Spelling suggestions: "subject:"faltningsnät"" "subject:"faltningsnätet""
1 |
Real-time Human Detection using Convolutional Neural Networks with FMCW RADAR RGB data / Upptäckt av människor i real-tid med djupa faltningsnät samt FMCW RADAR RGB dataPhan, Anna, Medina, Rogelio January 2022 (has links)
Machine learning has been employed in the automotive industry together with cameras to detect objects in surround sensing technology. You Only Look Once is a state-of-the-art object detection algorithm especially suitable for real-time applications due to its speed and relatively high accuracy compared to competing methods. Recent studies have investigated whether radar data can be used as an alternative to camera data with You Only Look Once, seeing as radars are more robust to changing environments such as various weather and lighting conditions. These studies have used 3D data from radar consisting of range, angle, and velocity, transformed into a 2D image representation, either in the Range-Angle or Range-Doppler domain. Furthermore, the processed radar image can use either a Cartesian or a polar coordinate system for the rendering. This study will combine previous studies, using You Only Look Once with Range-Angle radar images and examine which coordinate system of Cartesian or polar is most optimal. Additionally, evaluating the localization and classification performance will be done using a combination of concepts and evaluation metrics. Ultimately, the conclusion is that the Cartesian coordinate system prevails with asignificant improvement compared to polar. / Maskininlärning har sedan länge använts inom fordinsindustrin tillsammans med kameror för att upptäcka föremål och få en ökad överblick över omgivningar. You Only Look Once är en toppmodern objektdetekteringsalgoritm särskilt lämplig för realtidsapplikationer tack vare dess hastighet och relativt höga noggrannhet jämfört med konkurrerande metoder. Nyligen genomförda studier har undersökt om radardata kan användas som ett alternativ till kameradata med You Only Look Once, eftersom radar är mer robusta för ändrade miljöer så som olika väder- och ljusförhållanden. Dessa studier har utnyttjat 3D data från radar bestående av avstånd, vinkel och hastighet, som transformerats till en 2D bildrepresentation, antingen i domänen Range-Angle eller Range-Doppler. Vidare kan den bearbetade radarbilden använda antingen ett kartesiskt eller ett polärt koordinatsystem för framställningen. Denna studie kommer att kombinera tidigare studier om You Only Look Once med Range-Angle radarbilder och undersöka vilket koordinatsystem, kartesiskt eller polärt, som är mest optimalt att använda för människodetektering med radar. Dessutom kommer en utvärdering av lokaliserings- och klassificeringsförmåga att göras med hjälp av en blandning av koncept och olika mått på prestanda. Slutsatsen gjordes att det kartesiska koordinatsystemet är det bättre alternativet med en betydligt högre prestanda jämfört med det polära koordinatsystemet.
|
2 |
Scenanalys - Övervakning och modelleringAli, Hani, Sunnergren, Pontus January 2021 (has links)
Självkörande fordon kan minska trafikstockningar och minska antalet trafikrelaterade olyckor. Då det i framtiden kommer att finnas miljontals autonoma fordon krävs en bättre förståelse av omgivningen. Syftet med detta projekt är att skapa ett externt automatiskt trafikledningssystem som kan upptäcka och spåra 3D-objekt i en komplex trafiksituation för att senare skicka beteendet från dessa objekt till ett större projekt som hanterar med att 3D-modellera trafiksituationen. Projektet använder sig av Tensorflow ramverket och YOLOv3 algoritmen. Projektet använder sig även av en kamera för att spela in trafiksituationer och en dator med Linux som operativsystem. Med hjälp av metoder som vanligen används för att skapa ett automatiserat trafikledningssystem utvärderades ett målföljningssystem. De slutliga resultaten visar att systemet är relativt instabilt och ibland inte kan känna igen vissa objekt. Om fler bilder används för träningsprocessen kan ett robustare och mycket mer tillförlitligt system utvecklas med liknande metodik. / Autonomous vehicles can decrease traffic congestion and reduce the amount of traffic related accidents. As there will be millions of autonomous vehicles in the future, a better understanding of the environment will be required. This project aims to create an external automated traffic system that can detect and track 3D objects within a complex traffic situation to later send these objects’ behavior for a larger-scale project that manages to 3D model the traffic situation. The project utilizes Tensorflow framework and YOLOv3 algorithm. The project also utilizes a camera to record traffic situations and a Linux operated computer. Using methods commonly used to create an automated traffic management system was evaluated. The final results show that the system is relatively unstable and can sometimes fail to recognize certain objects. If more images are used for the training process, a more robust and much more reliable system could be developed using a similar methodology.
|
3 |
Evaluating deep learning models for electricity spot price forecastingZdybek, Mia January 2021 (has links)
Electricity spot prices are difficult to predict since they depend on different unstable and erratic parameters, and also due to the fact that electricity is a commodity that cannot be stored efficiently. This results in a volatile, highly fluctuating behavior of the prices, with many peaks. Machine learning algorithms have outperformed traditional methods in various areas due to their ability to learn complex patterns. In the last decade, deep learning approaches have been introduced in electricity spot price prediction problems, often exceeding their predecessors. In this thesis, several deep learning models were built and evaluated for their ability to predict the spot prices 10-days ahead. Several conclusions were made. Firstly, it was concluded that rather simple neural network architectures can predict prices with high accuracy, except for the most extreme sudden peaks. Secondly, all the deep networks outperformed the benchmark statistical model. Lastly, the proposed LSTM and CNN provided forecasts which were statistically, significantly superior and had the lowest errors, suggesting they are the most suitable for the prediction task. / Elspotspriser är svåra att förutsäga eftersom de beror på olika instabila och oregelbundna faktorer, och också på grund av att elektricitet är en vara som inte kan lagras effektivt. Detta leder till ett volatilt, fluktuerande beteende hos priserna, med många plötsliga toppar. Maskininlärningsalgoritmer har överträffat traditionella metoder inom olika områden på grund av deras förmåga att lära sig komplexa mönster. Under det senaste decenniet har djupinlärningsmetoder introducerats till problem inom elprisprognostisering och ofta visat sig överlägsna sina föregångare. I denna avhandling konstruerades och utvärderades flera djupinlärningsmodeller på deras förmåga att förutsäga spotpriserna 10 dagar framåt. Den första slutsatsen är att relativt simpla nätverksarkitekturer kan förutsäga priser med hög noggrannhet, förutom för fallen med de mest extrema, plötsliga topparna. Vidare, så övertränade alla djupa neurala nätverken den statistiska modellen som användes som riktmärke. Slutligen, så gav de föreslagna LSTM- och CNN-modellerna prognoser som var statistiskt, signifikant överlägsna de andra och hade de lägsta felen, vilket tyder på att de är bäst lämpade för prognostiseringsuppgiften.
|
4 |
Meta-Pseudo Labelled Multi-View 3D Shape Recognition / Meta-pseudomärking med Bilder från Flera Kameravinklar för 3D ObjektigenkänningUçkun, Fehmi Ayberk January 2023 (has links)
The field of computer vision has long pursued the challenge of understanding the three-dimensional world. This endeavour is further fuelled by the increasing demand for technologies that rely on accurate perception of the 3D environment such as autonomous driving and augmented reality. However, the labelled data scarcity in the 3D domain continues to be a hindrance to extensive research and development. Semi-Supervised Learning is a valuable tool to overcome data scarcity yet most of the state-of-art methods are primarily developed and tested for two-dimensional vision problems. To address this challenge, there is a need to explore innovative approaches that can bridge the gap between 2D and 3D domains. In this work, we propose a technique that both leverages the existing abundance of two-dimensional data and makes the state-of-art semi-supervised learning methods directly applicable to 3D tasks. Multi-View Meta Pseudo Labelling (MV-MPL) combines one of the best-performing architectures in 3D shape recognition, Multi-View Convolutional Neural Networks, together with the state-of-art semi-supervised method, Meta Pseudo Labelling. To evaluate the performance of MV-MPL, comprehensive experiments are conducted on widely used shape recognition benchmarks ModelNet40, ShapeNetCore-v1, and ShapeNetCore-v2, as well as, Objaverse-LVIS. The results demonstrate that MV-MPL achieves competitive accuracy compared to fully supervised models, even when only \(10%\) of the labels are available. Furthermore, the study reveals that the object descriptors extracted from the MV-MPL model exhibit strong performance on shape retrieval tasks, indicating the effectiveness of the approach beyond classification objectives. Further analysis includes the evaluation of MV-MPL under more restrained scenarios, the enhancements to the view aggregation and pseudo-labelling processes; and the exploration of the potential of employing multi-views as augmentations for semi-supervised learning. / Forskningsområdet för datorseende har länge strävat efter utmaningen att förstå den tredimensionella världen. Denna strävan drivs ytterligare av den ökande efterfrågan på teknologier som är beroende av en korrekt uppfattning av den tredimensionella miljön, såsom autonom körning och förstärkt verklighet. Dock fortsätter bristen på märkt data inom det tredimensionella området att vara ett hinder för omfattande forskning och utveckling. Halv-vägledd lärning (semi-supervised learning) framträder som ett värdefullt verktyg för att övervinna bristen på data, ändå är de flesta av de mest avancerade semisupervised-metoderna primärt utvecklade och testade för tvådimensionella problem inom datorseende. För att möta denna utmaning krävs det att utforska innovativa tillvägagångssätt som kan överbrygga klyftan mellan 2D- och 3D-domänerna. I detta arbete föreslår vi en teknik som både utnyttjar den befintliga överflöd av tvådimensionella data och gör det möjligt att direkt tillämpa de mest avancerade semisupervised-lärandemetoderna på 3D-uppgifter. Multi-View Meta Pseudo Labelling (MV-MPL) kombinerar en av de bästa arkitekturerna för 3D-formigenkänning, Multi-View Convolutional Neural Networks, tillsammans med den mest avancerade semisupervised-metoden, Meta Pseudo Labelling. För att utvärdera prestandan hos MV-MPL genomförs omfattande experiment på väl använda uvärderingar för formigenkänning., ModelNet40, ShapeNetCore-v1 och ShapeNetCore-v2. Resultaten visar att MV-MPL uppnår konkurrenskraftig noggrannhet jämfört med helt vägledda modeller, även när endast \(10%\) av etiketterna är tillgängliga. Dessutom visar studien att objektbeskrivningarna som extraherats från MV-MPL-modellen uppvisar en stark prestanda i formåterhämtningsuppgifter, vilket indikerar effektiviteten hos tillvägagångssättet bortom klassificeringsmål. Vidare analys inkluderar utvärderingen av MV-MPL under mer begränsade scenarier, förbättringar av vyaggregerings- och pseudomärkningsprocesserna samt utforskning av potentialen att använda bilder från flera vinklar som en metod att få mer data för halv-vägledd lärande.
|
Page generated in 0.0772 seconds