351 |
Mineraliska material som reaktiva filter för avskiljning av tungmetaller från dagvattenLindquist, Anna January 2005 (has links)
Highly polluted urban storm water from e.g. highways can contain large amounts of heavy metals that may cause harm if they are discharged into recipients. To remove the heavy metals a possible low-cost method that does not require much maintenance, could be the use of reactive filters with filter materials consisting of industrial residues or other cheap mineral based materials. Dissolved metal ions are removed by reactive filters through the processes of ions binding to active sites on the surface of the filter materials, or by formation of insoluble precipitates. The ability of CaO-treated granulated blast-furnace slag, iron oxide coated sand, olivine and nepheline to remove seven heavy metals (Cr, Cd, Cu, Ni, Zn, Pb and Hg) from urban storm water was studied. Initially batch experiments were performed where the effect of pH, dissolved organic carbon (DOC) and dissolved ions on the adsorption efficiency was studied. The experiments were conducted with urban storm water and with a reference solution (10 mM NaNO3), both containing the same concentration of heavy metals (approx. 1 μM). The two materials with the best results were further investigated in a column study, where the capacity of the filter was tested. Chemical equilibrium calculations using the program Visual MINTEQ were performed in order to assess the role of precipitation as a mechanism for removal. The results show that the blast-furnace slag was the most effective filter material and that it has great potential to be used as a heavy metal remover. Also the iron oxide coated sand worked satisfactory. The highest degree of removal was obtained for lead, cadmium and nickel, for which the removal efficiency exceeded 90% after a load of 300 times the water volume in the columns. For some metals, mainly copper, chromium and mercury the dissolved organic matter affected the removal negatively. The chemical mechanisms causing the removal are specific adsorption to the surfaces of the materials, and for the blast-furnace slag probably precipitation of insoluble metal sulfides. / Starkt förorenat dagvatten som rinner av från exempelvis motorvägar, kan innehålla betydliga mängder tungmetaller som kan orsaka skada om de kommer ut i omgivande vattendrag. En billig metod för tungmetallavskiljning, som inte kräver så mycket underhåll, skulle kunna vara att använda reaktiva filtermaterial bestående av restprodukter eller andra mineraliska lågkostnadsmaterial. Reaktiva filter fungerar som metallavskiljare genom att de lösta metalljonerna binder till ytgrupper på filtermaterialen eller att svårlösliga utfällningar bildas. Förmågan att avskilja sju tungmetaller (Cr, Cd, Cu, Ni, Zn, Pb och Hg) ur dagvatten har undersökts för fyra mineraliska filtermaterial, kalciumoxiddopad masugnsslagg, järnoxidsand, olivin och nefelin. Studien inleddes med skakförsök där adsorptionens pH-beroende undersöktes. Försöken gjordes dels med dagvatten, dels med en referenslösning (10 mM NaNO3) med samma tungmetallkoncentration (ca 1μM). Detta gjordes för att studera effekter av löst organiskt material och andra ligander på adsorptionen. Därefter testades de material som uppvisat bäst resultat i skakförsöket i kolonnförsök, ett försök som mer efterliknar en praktisk tillämpning och där filtrets kapacitet kan studeras. Genom kemiska jämviktsberäkningar med programmet Visual MINTEQ var det möjligt att undersöka om bildningen av svårlösliga metallutfällningar bidrog till metallavskiljningen. Resultaten visar att slaggen var det effektivaste filtermaterialet och att detta har stor potential att användas för avskiljning av tungmetaller. Även järnoxidsanden fungerade tillfredsställande. De metaller som avskiljdes bäst var bly, kadmium och nickel, för vilka avskiljningen var > 90 % i kolonnförsöket efter en belastning motsvarande 300 gånger vattenmängden i kolonnerna. För vissa metaller, främst koppar, krom och kvicksilver, försämrades avskiljningen betydligt när löst organiskt material fanns närvarande. Mekanismerna som står för avskiljningen är till störst del adsorption till grupper på filtermaterialens ytor, men bildning av svårlösliga metallsulfider är också tänkbar för slaggen.
|
352 |
Temperature Effect On Calcium Aluminate Cement Based Composite BindersKirca, Onder 01 August 2006 (has links) (PDF)
In calcium aluminate cement (CAC) systems the hydration process is different than portland cement (PC) systems. The hydration products of CAC are subjected to conversion depending on temperature, moisture, water-cement ratio, cement content, etc. Consequently, strength of CAC system can be seriously reduced. However, presence of other inorganic binders or additives may alter the hydration process and improve various properties of CAC based composites.
The objective of this study is to investigate the temperature effect on the behaviour of CAC based composite binders. Throughout this research, several combinations of CAC-PC, CAC-gypsum, CAC-lime, CAC-ground granulated blast furnace slag (CAC-GGBFS) were studied. These CAC based composite binders were subjected to seven different curing regimes and their strength developments were investigated up to 210 days. In addition, the mechanism of strength development was examined by XRD analyses performed at 28 and 210 days. Finally, some empirical relationships between strength-time-curing temperatures were formulated.
Experimental results revealed that the increase in ambient temperature resulted in an increase in the rate of conversion, thereby causing drastic strength reduction, particularly in pure CAC mix. It has been observed that inclusion of small amount of PC, lime, and gypsum in CAC did not induce conversion-free CAC binary systems, rather they resulted in faster conversion by enabling rapid formation of stable C3AH6 instead of metastable, high strength inducing CAH10 and C2AH8. On the other hand, in CAC-GGBFS mixes, the formation of stable straetlingite (C2ASH8) instead of calcium aluminate hydrates hindered the conversion reactions. Therefore, CAC-GGBFS mixes, where GGBFS ratio was over 40%, did not exhibit strength loss due to conversion reactions that occurred in pure CAC systems.
|
353 |
Light Flicker Evaluation Of Electric Arc Furnaces Based On Novel Signal Processing AlgorithmsKose, Neslihan 01 September 2009 (has links) (PDF)
In this research work, two new flickermeters are proposed to estimate the light flicker caused by electric arc furnaces (EAFs) where the system frequency deviates significantly. In these methods, analytical expressions of the instantaneous
light flicker sensation are obtained beginning from a voltage waveform and these expressions are used to obtain a flicker estimation method based on the IEC (International Electrotechnical Commission) flickermeter. First method is a spectral decomposition based approach using DFT to estimate the light flicker. The leakage effect of the DFT algorithm due to fundamental frequency variation is reduced by employing spectral amplitude correction procedure around the fundamental frequency. Second method is a Kalman filter based approach, in which the frequency domain components of the voltage waveform are obtained by Kalman filtering. Then these components are used to obtain the light flicker.
Since the frequency decomposition is obtained by Kalman filtering, no leakage effect of the DFT is involved in case of frequency deviations which is an important advantage. Both methods are tested on both simulated data and field data
obtained from three different EAF plants where the flicker level and frequency variation is considerably high. The comparison with the digital realization of the IEC flickermeter shows that the methods are successful in estimating light
flicker with low computational complexity. The methods are especially useful for conditions such as disturbances and subsequent system transients where the system frequency deviates significantly, since the methods avoid the need for
online sampling rate adjustment to prevent the DFT leakage effect.
|
354 |
Effects Of Separate And Intergrinding On Some Properties Of Portland Composite CementsSoyluoglu, Serdar 01 January 2010 (has links) (PDF)
In the production of cement, to increase the cement/clinker ratio and decrease CO2 emission, the most important alternative is to produce mineral admixture incorporated cements (CEM II-III-IV-V) instead of portland cement
(CEM I). These cements are usually produced by intergrinding the portland cement clinker and the mineral admixtures. However, the difference between grindabilities of the different components of such cements may cause significant effects on the particle size distribution and many other properties.
For this reason, separate grinding of additives and clinker may be thought as an alternative. In this study, the effects of intergrinding and separate grinding on the particle size distribution and consequently on the strength of portland
composite cements which contained natural pozzolan (trass), granulated blast furnace slag (GBFS) and limestone besides portland cement clinker were studied.
|
355 |
Flicker Source Identification At A Point Of Common Coupling Of The Power SystemAltintas, Erinc 01 June 2010 (has links) (PDF)
Voltage fluctuations under 30 Hz in the electricity grid, leads to oscillations in the light intensity that can be perceived by human eye, which is called flicker. In this thesis, the sources of the flicker at a point of common coupling is investigated. When there are more than one flicker sources connected to a PCC, individual effects of each flicker source is determined by using a new method which depends on the reactive current components of the sources. This method is mainly based on the flickermeter design defined by the International Electrotechnical Commission (IEC), but uses the current variations in addition to the voltage variations to compute flicker. The proposed method is applied to several different types of loads supplied from a PCC and their flicker contributions on the busbar are investigated. Experiments are performed on field data obtained by the power quality analyzers (PQ+) developed by the National Power Quality Project and the method has been found to provide accurate results for flicker contributions of various loads. The PQ+ analyzers with the proposed flicker contribution detection algorithm are called Flicker Contribution Meters (FCM) and they will be installed at the points of the Turkish Electricity Transmission Network when required.
|
356 |
Effect Of Trass, Granulated Blast Furnace Slag And Fly Ash On Delayed Ettringite FormationTopbas, Selim 01 September 2010 (has links) (PDF)
Properly proportioned, placed and cured concrete can be durable under most conditions. However, deterioration of concrete does occur under certain environments. One of the problems that affect the durability of hardened concrete is delayed ettringite formation (DEF) which is an important problem encountered in precast concrete industry where high temperature curing is applied. Although there had been many researches on DEF, there are still many uncertainties about its chemistry and mechanism.
In this study, the effects of partial cement replacement by different mineral admixtures (trass, blast furnace slag and fly ash), SO3/Al2O3 molar ratio and specific surface area of cement on DEF were investigated. For this purpose, 9 groups of control cements were prepared with 3 different specific surface areas and 3 different SO3/Al2O3 molar ratios. Different amounts of mineral admixtures were blended with the control cements. High temperature curing was applied to the cement pastes and the expansions of these pastes were measured periodically for 240 days.
v
The experimental results obtained were interpreted for a comparative analysis of the effects of the afore-mentioned parameters.
|
357 |
Modeling Of Liquid Flow In A Packed Bed Under Influence Of Gas FlowSingh, Vikrant 09 1900 (has links)
The aim of the current study is to model (non-wetting) liquid flow in a packed bed under the influence of gas flow. It has been observed experimentally that non-wetting liquid flows in a packed bed in form of small droplets and rivulets falling through the void regions. Continuum models have not been successful in predicting liquid flow paths when the liquid is injected through a point source in the packed bed. In the current study, we present a discrete deterministic model for modeling the liquid flow in a packed bed, under the influence of gas flow.
When a high velocity gas blast in injected into a dry packed bed, a cavity or a void is formed in front of the nozzle. The cavity size increases with increasing gas velocity and exhibits hystersis in size upon increasing and decreasing gas flow rate. The cavity size is very important in determining the gas penetration into the packed bed. A proper gas flow profile prediction is necessary for determining it’s effect on the liquid flow behavior. Attempts at modeling cavity sizes have mostly been confined to experimental studies and development of correlations. Different correlations show different dependence on operating as well as bed parameters and a fundamental understanding of the cavity formation and hystersis phenomena is missing. We adopt a combined Eulerean-Lagrangian approach to study the above mentioned phenomena mathematically. Gas is modeled as a continua and solid as discrete (soft sphere D.E.M. approach). Hystersis and cavity formation studies are carried out in a 2D-slot rectangular packed bed. A discrete deterministic liquid flow model (developed and validated under structured packing conditions using x-ray radiography flow visualization technique), is used to study the effect of presence of liquid on the dry bed void size, when liquid is injected in a packed bed through a point source. It is found that the gas pushes the liquid away from the nozzle side wall. Also, the cavity sizes during gas velocity decreasing case are found to be larger in size than the void size obtained during velocity increasing case for the same inlet gas flow rate. This difference is void size leads to more gas penetration into the bed and thus more liquid shift away from the nozzle side wall. Presence of liquid is found to affect the void size (compared to dry bed size) negligibly.
|
358 |
Thermodynamic aspects and heat transfer characteristics of HiTAC furnaces with regeneratorsRafidi, Nabil January 2005 (has links)
<p>Oxygen-diluted Combustion (OdC) technology has evolved from the concept of Excess Enthalpy Combustion and is characterized by reactants of low oxygen concentration and high temperature. Recent advances in this technology have demonstrated significant energy savings, high and uniform thermal field, low pollution, and the possibility for downsizing the equipment for a range of furnace applications. Moreover, the technology has shown promise for wider applications in various processes and power industries.</p><p>The objectives of this thesis are to analyze the thermodynamic aspects of this novel combustion technology and to quantify the enhancement in efficiency and heat transfer inside a furnace in order to explore the potentials for reduced thermodynamic irreversibility of a combustion process and reduced energy consumption in an industrial furnace. Therefore, theoretical and experimental investigations were carried out.</p><p>The 2nd law of thermodynamics analyses of OdC systems have been carried out for cases in which the oxidizer is either oxygen (Flameless-oxy-fuel) or air (High Temperature Air Combustion, HiTAC). The analyses demonstrate the possibilities of reducing thermodynamic irreversibility of combustion by considering an oxygen-diluted combustion process that utilizes both gas- and/or heat-recirculation. Furthermore, the results showed that an oxygen-diluted combustion system that utilizes oxygen as an oxidizer, in place of air, results in higher 1st and 2nd law efficiencies.</p><p>Mathematical models for heat regenerators were developed to be designing tools for maximized heat recovery. These models were verified by heat performance experiments carried out on various heat regenerators.</p><p>Furthermore, experiments were performed in a semi-industrial test furnace. It was equipped with various regenerative burning systems to establish combustion and heat transfer conditions prevailing in an industrial furnace operating based on HiTAC. The tests were carried out at seven firing configurations, two conventional and five HiTAC configurations, for direct and indirect heating systems.</p><p>Measurements of energy balance were performed on the test furnace at various configurations in order to obtain the 1st law efficiency. Moreover, local measurements of temperature, gas composition, and heat fluxes in the semi-industrial test furnace were performed to find out the main characteristics of HiTAC flame and the effects of these characteristics on the heating potential, i.e., useful heating in the furnace. In the case of HiTAC, these measurements showed uniformities of chemistry, temperature, temperature fluctuation, and heat fluxes profiles. The values of fluctuations in temperature were small. The high speed jets of the fuel and air penetrated deep into the furnace. The fuel gradually disappeared while intermediate species gradually appeared in relatively high concentrations and at broader regions inside the furnace. These findings indicate: a large reaction zone, low specific combustion intensity in the flame, low specific fuel energy release, and high heat release from this large flame. In addition to the thermodynamic limitations to the maximum temperature of the Oxygen-diluted Combustion, the low specific energy release of the fuel and the high heat release from the flame to its surroundings cause this uniform and relatively moderate temperature profile in a HiTAC flame, consequently suppressing thermal-NO formation.</p><p>Heat flux and energy balance measurements showed that heating potential is significantly increased in the case of HiTAC compared to that in the conventional case, implying much more energy savings than the apparent heat recovery from the heat regenerators, and consequently much less pollutants emissions. Therefore, it is certain that this large HiTAC flame emits more thermal radiation to its surroundings than the conventional flame does, in spite of the moderate-uniform temperature profile of the flame. This intense heat flux was more uniform in all HiTAC configurations, including the indirect heating configuration, than that of the conventional-air combustion configuration.</p>
|
359 |
A structured approach for the reduction of mean time to repair of blast furnace D, ArcelorMittal, South Africa, Vanderbijlpark / Madonsela A.T.Madonsela, Alex Thulani January 2011 (has links)
Organizations are expected by their shareholders to continually deliver above
industry returns on capital invested and to remain competitive in the industry of
choice through productivity, safety and quality. The maintenance function is a key
area in which competitiveness through efficiencies and world–class performance can
be attained by focusing on the prevention and reduction of long and costly
equipment repair times.
The question is: how can the mean time to repair of equipment already installed in
the plant be reduced?
To answer the above question correctly and comprehensively, the research explored
mixed methods in finding answers. Quantitative methodology using a survey was
used for data collection. Observations and interviews were held with maintenance
personnel to uncover information that couldn’t have been obtained by means of a
survey.
The survey was limited to equipment performance measures, human factors,
environmental factors, planning, spare parts, maintainability, procedures and
training. To test consistency and accuracy of representation of the total population
under study, a reliability test was done by using Cronbach’s alpha coefficient. To
determine whether there are any differences between groups, an ANOVA test was
used. Cohen’s d–value was used to determine practically significant differences
between one set of data with another and correlation analysis was used to determine
the relationships between the variables.
The approach designed and delivered by this research flowed from the existing body
of knowledge, case studies and survey findings. The approach adopts some of the
elements of the failure mode and effects analysis (FMEA) procedure and differs from
other work that has been done by others by taking into account the competency and
experience of maintenance personnel and assigning to them factors which are used
to compute anew MTTR of the equipment. The cost of implementing the
recommended corrective actions for realising the new MTTR is determined and
evaluated against an improved equipment availability that will be achieved as a
result of the recommended corrective actions assuming that the failure rate of the
equipment remains constant. This evaluation step imbedded within the approach is
valuable for the maintenance function and management for decision making in
ensuring that resources at the organization’s disposal are used productively.
Validation and test results of the approach showed that the MTTR of equipment
installed in the plant can be reduced. The results also indicated that through the use
of the designed approach a regular pattern of repair or replacement times can be
followed well in advance and that it is practical, user friendly and it also delivers on
its objective of offering a structure for analysis and decision making aimed at
reducing the MTTR.
Included with this dissertation is feedback information that can be included in a
maintenance job card feedback section to capture information about factors that can
be improved to lower the MTTR as part of a continuous improvement process.
Included also is a spare part development and management procedure that can be
used by the maintenance function.
Recommendations on training of maintenance personnel on the maintainability of
equipment, the FMEA procedure and maintenance procedures are highlighted.
Information that flowed from this approach will be valuable for continuous plant
performance improvement and during the design, installation and operation stages of a blast furnace. / Thesis (M.Ing. (Development and Management Engineering))--North-West University, Potchefstroom Campus, 2012.
|
360 |
Evaluation of thermal desorption as an alternative technique for the measurement of coal tar pitch volatiles / Cornelius Johannes van der MerweVan der Merwe, Cornelius Johannes January 2011 (has links)
Motivation: The accurate and reliable measurement of the concentration of coal tar pitch
volatiles (CTPVs) in ambient air has proved to be a challenge for occupational hygienists. The
challenge must however be confronted due to, amongst others, the carcinogenic properties of
some poly–aromatic hydrocarbons (PAHs) contained in CTPVs.
Aim: To determine the feasibility of a thermal desorption (TD) technique based method as an
alternative method to be used for the measurement of the concentration of CTPVs in ambient
air by assessing it along criteria such as ease of use, cost, accuracy and precision by
comparing it to NIOSH’s Method 5515 and OSHA’s Method 58 and to determine the level of
exposure to CTPVs on the anode paste floor of an electric furnace, used for the smelting of
platinum group metals (PGMs) concentrate.
Methodology: To satisfy the research objective, two accepted methods the National Institute
of Occupational Safety and Health’s (NIOSH) method 5515 and the Occupational Safety and
Health Administration’s (OSHA) method 58 were used for the measurement of the
concentration of CTPVs with a TD technique based method used as a third, alternative method.
All three methods were used concurrently to measure the concentration of CTPVs in ambient
air, at the anode paste floor of a platinum group metals (PGMs) concentrate smelter.
Results and conclusions: The NIOSH method proved to be the most precise method while the
TD technique based method proved to be the most accurate. The TD technique based method
proved to measure the widest range of individual CTPVs and were able to measure the highest
concentration of Benzo(a)pyrene, an individual CTPV that is classified as a Group 1
(carcinogenic to humans) chemical substance by the International Agency for Research on
Cancer (IARC). The OSHA method measured on average almost four times less total CTPVs
than either the NIOSH or the TD technique based method and failed to readily measure
individual CTPVs with a molecular weight lower than that of Phenanthrene. / Thesis (M.Sc. (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2012.
|
Page generated in 0.0351 seconds