is completed by CFD results. To conclude, a numerical model for fluid-structure interactions is presented. Limits of this segregated partitioned coupling in case of sloshing in tank flexibly attached are highlighted, depending mostly on the mass ratio between fluid and tank structure. An added-mass term is integrated to the corrected staggered scheme ensuring systematically the convergence of the coupled solution and reducing significantly the iterations required.
69

Modélisation multi-physique de l'environnement os trabéculaire-moelle par les techniques d'interaction fluide-structure basées sur le couplage des méthodes particulaires Lattice-Boltzmann et SPH / Multi-physics modeling of trabecular bone-marrow environment using fluid structure interaction technics by coupling the Lattice-Blotzmann and SPH particle methods

Laouira, Amina 27 February 2017 (has links)
Cette thèse porte sur le développement d’une nouvelle technique de modélisation des problèmes IFS utilisant les méthodes particulaires. Ce travail s’inscrit dans la continuité des travaux de recherche de l’équipe biomécanique du LAMIH, concernant la compréhension du comportement de l’os humain dans son environnement de moelle osseuse. La méthode SPH a été utilisée pour la modélisation des travées osseuses, supposées dans une première approche comme des solides élastiques. La méthode LB a été développée pour la modélisation des écoulements de moelle considérée comme un fluide visqueux incompressible. L’efficacité et la performance de ces deux méthodes ont été démontrées grâce aux benchmarks académiques évalués et les résultats comparés à ceux de la littérature ou ceux obtenus par des logiciels commerciaux. A l’issue d’une revue de l’état de l’art des techniques de couplage fluide-structure, une approche partitionnée en temps a été choisie, permettant d’utiliser deux codes distincts basés sur des algorithmes de résolution de type dynamique explicite. La discrétisation spatiale est faite par une technique spécifique basée sur les domaines fictifs, cette technique est très efficace car elle ne nécessite pas de rediscrétisation des domaines. L’approche de couplage développée a été appliquée à des benchmarks académiques ainsi qu’à une application en biomécanique, ayant permis d’aboutir à des résultats numériques satisfaisants. Plusieurs pistes d’amélioration sont maintenant nécessaires afin d’aller vers des modélisations plus biofidèles telles que la prise en compte du contact et de l’endommagement. / The objective of this thesis is the development of a new technique for the FSI problems modelling using particulars methods. This work is in the continuity of the LAMIH biomechanics team research works, regarding the comprehension of behavior of bone in its environment of marrow. The SPH method was used for the trabeculae modelling, supposed in a first attempt as an elastic solid. The LB method was developed for the marrow flow modelling considered as a viscous incompressible liquid. The efficacy and performance of these two methods were demonstrated using academics benchmarks which were evaluated and the results were compared of those of literature and of those obtained from commercials softwares. Following a bibliographic review of FSI coupling techniques, a partitioned approach in time was chosen, allowing the use of two separates codes, both based on a dynamic explicit algorithm resolution scheme. The special discretization was done based on a specific technique of fictional domain, this technique is very efficient because it doesn’t require an additional domain discretization. The coupling approach developed was applied on academic benchmarks and on a biomechanical application, leading to satisfactory numerical results. Many Improvement track are now necessary to go towards more biofidelic modeling as taking into account the contact and the damage.
70

Quantifying Cerebellar Movement With Fluid-Structure Interaction Simulations

Ridzon, Matthew C. 15 July 2020 (has links)
No description available.

Page generated in 0.0158 seconds